JPH0136696B2 - - Google Patents
Info
- Publication number
- JPH0136696B2 JPH0136696B2 JP57150752A JP15075282A JPH0136696B2 JP H0136696 B2 JPH0136696 B2 JP H0136696B2 JP 57150752 A JP57150752 A JP 57150752A JP 15075282 A JP15075282 A JP 15075282A JP H0136696 B2 JPH0136696 B2 JP H0136696B2
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- ion implantation
- disk
- support means
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005468 ion implantation Methods 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 16
- 239000003507 refrigerant Substances 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 5
- 239000013013 elastic material Substances 0.000 claims description 2
- 239000007943 implant Substances 0.000 claims 1
- 239000004071 soot Substances 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 30
- 239000002245 particle Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005465 channeling Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Description
本発明は半導体素子の製造において、不純物添
加に用いられるイオン打込装置に係わり、特に半
導体基盤(以下ウエハと記す)への荷電粒子の入
射角を一定にする手段と、ウエハの冷却手段に関
するものである。
従来より荷電粒子を走査することで均一なイオ
ン打込を行おうとする試みが成されてきた。
即ち、第1図にその原理を示すように、荷電粒
子1は走査手段2により破線部領域3の範囲で走
査され、支持手段5で支持されたウエハ4に打込
まれる。
ここでウエハ4は通常、平面で支持されるか又
は、支持手段5との間に隙間を生じさせずに密着
させ冷却効果を上げるために、若干、イオンの打
込方向に凸状に支持されている。
近年、ウエハが大口径化されるに伴い、前記の
原理に基づく従来装置では、ウエハ両端部へのイ
オン打込角がウエハ中央部への打込角と異なるた
め、不純物添加の制御上の問題が生じてきた。
即ち、ウエハ面上に形成されたマスクによつ
て、本来打込まれる部分にマスクの影が生じてし
まつたり、物質の結晶構造がイオンの打込角とあ
る特定の角度を成した時にイオンが物質中に深く
打込まれる、いわゆるチヤネリング効果によつ
て、不純物添加が不均一になる等の問題が無視し
得なくなつてきた。
このような問題を解決する装置として、イオン
打込角を修正するイオン打込装置が提案されてい
る。この原理は第2図に示されるように、走査手
段を22と24の2つに分けて、常に一定の角度
でウエハにイオンを打込むものである。
この装置では走査手段として2つの磁場を用い
ねばならず、電源も含めて装置が大がかりになる
欠点があつた。
他方、ウエハはイオン打込みによつて加熱され
るので、ウエハの品質を左右する結晶性や表面に
形成されたマスクを保護するために、ウエハを冷
却する必要がある。
本発明の目的は、イオン打込みによつて発生し
た熱を効率よく放散してウエハを効果的に冷却す
ることができるイオン打込み装置を提供すること
にある。
本発明の特徴は、ウエハ支持手段の凹部とその
凹部に支持されるウエハとの間に熱伝導性のある
弾性材を配置し、前記支持手段が冷媒を封入した
ヒートデイスクに接続され、さらにこのヒートデ
イスクが冷却機構に接続されている点にある。
第3図に本発明の原理図を示す。第1図と同一
番号を符した手段は同じ概念である。前記の凹状
はイオンの走査手段からウエハまでの距離をRと
した時の半径Rの円弧である。偏向手段によつて
は円弧でなくとも良く、2次曲線或は偏向角度を
考慮した三角級数で補正された曲線で凹状を形成
しても良い。
このように支持することによつてイオンの打込
角はウエハに対して常に一定に保つことができ
る。また走査手段2は磁場又は電場を変化させて
荷電粒子を走査する。
第4図に本発明の一実施例を示す。
イオン源で発生し、加速され、選択された荷電
粒子は矢印3の如く走査されウエハ42の全面に
打込まれるが、ウエハ42は図示のようにイオン
の打込方向に対し凹状に、支持機構504によつ
て支持手段50に支持されている。6は回転円盤
の1部である。ウエハ42と支持手段50の間に
は、熱伝導率の高いクツシヨン材(以下クールシ
ートと記す)502が一定の厚みで介在されてい
る。ウエハは図の紙面の表裏方向には直線状であ
る。即ちウエハ42は円筒面で支持されている。
ウエハ42は単結晶の場合が多いが、R=1000
mmの時の押え距離Dは表1に示す程度であるので
破損の必配はない。
The present invention relates to an ion implantation device used for adding impurities in the manufacture of semiconductor devices, and more particularly to a means for keeping the angle of incidence of charged particles on a semiconductor substrate (hereinafter referred to as wafer) constant and a means for cooling the wafer. It is. Conventionally, attempts have been made to perform uniform ion implantation by scanning charged particles. That is, as the principle is shown in FIG. 1, the charged particles 1 are scanned by a scanning means 2 within a region 3 indicated by a broken line, and are implanted into a wafer 4 supported by a supporting means 5. Here, the wafer 4 is usually supported on a flat surface, or supported in a slightly convex shape in the ion implantation direction in order to bring the wafer 4 into close contact with the support means 5 without creating a gap and increase the cooling effect. ing. In recent years, as wafers have become larger in diameter, conventional equipment based on the above principle has encountered problems in controlling impurity addition because the ion implantation angle to both ends of the wafer is different from the implantation angle to the center of the wafer. has arisen. In other words, a mask formed on the wafer surface may cast a shadow on the area where the ion is implanted, or when the crystal structure of the material forms a certain angle with the ion implantation angle, the ion implantation may occur. Due to the so-called channeling effect, in which impurities are deeply implanted into the material, problems such as uneven doping of impurities have become impossible to ignore. An ion implantation device that corrects the ion implantation angle has been proposed as a device to solve this problem. The principle of this is that, as shown in FIG. 2, the scanning means is divided into two parts 22 and 24, and ions are always implanted into the wafer at a constant angle. This device had the disadvantage that two magnetic fields had to be used as scanning means, making the device bulky including the power supply. On the other hand, since the wafer is heated by ion implantation, it is necessary to cool the wafer in order to protect the crystallinity that affects the quality of the wafer and the mask formed on the surface. An object of the present invention is to provide an ion implantation apparatus that can efficiently cool a wafer by efficiently dissipating heat generated by ion implantation. The present invention is characterized in that a thermally conductive elastic material is disposed between a recess of the wafer support means and the wafer supported in the recess, the support means is connected to a heat disk filled with a coolant, and the support means is connected to a heat disk filled with a coolant. The point is that the heat disk is connected to the cooling mechanism. FIG. 3 shows a diagram of the principle of the present invention. Means labeled with the same numbers as in FIG. 1 have the same concept. The concave shape is a circular arc having a radius R, where R is the distance from the ion scanning means to the wafer. Depending on the deflecting means, the concave shape may not be a circular arc, but may be a quadratic curve or a curve corrected by a trigonometric series taking into account the deflection angle. By supporting the wafer in this manner, the ion implantation angle can always be kept constant with respect to the wafer. Further, the scanning means 2 scans the charged particles by changing a magnetic field or an electric field. FIG. 4 shows an embodiment of the present invention. The charged particles generated by the ion source, accelerated, and selected are scanned as shown by the arrow 3 and implanted onto the entire surface of the wafer 42, but the wafer 42 is concave in the ion implantation direction as shown in the figure, and is supported by a support mechanism. 504 on the support means 50 . 6 is a part of the rotating disk. A cushion material (hereinafter referred to as a cool sheet) 502 having a high thermal conductivity is interposed between the wafer 42 and the support means 50 with a constant thickness. The wafer is linear in the front and back directions of the paper in the figure. That is, the wafer 42 is supported by a cylindrical surface. The wafer 42 is often single crystal, but R=1000
Since the pressing distance D when mm is as shown in Table 1, damage is not inevitable.
【表】
第5図に本発明のもう1つの実施例を示す。
この実施例では回転円盤が回転する際の遠心力
を利用して、本発明の特徴である凹状支持を行う
もので、第4図の支持機構504を必要としない
効果と、凹状の支持手段50の凹部分の形状を自
由に設定できる効果がある。即ち、図の紙面の表
裏方向にも、同じ半径Rで凹状に支持することが
可能である。この支持を行えば、荷電粒子の走査
方向のみならず、回転円盤の回転方向にも凹状に
支持できる。
第5図の6は軸lを中心に回転するイオン打込
装置の回転円盤であり、支持手段50は円盤周辺
に多数取付けられている。
真空排気した後に、支持手段50から奪う熱量
に比べて充分な量の冷媒(通常は純水)を封入し
たヒートデイスク部602には、真空排気時の強
度を補うための補強材606が、凝縮した冷媒が
遠心力で602内l軸側から支持手段50へ移動
するのに妨げとならぬように、要所要所に配置さ
れている。
イオン打込みによつて生じた熱は、ウエハ42
からクールシート502を通つて支持手段50へ
伝導し、さらにヒートデイスク部602によつて
冷却部604に伝えられる。即ち、支持手段50
から冷却部604への熱伝達は、支持手段50側
での冷媒の蒸発、それによる蒸気の冷却部604
側への移動、冷却部604側でのその蒸気の凝
縮、その凝縮された冷媒の支持手段50側への移
動というプロセスを経て蒸発潜熱の形で、冷却部
604と支持手段50との間にほとんど温度差を
生ずることなしに行われ、しかも冷媒の支持手段
50側への移動は遠心力により強制的に行われる
ので、支持手段50の凹部に設けられたクツシヨ
ン材502によるウエハ4の凹部に対する密着性
向上と相まつてウエハ4の冷却が極めて効果的に
行われる。
クールシート502はもつと薄くとも良く、材
質として図示した様な形状の高分子材料から成る
固体物質を使用するか、又は真空グリースの様な
高温(〜100℃)でも粘性の高い半固体物質をウ
エハ42と支持手段50の間に塗布しても良い。
冷却部604は、回転円盤6の外壁を外側のパ
イプとする2重パイプに連なつた構造を持ち、冷
媒は第5図矢印の向きか又はそれと逆向きに流入
し流出する。仕切円盤610は熱膨張の影響を受
けずに支持されるよう、スプリング608で回転
円盤6に固定されている。
この構造によれば冷却水をウエハ付近にまで導
く従来例に比べて回転モーメントを小さく抑える
効果があると同時に、大電流イオン打込みを行う
際の冷却に係る熱容量を大きくできる効果もあ
る。
冷却部604には通常フレオン等の冷媒を循環
させておくが、イオン打込みによつて生じる熱量
の大小によつては、液体窒素を流入しても良い。
但し、この場合には流入する液体窒素の量をヒー
トデイスク部602内の冷媒が凍結しないように
制御する必要がある。
以上述べたように、本発明によればイオン打込
み時のウエハの冷却が極めて効果的に行われる。[Table] FIG. 5 shows another embodiment of the present invention. In this embodiment, the centrifugal force generated when the rotary disk rotates is used to perform the concave support, which is a feature of the present invention, and the advantage is that the support mechanism 504 shown in FIG. 4 is not required, and the concave support means 50 This has the effect of allowing the shape of the concave portion to be freely set. That is, it is possible to support it concavely with the same radius R both in the front and back directions of the plane of the drawing. If this support is performed, it is possible to support the charged particles concavely not only in the scanning direction of the charged particles but also in the rotational direction of the rotating disk. Reference numeral 6 in FIG. 5 is a rotating disk of the ion implantation device that rotates around the axis I, and a large number of supporting means 50 are attached around the disk. After evacuation, the heat disk part 602 is filled with a sufficient amount of refrigerant (usually pure water) compared to the amount of heat taken from the support means 50, and a reinforcing material 606 to supplement the strength during evacuation is used to prevent condensation. They are arranged at important points so that they do not interfere with the movement of the refrigerant from the inner shaft side of 602 to the support means 50 by centrifugal force. The heat generated by ion implantation is transferred to the wafer 42.
The heat is conducted from there to the support means 50 through the cool sheet 502, and further to the cooling section 604 by the heat disk section 602. That is, the support means 50
The heat transfer from the cooling part 604 to the cooling part 604 is caused by the evaporation of the refrigerant on the side of the support means 50 and the resulting vapor cooling part 604.
The vapor is condensed on the side of the cooling part 604, and the condensed refrigerant moves to the side of the support means 50, in the form of latent heat of vaporization, between the cooling part 604 and the support means 50. The refrigerant is moved to the support means 50 side forcibly by centrifugal force, so that the refrigerant is moved toward the support means 50 by the cushion material 502 provided in the recess of the support means 50. In addition to improved adhesion, the wafer 4 is cooled extremely effectively. The cool sheet 502 may be thin or thin, and may be made of a solid material made of a polymeric material with the shape shown in the figure, or a semi-solid material that is highly viscous even at high temperatures (~100°C), such as vacuum grease. It may also be applied between the wafer 42 and the support means 50. The cooling section 604 has a structure in which the outer wall of the rotary disk 6 is connected to a double pipe, and the refrigerant flows in and out in the direction of the arrow in FIG. 5 or in the opposite direction. The partition disk 610 is fixed to the rotating disk 6 with a spring 608 so that it is supported without being affected by thermal expansion. This structure has the effect of suppressing the rotational moment to a smaller value than the conventional example in which cooling water is led to the vicinity of the wafer, and at the same time has the effect of increasing the heat capacity related to cooling when performing high-current ion implantation. Usually, a coolant such as freon is circulated in the cooling unit 604, but liquid nitrogen may be introduced depending on the amount of heat generated by ion implantation.
However, in this case, it is necessary to control the amount of liquid nitrogen flowing in so that the refrigerant in the heat disk section 602 does not freeze. As described above, according to the present invention, cooling of the wafer during ion implantation can be performed extremely effectively.
第1図は走査手段を用いた従来のイオン打込装
置の原理図、第2図は2つの走査手段を用いた従
来のイオン打込装置の原理図、第3図は本発明に
係るイオン打込装置の原理図、第4図は本発明に
係る一実施例を示す図、第5図は本発明に係るも
う一つの実施例を示す図である。
1…荷電粒子線、2…走査手段、3…走査範
囲、42…半導体基板、50…支持手段、502
…熱伝導率の高いクツシヨン材、504…支持機
構、6…回転円盤、602…ヒートデイスク部、
604…冷却部、606…補強材、608…スプ
リング、610…仕切円盤。
FIG. 1 is a principle diagram of a conventional ion implantation apparatus using a scanning means, FIG. 2 is a principle diagram of a conventional ion implantation apparatus using two scanning means, and FIG. 3 is an ion implantation apparatus according to the present invention. FIG. 4 is a diagram showing the principle of the embedding device, FIG. 4 is a diagram showing one embodiment of the present invention, and FIG. 5 is a diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Charged particle beam, 2... Scanning means, 3... Scanning range, 42... Semiconductor substrate, 50... Supporting means, 502
...Cushion material with high thermal conductivity, 504...Support mechanism, 6...Rotating disk, 602...Heat disk part,
604...Cooling part, 606...Reinforcement material, 608...Spring, 610...Partition disk.
Claims (1)
湾曲させて支持する凹部を有し、前記ウエハにイ
オンを走査しながら打込むようにしたイオン打込
装置において、前記ウエハの裏面と前記支持部材
の凹部の間には熱伝導性のある弾性材が配置され
ており、前記回転円盤はその回転中心付近に冷媒
が流通される冷却部と、この冷却部と前記支持部
材の間に設けられた、冷煤が封入された密封室を
有するヒートデイスクとを備えていることを特徴
とするイオン打込装置。1. In an ion implantation apparatus in which a support member attached to a rotating disk has a concave portion for supporting a wafer in a curved manner, and implants ions into the wafer while scanning, the back surface of the wafer and the support member A thermally conductive elastic material is disposed between the recesses, and the rotating disk is provided with a cooling section through which a refrigerant flows near the center of rotation, and between the cooling section and the support member. An ion implantation device comprising: a heat disk having a sealed chamber filled with cold soot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57150752A JPS5941828A (en) | 1982-09-01 | 1982-09-01 | Ion implanter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57150752A JPS5941828A (en) | 1982-09-01 | 1982-09-01 | Ion implanter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5941828A JPS5941828A (en) | 1984-03-08 |
JPH0136696B2 true JPH0136696B2 (en) | 1989-08-02 |
Family
ID=15503636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57150752A Granted JPS5941828A (en) | 1982-09-01 | 1982-09-01 | Ion implanter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5941828A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4700077A (en) * | 1986-03-05 | 1987-10-13 | Eaton Corporation | Ion beam implanter control system |
EP0287630A4 (en) * | 1986-10-08 | 1989-07-25 | Varian Associates | Method and apparatus for constant angle of incidence scanning in ion beam systems. |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123174A (en) * | 1976-04-09 | 1977-10-17 | Hitachi Ltd | Specimen scanning method for ion implantation |
JPS53119670A (en) * | 1977-03-28 | 1978-10-19 | Toshiba Corp | Ion implanting method and apparatus for the same |
-
1982
- 1982-09-01 JP JP57150752A patent/JPS5941828A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123174A (en) * | 1976-04-09 | 1977-10-17 | Hitachi Ltd | Specimen scanning method for ion implantation |
JPS53119670A (en) * | 1977-03-28 | 1978-10-19 | Toshiba Corp | Ion implanting method and apparatus for the same |
Also Published As
Publication number | Publication date |
---|---|
JPS5941828A (en) | 1984-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2595113B2 (en) | Semiconductor manufacturing equipment | |
US5581591A (en) | Focal spot motion control for rotating housing and anode/stationary cathode X-ray tubes | |
US7852988B2 (en) | High flux X-ray target and assembly | |
US5629528A (en) | Charged particle beam system having beam-defining slit formed by rotating cyclinders | |
US20030221626A1 (en) | Shaft cooling mechanisms | |
US6686598B1 (en) | Wafer clamping apparatus and method | |
JPH0136696B2 (en) | ||
US20100284518A1 (en) | Pivoting high flux x-ray target and assembly | |
GB2109996A (en) | Hydraulically actuated semiconductor wafer clamping and cooling apparatus | |
JP4016279B2 (en) | Wafer pedestal tilt mechanism and cooling system | |
US20030111617A1 (en) | Wafer pedestal tilt mechanism | |
US8379798B2 (en) | Moving high flux X-ray target and assembly | |
JPS61239552A (en) | Rotatable anode x ray source | |
JPS61259445A (en) | Rotary anode x-ray tube | |
JP3455899B2 (en) | Cooling medium transfer type cooling device | |
US20030070316A1 (en) | Wafer pedestal tilt mechanism and cooling system | |
US4626399A (en) | Limiter | |
JPH02301558A (en) | Sputtering device | |
JPS6182643A (en) | Rotating anode type x-ray | |
JPS5826453Y2 (en) | Heating element cooling device in vacuum equipment | |
CS272919B1 (en) | Vacuum chamber for ionic implantation | |
JPH0479102B2 (en) | ||
JPH02143521A (en) | Sputtering method | |
JPS62229948A (en) | Cooling device for semiconductor wafer treatment device | |
JPS61224251A (en) | Rotary anode x-ray tube |