JPS594179A - Amorphous solar battery - Google Patents

Amorphous solar battery

Info

Publication number
JPS594179A
JPS594179A JP57113408A JP11340882A JPS594179A JP S594179 A JPS594179 A JP S594179A JP 57113408 A JP57113408 A JP 57113408A JP 11340882 A JP11340882 A JP 11340882A JP S594179 A JPS594179 A JP S594179A
Authority
JP
Japan
Prior art keywords
layer
curable resin
ultraviolet curable
amorphous silicon
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57113408A
Other languages
Japanese (ja)
Other versions
JPS6317342B2 (en
Inventor
Yutaka Yamauchi
豊 山内
Mitsuo Matsunami
松浪 光雄
Mikio Katayama
幹雄 片山
Hideo Miyake
英男 三宅
Hiroshi Fujimoto
弘 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Toyobo Co Ltd
Original Assignee
Sharp Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Toyobo Co Ltd filed Critical Sharp Corp
Priority to JP57113408A priority Critical patent/JPS594179A/en
Publication of JPS594179A publication Critical patent/JPS594179A/en
Publication of JPS6317342B2 publication Critical patent/JPS6317342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the production cost of an amorphous solar battery by covering the front surface of a light receiving surface with a light transmission ultraviolet curable resin layer, thereby enhancing the productivity. CONSTITUTION:An amorphous silicon layer 6 of one or more layers of any of P type region, a true region and an N type region is formed suitably with gas such as monosilane, fluorided silicon, hydrogen, phosphine or diborane by CVD glow discharge on a substrate 5 made of stainless steel, ceramic or glass or the like. Then, a transparent conductive layer 7 made or In2O3, SnO2 or the like is formed in a desired pattern to effectively operate as a photovoltaic unit on the layer 6. Subsequently, a light transmissive ultraviolet ray curable resin 9 is covered wider than the profile of the layer 7 on the layer 7 of the prescribed pattern.

Description

【発明の詳細な説明】 本発明は、アモルファス太陽電池に関する。[Detailed description of the invention] The present invention relates to amorphous solar cells.

最近、太陽電池の低コスト化を目的として、グロー放電
などによりアモルファス状態でのシリコ:/ 薄Hをス
テンレス、銅、アルミニウム等の基板上に積層させて太
陽電池として使用する試みがなされている。
Recently, with the aim of reducing the cost of solar cells, attempts have been made to use silico:/thin H in an amorphous state by glow discharge or the like on a substrate made of stainless steel, copper, aluminum, etc. as a solar cell.

このような製法による太陽庖池累子の構造を第1図に示
す。これは、ステンレス基板1上に、CVD(化学反応
を伴う気相成長)、グロー放電等により、P型層、真性
層、n型層のアモルファスシリコンJim2を成長させ
たのち、In、IOg、S n 02等の透明導電11
3を被覆し、その上に蒸着叉はスパッター等の手法によ
りAIJ、 Ni、Ou等の中層膜又は、Al’Ay 
5TiAy 、 0rOu等の二層膜、AHA、。
Figure 1 shows the structure of Taiyo Koike Yuko produced by such a manufacturing method. This is done by growing amorphous silicon Jim2 of a P-type layer, an intrinsic layer, and an n-type layer on a stainless steel substrate 1 by CVD (vapor phase growth accompanied by a chemical reaction), glow discharge, etc., and then growing In, IOg, S Transparent conductive 11 such as n 02
3 and coated with an intermediate layer film of AIJ, Ni, Ou, etc. or Al'Ay by vapor deposition or sputtering.
Bilayer films such as 5TiAy, 0rOu, AHA, etc.

ハンダ層よりなる三層膜等よりなる電極を形成して得ら
れる。このような太陽′rl池素子が電卓等の民生用機
器に用いられるときは、プリント基板上に素子を接着し
てモジュール化し、また、電力用]こ用いられるときは
、複数個の太陽fK池を直列又は並列に接続され、ガラ
ス、シリコーン樹脂等で全体を被覆保誰される。
It is obtained by forming an electrode made of a three-layer film made of a solder layer or the like. When such a solar battery element is used in consumer equipment such as a calculator, the element is glued onto a printed circuit board to form a module. are connected in series or parallel, and the whole is covered with glass, silicone resin, etc.

しかるに、民生用に使用される場合、透明導電層3及び
アモルファスシリコン層2の機械的強度が弱いため、モ
ジュール作成時、又は電卓等の民生用機器に装着すると
きに、損傷を受は易く取扱い上に難点があるとともに、
表面から水分等が侵入し易く、アモルファスシリコン層
等に悪影譬を及ぼし、信頼性に問題があった。
However, when used for consumer use, the mechanical strength of the transparent conductive layer 3 and the amorphous silicon layer 2 is weak, so they are easily damaged during module creation or when attached to consumer equipment such as a calculator. There are some difficulties above, and
Moisture or the like easily enters from the surface, which adversely affects the amorphous silicon layer and the like, resulting in reliability problems.

また、電力用に使用する場合、接続された太陽電池素子
全体がンリコーン樹脂、ガラス等で被覆されるため非常
に製造工程が複雑で、かつ、多くの材料が必要なため実
装パッケージングコストが非常に高価となる欠点があっ
た。
Furthermore, when used for electric power, the entire connected solar cell element is coated with silicone resin, glass, etc., making the manufacturing process extremely complex and requiring a large amount of materials, resulting in extremely high mounting and packaging costs. It had the disadvantage of being expensive.

これらの欠点を改良するためエポキシ系シリコン系等の
熱硬化型瘤D1層を太陽電池受光面側に形成することに
より表面を保護した太陽電池が知られている。しかし、
このような熱硬化型の透明性樹脂を表面保護に使用する
場合は、 ■ 熱容量の大きいステンレス基板等よりなる太陽電池
を、少なくとも100℃以上に加熱しなければならず、
多社の熱エネルギーを必要とする。
In order to improve these drawbacks, a solar cell is known in which the surface is protected by forming a thermosetting nodule D1 layer of epoxy-silicon type or the like on the light-receiving surface side of the solar cell. but,
When using such thermosetting transparent resin for surface protection, ■ solar cells made of stainless steel substrates with large heat capacity must be heated to at least 100°C;
Requires heat energy from multiple companies.

■ 通常、熱硬化型樹脂は、硬化するために比較的長い
反応時間を要し、面積の大きい太陽電池の製造には量産
性に難点がある。
■ Normally, thermosetting resins require a relatively long reaction time to cure, making it difficult to mass-produce large-area solar cells.

■ 通常、熱硬化型樹脂は、有機溶剤を含み、硬化時、
溶剤ガスが発生するため、溶剤ガス処理等の設備を必要
とする、等の欠点があった。
■ Normally, thermosetting resins contain organic solvents, and during curing,
Since solvent gas is generated, there are drawbacks such as the need for equipment for processing solvent gas.

本発明の目的は、生産性が高く製造コストを低減化した
アモルファス太陽電池を提供することにある。
An object of the present invention is to provide an amorphous solar cell with high productivity and reduced manufacturing costs.

本発明のアモルファス太陽電池は、太l@電池前面を透
光性紫外線硬化型樹脂1−で被覆してなることを特徴と
している。
The amorphous solar cell of the present invention is characterized in that the front surface of the cell is coated with a translucent ultraviolet curable resin 1-.

本発明で使用する紫外線硬化型樹脂とは、光重合性化合
物(1)と、光増感剤(If)を必須成分とし、波長2
00〜400 nmの紫外線を照射することにより硬化
する樹脂である。
The ultraviolet curable resin used in the present invention contains a photopolymerizable compound (1) and a photosensitizer (If) as essential components, and has a wavelength of 2
It is a resin that is cured by irradiation with ultraviolet light of 00 to 400 nm.

光重合性化合物(I)とは、分子内に1個以上の重合性
二重結合を有する光重合可能な化合物であり、例えば、 (+)  スチレン、α−メチルスチレン、クロロスチ
レンなどのスチレン系化合物、 (II)  )リアリルイソシアヌレート、ジアリルフ
タレートなどのアリル系化合物、 (IID  メチル(メタ)アクリレート、エチル(メ
タ)アクリレート、テトラヒドロフルフリル(メタ)ア
クリレートなどのモノ(メタ)アクリレート化合物、 Qψ エチレングリコールジ(メタ)アクリレート、1
.6−ヘキザンジオールジ(メタ)アクリレートなどの
アルキレングリコールジ(メタ)アクリレート化合物、 (V)  l−リメチロールプロパントリ(メタ)アク
リレート、ペンタエリスリトールテトラ(メタ)アクリ
レートなどの多価アルコールの多価(メタ)アクリレー
ト化合物、 (VL)  分子内に2個以上のエポキシ基を有する化
合物に(メタ)アクリル酸を反応させて得られるエポキ
シ(メタ)アクリレート化合物、 (Vll)  カルボン酸成分として(メタ)アクリル
酸と多価カルボン酸およびアルコール成分として2価以
上の多価アルコールとを反応させて得られるオリゴエス
テル(メタ)アクリレート化合物、〜l11)  2価
以上の多価イソシアネ−1・化合物と2価以上の多価ア
ルコールを予め反応させて得られる末端イソシアネート
基含有化合物にアルコール性水酸基含有(メタ)アクリ
レートを反応させて得られるウレタン変性(メタ)アク
リレート化合物などが挙げられる。上記化合物は単に例
示したものであって、本発明を何ら限定するものでなく
、他の公知の光重合性化合物が使用可能であることは言
う才でもない。
The photopolymerizable compound (I) is a photopolymerizable compound having one or more polymerizable double bonds in the molecule, for example, styrenic compounds such as (+) styrene, α-methylstyrene, and chlorostyrene. Compounds, (II)) Allyl compounds such as realyl isocyanurate and diallyl phthalate, (IID Mono(meth)acrylate compounds such as methyl (meth)acrylate, ethyl (meth)acrylate, and tetrahydrofurfuryl (meth)acrylate, Qψ Ethylene glycol di(meth)acrylate, 1
.. Alkylene glycol di(meth)acrylate compounds such as 6-hexanediol di(meth)acrylate, polyhydric alcohols such as (V) l-limethylolpropane tri(meth)acrylate, and pentaerythritol tetra(meth)acrylate; meth)acrylate compound, (VL) Epoxy (meth)acrylate compound obtained by reacting (meth)acrylic acid with a compound having two or more epoxy groups in the molecule, (Vll) (meth)acrylic as a carboxylic acid component An oligoester (meth)acrylate compound obtained by reacting an acid with a polyhydric carboxylic acid and a polyhydric alcohol having a valence of 2 or more as an alcohol component, ~l11) A polyhydric isocyanate-1 compound with a valence of 2 or more and a polyhydric alcohol having a valence of 2 or more Examples include urethane-modified (meth)acrylate compounds obtained by reacting alcoholic hydroxyl group-containing (meth)acrylates with terminal isocyanate group-containing compounds obtained by reacting polyhydric alcohols in advance. The above-mentioned compounds are merely exemplified and do not limit the present invention in any way, and it is needless to say that other known photopolymerizable compounds can be used.

光増感剤(If)とは、上記光重合性化合物(1)の光
重合反応を促進する化合物であって、特に制限はなく、
例えば、ベンゾイン系化合物、ベンゾフェノン系化合物
、ベンジルアルキルケタール系化合物、アントラキノン
系化合物、チオキサンi・ン糸化合物、ジベンゾスベロ
ン系化合物、アセトフェノン系化合物、有機過酸化物な
どが挙げられる。これらの光増感剤(1)は、単独使用
または二種以上併用され、紫外線硬化型樹脂中に0.1
〜20重量%配合して使用される。
The photosensitizer (If) is a compound that promotes the photopolymerization reaction of the photopolymerizable compound (1), and is not particularly limited.
Examples include benzoin compounds, benzophenone compounds, benzyl alkyl ketal compounds, anthraquinone compounds, thioxane compounds, dibenzosuberone compounds, acetophenone compounds, and organic peroxides. These photosensitizers (1) can be used alone or in combination of two or more, and can be used in a concentration of 0.1 in the ultraviolet curable resin.
It is used in an amount of ~20% by weight.

本発明で使用される紫外線硬化型樹脂としては、先に例
示したアクリル系紫外線硬化型樹脂のほかに、チオール
−エン型紫外線硬化型樹脂、紫外線硬化型エポキシ樹脂
、紫外線硬化型不飽和ポリエステル樹脂なども使用可能
である。
In addition to the above-mentioned acrylic UV-curable resins, examples of the UV-curable resins used in the present invention include thiol-ene-type UV-curable resins, UV-curable epoxy resins, and UV-curable unsaturated polyester resins. is also available.

本発明で使用する紫外線硬化型樹脂には、接着性、加工
性、可撓性、耐水性、耐候性、印刷適性、樹脂の貯蔵安
定性などの特性を付与するために各種の配合剤や添加剤
を配合することも可能である。
The ultraviolet curable resin used in the present invention contains various compounding agents and additives to impart properties such as adhesiveness, processability, flexibility, water resistance, weather resistance, printability, and storage stability of the resin. It is also possible to incorporate agents.

例えば、接着性向上のために、ビニノ四−リクロルシラ
ン、ビニルトリエi・キシシラン、N−β(アミノエテ
ル)N−アミノプロピルトリメトキシシランなどのシラ
ン系カップリング剤を、印刷適性を向上するために、ポ
リフローS(共栄社油脂化学工業株式会社製)、Ks−
66(信越シリコン株式会社製)などのレベリング剤を
、TSA−720(東芝シリコーン株式会社製)などの
消泡剤ヲ、アエロジル#200.#800 (日本y、
caジル工業株式会社製)などの揺変剤を、樹脂の貯蔵
安定性を向上するために、ハイドロキノン、ハイドロキ
ノンモノメチルエーテル、フェノチアジンなどの熱重合
防止剤等を配合することができろ。
For example, to improve adhesion, silane coupling agents such as vinyltetra-lychlorosilane, vinyltriane-xysilane, and N-β(aminoether)N-aminopropyltrimethoxysilane are used, and to improve printability, polyflow S (manufactured by Kyoeisha Yushi Kagaku Kogyo Co., Ltd.), Ks-
66 (manufactured by Shin-Etsu Silicone Co., Ltd.), an antifoaming agent such as TSA-720 (manufactured by Toshiba Silicone Co., Ltd.), Aerosil #200. #800 (Japan y,
In order to improve the storage stability of the resin, a thermal polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, or phenothiazine may be added.

さらに、本発明の目的を損わない範囲において、エポキ
シ樹脂、フェノキシ樹脂、ポリウレタン樹脂、ポリスチ
レン樹脂、ポリ(メタ)アクリル酸エステル系重合体、
飽和共重合ポリエステルなどの合成樹脂なども配合する
ことができる。
Furthermore, within a range that does not impair the purpose of the present invention, epoxy resins, phenoxy resins, polyurethane resins, polystyrene resins, poly(meth)acrylic acid ester polymers,
Synthetic resins such as saturated copolymerized polyester can also be blended.

特に本発明の目的を達成するためには、飽和共重合ポリ
エステル樹脂の配合が極めて有用な場合がある。例えば
、アモルファスシリコン層や、透明導電層への接着性の
向上、耐水性、耐候性の向上、さらには打抜き加工性、
折曲げ加工性の向上に非′Kに効果的である。
In particular, in order to achieve the object of the present invention, blending of a saturated copolymerized polyester resin may be extremely useful. For example, it improves adhesion to amorphous silicon layers and transparent conductive layers, improves water resistance and weather resistance, and improves punching processability.
It is effective in improving bending workability.

更に重要なことは、太陽tit池に意匠的装飾を施こす
目的で、透明性紫外線硬化型樹脂の中に、透明性を損わ
ない程度の微量の着色剤を配合することができる。
More importantly, for the purpose of decoratively decorating the solar tit pond, a trace amount of coloring agent can be blended into the transparent ultraviolet curable resin to an extent that does not impair transparency.

以下、本発明の実施例を、その製造方法とともに説明す
る。
Examples of the present invention will be described below along with a manufacturing method thereof.

実施例1 この実施例は、電卓、ラジオ等の民生用機器に使用する
比較的小型の太陽電池に適用される。
Example 1 This example is applied to relatively small solar cells used in consumer devices such as calculators and radios.

ます、納2図に示すように、ステンレス、セラミックス
、ガラス等よりなる基板5上に、CvDグロー放電等に
より、モノシラン(8jf14 ) % フッ化ケイ素
(Bi12 ) 、氷菓(H2)、ホスフィン(PH8
)、ジボラン(B2H6)等のガスを適宜用いて、P型
領域、真性領域、n型領域のいずれか一層、多層のアモ
ルファスシリコン層6を形成する。
As shown in Fig. 2, monosilane (8jf14), silicon fluoride (Bi12), ice cream (H2), and phosphine (PH8) are deposited on a substrate 5 made of stainless steel, ceramics, glass, etc. by CvD glow discharge or the like.
), diborane (B2H6), or other gas as appropriate to form a multilayer amorphous silicon layer 6 including one layer of a P-type region, an intrinsic region, or an n-type region.

次に、第8図a図に平面図、同図す図に断面図で示すよ
うに、アモルファスシリコン層6の上に、In20B、
8 Ylo 2等の透明導電層Tを光起電力部として有
効に動作させるための所望パターン形状に形成する。そ
の形成方法は、真空蒸着、スパッタリング又はスプレー
法等による。パターン形状は、所定の金属マスクを用い
て膜形成と同時に作成するか、或いは、アモルファスシ
リコン層6の全面に透明導電層を設け、次に、印刷技術
又はホトエツチング技術により所定のパターンのレジス
トマスクを形成したのち、フッ酸、塩酸、塩化第二鉄等
のエツチング液を用いて不要部分を除去して所定パター
ンの透明導電層Tを形成し、その後、不要のレジストマ
スクを剥離液により除去することにより行オ〕れる。
Next, as shown in a plan view in FIG. 8a and in a cross-sectional view in the same figure, In20B,
8 A transparent conductive layer T such as Ylo 2 is formed into a desired pattern shape to operate effectively as a photovoltaic portion. The formation method is vacuum evaporation, sputtering, spraying, or the like. The pattern shape can be created at the same time as film formation using a predetermined metal mask, or by providing a transparent conductive layer on the entire surface of the amorphous silicon layer 6 and then forming a resist mask with a predetermined pattern using printing technology or photoetching technology. After forming, remove unnecessary portions using an etching solution such as hydrofluoric acid, hydrochloric acid, or ferric chloride to form a transparent conductive layer T in a predetermined pattern, and then remove unnecessary resist masks using a stripping solution. It is carried out by.

つづいて、第4図a図に平面図、同図す図に断面図で示
すように、所定パターンの透明導電層Tの上にその輪郭
よりも広く、透光性紫外線硬化型樹脂9を被覆する。こ
のとき、透明導[層7 J:、のxta取出しm8aと
、アモルファスシリコン層6上の電極取出し部8bには
紫外線硬化樹脂層9を設けない。この紫外線硬化樹脂7
Em 9の形成方法は、スクリーン印刷により紫外線硬
化型樹脂を被覆し、必要に応じて赤外ランプ等を用いて
数分以内の加熱によるレベリング工程を経たのち、数1
0秒以内の紫外線照射により硬化させるか、戊いは、予
め紫外線硬化型樹脂を被覆しない部分にホトエッチL/
 シスト印刷等により所定パターンのレジスト膜を形成
しておき、その上に、スプレー法、スピンナー法、ティ
ップ法等により紫外線硬化型樹脂を塗布し、必要に応じ
て赤外ランプ等を用いて数分以内の加熱によるレベリン
グ工程を経jこのち、数10秒以内の紫外線照射により
塗布した樹脂を硬化させ、その後、予め形成したレジス
ト膜を剥離又は溶解に誹り除去すると同時にその上の樹
脂も除去することにより行われる。
Subsequently, as shown in a plan view in FIG. 4A and a cross-sectional view in FIG. do. At this time, the ultraviolet curing resin layer 9 is not provided on the xta extraction m8a of the transparent conductive layer 7J: and the electrode extraction portion 8b on the amorphous silicon layer 6. This ultraviolet curing resin 7
The method for forming Em 9 is to coat it with an ultraviolet curable resin by screen printing, and if necessary, go through a leveling process by heating within a few minutes using an infrared lamp, etc.
Either cure by UV irradiation for less than 0 seconds, or photo etch L/
A resist film with a predetermined pattern is formed by cyst printing, etc., and an ultraviolet curable resin is applied on top of it by a spray method, a spinner method, a tip method, etc., and if necessary, it is applied for several minutes using an infrared lamp, etc. After going through a leveling process by heating within several tens of seconds, the applied resin is cured by ultraviolet irradiation within several tens of seconds, and then the pre-formed resist film is removed by peeling or dissolving, and at the same time the resin on it is also removed. This is done by

ここで、紫外線硬化型樹脂層9の形成実施例を更に詳細
に説明する。紫外線硬化型樹脂の組成は次の通りであっ
た。
Here, an example of forming the ultraviolet curable resin layer 9 will be described in more detail. The composition of the ultraviolet curable resin was as follows.

2宮能工ポキシアクリレート化合物  60重量部2官
能アクリレ一ト化合物     5 〃1官能アクリレ
ート化合物    80 〃光増感剤        
     2 〃レベリング剤           
 2 〃シランカップリング剤        1 〃
この紫外線硬化型樹脂を、800メツシユポリ工ステル
スクリーン印刷版を用いて印刷し、5.6Kw高圧水銀
灯から150の距離で10秒間紫外線を照射して硬化さ
せた。得られた膜の性能の試験結果はζ尺の通りであっ
た。
2nomiya poxy acrylate compound 60 parts by weight Bifunctional acrylate compound 5 Monofunctional acrylate compound 80 Photosensitizer
2 Leveling agent
2 Silane coupling agent 1
This ultraviolet curable resin was printed using an 800 mesh polyester screen printing plate and cured by irradiating it with ultraviolet light for 10 seconds from a 5.6 Kw high pressure mercury lamp at a distance of 150 mm. The test results of the performance of the obtained membrane were as shown in the ζ scale.

1 、  kl:=(k イp 度      I(2
、接J性($盤目テープ剥離法による)100/100
 (アモルファスシリコンI−上)+00/100(透
明導゛イ層−ヒ) 8、耐水f−E    &IlIm水中60分浸漬後異
常なし4、光沢(60°反射)   98% 次に、tllliJIM出し部8bのアモルファスシリ
コン1−6を機械的な手法により除去するか、又は、マ
スクを併用した化学的なエツチング又はプラズマエツチ
ング等により除去!ノたのも、第5図に示すように、電
極取出し部8a、gb上に電極層10a、10bを形成
する。電極層10 a、 10 bは低温硬化型Ayペ
ースト、黒鉛ペースト等をスクリーン印刷により被覆後
加熱硬化させるが、或いは、紫外線硬化型Ayペースト
、Ouペースト等をスクリーン印刷により被覆径紫外線
照射により硬化させるか、或いは、蒸着、スパッタ等ニ
より全面にA1.N1、Ou等の単M膜、A11Ay 
1, kl:=(k ip degree I(2
, J contact property (by $ board tape peeling method) 100/100
(Amorphous silicon I-top) +00/100 (transparent guide layer-hi) 8. Water resistance f-E & IlIm No abnormality after immersion in water for 60 minutes 4. Gloss (60° reflection) 98% Next, tlliJIM protrusion part 8b Amorphous silicon 1-6 is removed by a mechanical method, or by chemical etching or plasma etching using a mask! Also, as shown in FIG. 5, electrode layers 10a and 10b are formed on the electrode lead-out portions 8a and gb. The electrode layers 10a and 10b are coated with a low-temperature curing type Ay paste, graphite paste, etc. by screen printing and then heated and cured, or alternatively, an ultraviolet curing type Ay paste, Ou paste, etc. is coated with screen printing and cured by irradiating the coating diameter with ultraviolet rays. Or, A1. Single M film such as N1, Ou, A11Ay
.

’I!iAy、 0rOuAy等の多重膜を形成し、レ
ジスト印刷技術、ホトエッチ技術により!極層10a。
'I! Multilayer films such as iAy and 0rOuAy are formed using resist printing technology and photoetch technology! Pole layer 10a.

10bに対応するレジスト膜を形成したのち、化学エッ
チ又はプラズマエッチ等により不要部分の金属膜を除去
し、不要のレジストを剥離して電極形成するか、或いは
、予め所定のパターンに形成された金属マスクを用い、
マスクM着等により電極を形成する。
After forming a resist film corresponding to 10b, remove unnecessary portions of the metal film by chemical etching or plasma etching, and peel off the unnecessary resist to form an electrode, or use a metal film formed in a predetermined pattern in advance. using a mask,
Electrodes are formed by applying a mask M or the like.

次に、プレス、シャーリング等により基板5を素子ごと
に切断すれば、第6図a図及びb図に示すまりな太陽電
池素子が得られる。
Next, by cutting the substrate 5 into elements by pressing, shearing, etc., the round solar cell elements shown in FIGS. 6a and 6b are obtained.

すなわち、本発明の実施例は、基板5上にアモルファス
シリコン層6が全面にわたって形成され、その表面に1
9−[定形状の透明導電層1が形成され、アモルファス
シリコン層6の一部分及び透明導電層7の一部分に電極
10a、10bが設けられ、上記透明21!屯層7の前
面及び側面と、wL極10a。
That is, in the embodiment of the present invention, an amorphous silicon layer 6 is formed over the entire surface of a substrate 5, and a layer of silicon is formed on the surface of the amorphous silicon layer 6.
9-[A fixed-shaped transparent conductive layer 1 is formed, electrodes 10a and 10b are provided on a portion of the amorphous silicon layer 6 and a portion of the transparent conductive layer 7, and the transparent 21! The front and side surfaces of the tunic layer 7 and the wL pole 10a.

10bの根元部が透光性紫外線硬化型樹脂9により完全
に被覆されている。
The root portion of 10b is completely covered with translucent ultraviolet curing resin 9.

実施例2 この実施例は、主として室外で使用され機械的強度と信
頼性が特に要求される電力用太陽電池に適用される。
Example 2 This example is applied to a power solar cell that is mainly used outdoors and particularly requires mechanical strength and reliability.

第7図a図及びb図に、透光性紫外線硬化型樹脂層を被
覆する削の状態を示す。ステンレス、アルミニウム等の
導電体よりなる基体11に、P要領域、^性饋城、n型
領域のいずれか−j−又は多層のアモルファスシリコン
J+412を形成し、その表面全面にIn20B、5n
02等の透明導電層13を形成し、その」二にクシ形電
極14を形成する。クシ形電極14の根幹部に一ト部外
付はリード15を接続し、基体11の裏面に下部外付け
り−ド16ヲ接続スる。なお、アモルファスシリコンJ
ill12と透明導電層13の形状寸法は、基体11の
周辺をわずか残すように、基体11のそれよりも−まわ
り小さく、従って基体11の周辺が露出している。この
ようにして得られた装置は太陽電池として機能する。
Figures 7a and 7b show the state of cutting to cover the translucent ultraviolet curable resin layer. Amorphous silicon J+412 is formed on the base 11 made of a conductive material such as stainless steel or aluminum, and is coated with In20B, 5n on the entire surface.
A transparent conductive layer 13 such as 02 is formed, and a comb-shaped electrode 14 is formed on the second layer. One external lead 15 is connected to the base of the comb-shaped electrode 14, and a lower external lead 16 is connected to the back surface of the base 11. In addition, amorphous silicon J
The dimensions of the illumination 12 and the transparent conductive layer 13 are smaller than that of the base 11 so that a small portion of the periphery of the base 11 is left, so that the periphery of the base 11 is exposed. The device thus obtained functions as a solar cell.

次に、第8図に示すように、透光性紫外線硬化型樹脂層
17を形成する。すなわち、この樹脂層17は、アモル
ファスシリコン、1FJ12の側面、透明導電1ai1
13の前面及び側面、並びにクシ形電極14の全部と上
部外付けり−ド15のっけ根を覆い、相当の厚み、例え
ば0.1〜20ffの厚みに形成する。この樹脂層11
の形成方法は、前述した実施例の製法と同じように、樹
脂の印刷、レベリング工程、紫外線照射を繰り返すこと
により次第に厚く形成するか、或いは、基体11の周辺
に沿って予め樹脂流出防止壁を築いておき、その中に紫
外線硬化樹脂を流し込み、紫外線照射により硬化させ、
6装によりこの工程を繰返して所定の厚みに達したのち
、防止壁を取り去る等の方法により形成される。
Next, as shown in FIG. 8, a translucent ultraviolet curable resin layer 17 is formed. That is, this resin layer 17 is made of amorphous silicon, the side surface of 1FJ12, and the transparent conductive layer 1ai1.
13, all of the comb-shaped electrodes 14, and the bases of the upper external electrodes 15, and are formed to a considerable thickness, for example, 0.1 to 20 ff. This resin layer 11
As in the manufacturing method of the above-mentioned embodiments, the method for forming the . . . Once built, an ultraviolet curing resin is poured into it and cured by ultraviolet irradiation.
After this process is repeated for 6 times to reach a predetermined thickness, the prevention wall is removed or the like.

発明の効果 本発明によればアモルファス太陽電池の受光面上に透光
性紫外線硬化型樹脂層を形成しているから、表[11i
が保護されて損傷のおそれがなく、且つ、外気と遮断さ
れているため湿気等の悪影響を受けず、非常に信頼性の
高い大腸電池素子を得ることができる。また、透光性紫
外線硬化型樹脂層の厚みを厚くすることができるので、
これにより機械的強度を補強することができる。更に、
紫外線硬化型(至)脂の中に着色剤を配合すれば、様々
な美感の太陽電池が容易に得られる。
Effects of the Invention According to the present invention, a translucent ultraviolet curable resin layer is formed on the light-receiving surface of an amorphous solar cell.
is protected and there is no risk of damage, and since it is isolated from the outside air, it is not affected by the adverse effects of moisture, etc., making it possible to obtain a highly reliable colon battery element. In addition, since the thickness of the translucent ultraviolet curable resin layer can be increased,
This can reinforce mechanical strength. Furthermore,
By incorporating colorants into ultraviolet-curable resins, solar cells with a variety of aesthetic qualities can be easily obtained.

本発明によれば、紫外線を短時間照射するだけで樹脂を
硬化させることができるので、製造時間の短縮と、製造
コストの低減を計ることができ、また、樹脂を硬化する
際、基板まで温度上昇しないので、基板材料の選択範囲
が広くなる。更に、紫外線硬化型樹脂には通常、有機溶
剤を含まないので、溶剤ガス処理の装置が不要となる。
According to the present invention, it is possible to cure the resin by simply irradiating it with ultraviolet rays for a short period of time, so it is possible to shorten the manufacturing time and reduce the manufacturing cost. Since there is no rise in temperature, the selection range of substrate materials is widened. Furthermore, since ultraviolet curable resins usually do not contain organic solvents, no solvent gas treatment equipment is required.

また、紫外線硬化型導電A、ペースト又はOuペースト
等を用い、印刷技術により電極を形成する実施態様にお
いては、紫外線硬化型樹脂層9を硬化させるための紫外
線照射装置をそのまま利用できる効果がある。
Further, in an embodiment in which the electrodes are formed by printing technology using ultraviolet curable conductive A, paste, Ou paste, etc., there is an advantage that the ultraviolet irradiation device for curing the ultraviolet curable resin layer 9 can be used as is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す側面図である。第2図。 第8図a図及びb図、第4図a図及びb図、第5図は本
発明の一実施例の製造過程の説明図である。 第6図a図は本発明の一実施例を示す平面図、第6図す
図はその断面図である。第7図a図及びb図は本発明の
他の実施例の製造過程の説明図、第8図は本発明の他の
実施例を示す断面図である。 5・・・基板、 6・・・アモルファスシリコン層、 7・・・透明導電層、 9・・・透光性紫外線硬化型樹脂、 10a、10b・・・電極、 11・・・基体、 12・・・アモルファスシリコン層、 13・・・透明導電層、 14・・・クシ形電極、 15.16・・・リード電極、 17・・・透光性紫外線硬化型樹脂。 特許出願人 シャープ株式会社 同   東洋紡績株式会社 代理人 弁理士西1)新 第3図 第6図 第8図
FIG. 1 is a side view showing a conventional example. Figure 2. Figures 8a and b, Figures 4a and b, and Figure 5 are explanatory diagrams of the manufacturing process of an embodiment of the present invention. FIG. 6A is a plan view showing an embodiment of the present invention, and FIG. 6A is a sectional view thereof. FIGS. 7a and 7b are explanatory diagrams of the manufacturing process of another embodiment of the present invention, and FIG. 8 is a sectional view showing another embodiment of the present invention. 5... Substrate, 6... Amorphous silicon layer, 7... Transparent conductive layer, 9... Transparent ultraviolet curing resin, 10a, 10b... Electrode, 11... Substrate, 12. ...Amorphous silicon layer, 13...Transparent conductive layer, 14...Comb-shaped electrode, 15.16...Lead electrode, 17...Transparent ultraviolet curing resin. Patent applicant Sharp Corporation Toyobo Co., Ltd. Agent Patent Attorney Nishi 1) New Figure 3 Figure 6 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)受光面前面が透光性紫外線硬化型樹脂層により被
覆されていることを特徴とするアモルファス太陽電池。
(1) An amorphous solar cell characterized in that the front surface of the light-receiving surface is covered with a transparent ultraviolet curable resin layer.
(2)上記透光性紫外線硬化型樹脂層に着色剤が配合さ
れている特許請求の範囲第1項記載のアモルファス太陽
電池。
(2) The amorphous solar cell according to claim 1, wherein the translucent ultraviolet curable resin layer contains a colorant.
JP57113408A 1982-06-30 1982-06-30 Amorphous solar battery Granted JPS594179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113408A JPS594179A (en) 1982-06-30 1982-06-30 Amorphous solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113408A JPS594179A (en) 1982-06-30 1982-06-30 Amorphous solar battery

Publications (2)

Publication Number Publication Date
JPS594179A true JPS594179A (en) 1984-01-10
JPS6317342B2 JPS6317342B2 (en) 1988-04-13

Family

ID=14611517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113408A Granted JPS594179A (en) 1982-06-30 1982-06-30 Amorphous solar battery

Country Status (1)

Country Link
JP (1) JPS594179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141111A (en) * 2008-12-11 2010-06-24 Sharp Corp Solar battery device, method for manufacturing the same, and electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863690A (en) * 1971-12-06 1973-09-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4863690A (en) * 1971-12-06 1973-09-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141111A (en) * 2008-12-11 2010-06-24 Sharp Corp Solar battery device, method for manufacturing the same, and electronic device

Also Published As

Publication number Publication date
JPS6317342B2 (en) 1988-04-13

Similar Documents

Publication Publication Date Title
CN107000398B (en) Transparent conductivity film laminated body and manufacturing method using its obtained touch panel and transparent and electrically conductive film
CN106336521B (en) A kind of resin compound, transparent conductive film and its graphical preparation method
EP0421086B1 (en) Epoxy acrylate resins and photosensitive resin compositions therefrom
JP2008258517A (en) Texture forming plate, manufacturing method thereof, substrate with transparent electrode using the same, solar cell, and solar cell module
JPS594179A (en) Amorphous solar battery
US20200091392A1 (en) Electrode substrate for transparent light-emitting device display, and manufacturing method therefor
JP4638014B2 (en) High heat-resistant reflective film, laminate using the same, reflective plate for liquid crystal display element, and building glass
CN113130138B (en) Nano-silver conductive film and preparation method thereof
JP2003046293A (en) Method for manufacturing electromagnetic wave shielding material, magnetic wave shielding material obtained by the same, electromagnetic wave shielding formation using the same and electromagnetic wave shielding display
CN219039975U (en) Anti-oxidation transparent display film
JPH0936404A (en) Current collection electrode, photovolataic power element and production thereof
CN106760363A (en) A kind of luminescence transparent decorative panel
CN110781600B (en) Nano-silver wire flexible transparent conductive film easy for electrode patterning and patterning method thereof
JP2008074085A (en) Production method for resin substrate and resin substrate
KR100408768B1 (en) ion beam e-beam have a ion beam assisted e-beam evaporator made platictype display panel a manufacturing process
CN109148286A (en) A kind of flexible transparent electrode substrate and preparation method thereof
JP4230547B2 (en) Conductive fired body and gas discharge display panel using the same
CN206376479U (en) A kind of luminescence transparent decorative panel
JPS60255969A (en) Manufacture of electrically conductive transparent film
JP2008258518A (en) Substrate for solar cell, manufacturing method thereof, and solar cell and solar cell module using the same
TWI737372B (en) Transparent circuit board and manufacturing method thereof
WO2016013587A1 (en) Photosensitive resin composition, photosensitive film, pattern substrate, photosensitive conductive film, and conductive pattern substrate
JP2018051893A (en) Transparent conductor
JP6556483B2 (en) Substrate with electrode and method for manufacturing the same
JPS60132323A (en) Mask for x-ray exposure