JPS5941642B2 - Method for producing polysaccharide glycolate - Google Patents
Method for producing polysaccharide glycolateInfo
- Publication number
- JPS5941642B2 JPS5941642B2 JP55108051A JP10805180A JPS5941642B2 JP S5941642 B2 JPS5941642 B2 JP S5941642B2 JP 55108051 A JP55108051 A JP 55108051A JP 10805180 A JP10805180 A JP 10805180A JP S5941642 B2 JPS5941642 B2 JP S5941642B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- polysaccharide
- water
- added
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
【発明の詳細な説明】
この発明は、多糖類グリコール酸塩の製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polysaccharide glycolate.
多糖類にモノクロル酢酸を反応させて多糖類グリコール
酢酸を作ることは、既に知られている。It is already known that polysaccharide glycolic acetic acid can be produced by reacting polysaccharides with monochloroacetic acid.
この場合の反応は、アルカリ触媒の下において行われる
。多糖類としては、澱粉のようなグラニユール状多糖類
のほかに、繊維素のような非グラニユール状多糖類も用
いられた。こうして得られた多糖類グリコール酸塩は、
水溶性であつて安定な化合物であるから、増粘剤、サイ
ジング剤などとして各方面に使用される。多糖類は固体
であり、モノクロル酢酸もアルカ; りも固体であるか
ら、上述の反応を円滑に進めるには、当然溶媒を使用す
る必要があると考えられる。The reaction in this case is carried out under an alkaline catalyst. In addition to granular polysaccharides such as starch, non-granular polysaccharides such as cellulose were also used as polysaccharides. The polysaccharide glycolate thus obtained is
Since it is a water-soluble and stable compound, it is used in various fields as a thickener, sizing agent, etc. Since polysaccharides are solids, and monochloroacetic acid is also alkali, it is considered necessary to use a solvent in order to smoothly proceed with the above-mentioned reaction.
だから、古くは溶媒として水が使用された。ところが、
水を溶媒に使用すると、原料多糖類又は生成多糖類が水
に溶解して反応系の粘度が上昇0するために、反応系を
撹拌することが容易でなくなる。攪拌を容易にするため
には、大量の水を使用しなければならない。ところが、
大量の水を使用すると、反応装置として大型のものが必
要となり、また副反応が起りやすくなり、さらに生成多
5糖類を水と分離するのに手間を要することとなり。そ
のため有利に目的物を得ることができなくなる。そこで
、この欠点を補うために、水の代りに有機溶媒を用いる
ことが提案された。例えば、特公昭27−5295号公
報は、澱粉のようなグラニ0ユール状多糖類を原料とし
、これにモノクロル酢酸又はその塩と苛性アルカリとを
加え、さらに溶媒として有機溶媒又は有機溶媒と水との
混合液を加えて、エーテル化反応を行わせることを提案
している。この公報では、この場合における有機溶5媒
の添加量を、乾燥澱粉のグルコース基1モルあたり4な
いし20モルの範囲内にとどめるべきだとし、水をoな
いし15モルの範囲にすべきだとしている。このうちの
有機溶媒量を具体的に検討すると、メチルアルコールを
例に取つても、その0量は多糖類100重量部に対し、
メチルアルコールを約68重量部用いることになり、従
つてその反応はスラリー状で行われることになる。また
、特公昭32−2496号公報は、繊維素のような非グ
ラニユール状多糖類を原料とし、こ5れにモノクロル酢
酸等を加えて前述の反応を行わせるにあたり、繊維素と
モノクロル酢酸とアルカリとの使用割合を一定範囲に維
持し、且つアルカリとモノクロル酢酸と水と有機溶媒と
の4者の割合を或る範囲に維持すべきだと記載している
。Therefore, water was used as a solvent in ancient times. However,
When water is used as a solvent, the raw material polysaccharide or the produced polysaccharide is dissolved in water and the viscosity of the reaction system increases to zero, making it difficult to stir the reaction system. Large amounts of water must be used to facilitate stirring. However,
If a large amount of water is used, a large reactor is required, side reactions are likely to occur, and furthermore, it takes time and effort to separate the produced polypentasaccharide from water. Therefore, it becomes impossible to obtain the target object advantageously. Therefore, in order to compensate for this drawback, it was proposed to use an organic solvent instead of water. For example, Japanese Patent Publication No. 27-5295 uses a granular polysaccharide such as starch as a raw material, adds monochloroacetic acid or its salt and a caustic alkali, and then uses an organic solvent or an organic solvent and water as a solvent. It is proposed that the etherification reaction be carried out by adding a mixture of This publication states that the amount of organic solvent added in this case should be kept within the range of 4 to 20 moles per mole of glucose groups in dry starch, and that the amount of water should be in the range of 0 to 15 moles. There is. If we specifically consider the amount of organic solvent among these, even if we take methyl alcohol as an example, the amount of 0 is 0 for 100 parts by weight of polysaccharide.
Approximately 68 parts by weight of methyl alcohol will be used, and therefore the reaction will be carried out in the form of a slurry. In addition, Japanese Patent Publication No. 32-2496 discloses that a non-granular polysaccharide such as cellulose is used as a raw material, and monochloroacetic acid or the like is added to the polysaccharide to carry out the above-mentioned reaction. It states that the ratio of the four components of alkali, monochloroacetic acid, water, and organic solvent should be maintained within a certain range.
それらの限定から,繊維素に対する水と有機溶媒との量
比を一般的に導き出すことはできないが、その公報にお
ける実施例を綜合すると、繊維素原料に対する水と有機
溶媒との合計量は、最低約85重量%である。繊維素1
00重量部に対し85重量部の溶媒量を混合したものは
、矢張りスラリー状を呈するから、この方法もスラリー
状で反応を進行させることになる。また、特公昭34−
92号公報は、澱粉にモノクロル酢酸塩を反応させて可
溶性澱粉を作るにあたり、反応系の水分を全量の15な
いし31%に調節することを記載している。From these limitations, it is not possible to generally derive the quantitative ratio of water and organic solvent to cellulose, but when the examples in that publication are combined, the total amount of water and organic solvent to cellulose raw material is at least It is approximately 85% by weight. cellulose 1
Since a mixture of 85 parts by weight of solvent to 00 parts by weight exhibits a slurry-like state, this method also allows the reaction to proceed in a slurry-like state. In addition, the special public
Publication No. 92 describes that when producing soluble starch by reacting starch with monochloroacetate, the water content of the reaction system is adjusted to 15 to 31% of the total amount.
その公報中の実施例を綜合すると、澱粉100重量部に
対し水を25ないし90重量部加えて、反応を行わせる
こととしている。その上に,ここでは苛性アルカリを水
溶液として加えることとしている。このため,澱粉が苛
性アルカリ水溶液と接触した部分で膨潤し、局部的に糊
化を起して、均一なグリコール酸塩を得ることが困難と
なる。このように,従来法は,何れも多糖類を水又は有
機溶媒中に溶解、分散させ、時には水中で膨潤させて反
応を行つていた。Combining the examples in the publication, the reaction is carried out by adding 25 to 90 parts by weight of water to 100 parts by weight of starch. In addition, caustic alkali is added here as an aqueous solution. For this reason, the starch swells in the areas where it comes into contact with the aqueous caustic solution, causing local gelatinization, making it difficult to obtain a uniform glycolate. As described above, in all conventional methods, the polysaccharide is dissolved or dispersed in water or an organic solvent, and sometimes the polysaccharide is swollen in water to carry out the reaction.
この発明者は,これを固体状態で反応させることができ
ないかを検討した。この発明者は、苛性アルカリを水溶
液の形で加えないで固体のまま加え、水の量を少なくす
るときは、意外にも多糖類のモノクロル酢酸によるエー
テル化を固体状態で円滑に進行させ得ることを知つた。
従来の常識に従えば、苛性アルカリを固体状態で加え、
多糖類原料を微かに湿つた粉末状態としたのでは、苛性
アルカリがそのまま残り、不均一なエーテル化物しか得
られないように思われる。ところが,予想に反して容易
に均一なエーテル化物が得られることがわかつた。その
とき反応初期の水分量については、多糖類原料に初めか
ら含まれている水分量も含めて、多糖類原料100重量
部に対して水の量を20重量部以下に保持し、且つ有機
溶媒を5ないし40重量部添加する必要のあることがわ
かつた。この発明は、このような知見に基づいてなされ
たものである。この発明は、苛性アルカリの存在下で多
糖類又はその誘導体にモノクロル酢酸又はその塩を反応
させて多糖類グリコール酸塩を製造するにあたり、反応
の初期に,苛性アルカリとして固体状態のものを加え、
100重量部の多糖類又はその誘導体に対し,その中に
初めから含まれる水分も含めて、水を20重量部以下に
保持し、有機溶媒を5ないし40重量部加えて、反応を
行わせることを特徴とする,多糖類グリコール酸塩の製
造方法に関するものである。この発明方法で用いられる
多糖類原料は、多糖類及びその誘導体である。The inventor investigated whether it would be possible to react this in a solid state. The inventor discovered that when caustic alkali is added as a solid rather than in the form of an aqueous solution and the amount of water is reduced, the etherification of polysaccharides with monochloroacetic acid can surprisingly proceed smoothly in the solid state. I learned.
According to conventional wisdom, caustic alkali is added in a solid state,
It seems that if the polysaccharide raw material is made into a slightly moist powder state, the caustic alkali remains as it is and only a non-uniform etherified product is obtained. However, contrary to expectations, it was found that a uniform etherified product could be easily obtained. At this time, the amount of water at the initial stage of the reaction, including the amount of water originally contained in the polysaccharide raw material, is maintained at 20 parts by weight or less per 100 parts by weight of the polysaccharide raw material, and the organic solvent is It was found that it was necessary to add 5 to 40 parts by weight of. This invention was made based on such knowledge. This invention involves adding a solid caustic alkali as a caustic alkali at the beginning of the reaction when producing a polysaccharide glycolate by reacting a polysaccharide or its derivative with monochloroacetic acid or its salt in the presence of a caustic alkali,
To 100 parts by weight of a polysaccharide or its derivative, the water content is kept at 20 parts by weight or less, including the water originally contained therein, and 5 to 40 parts by weight of an organic solvent are added to carry out the reaction. The present invention relates to a method for producing polysaccharide glycolate, which is characterized by: The polysaccharide raw materials used in this invention method are polysaccharides and derivatives thereof.
多糖類としては、グラニユール状多糖類と非グラニユー
ル状多糖類との両者が含まれる。ここで、グラニユール
状多糖類とは、1ないし100ミクロン程度の大きさの
澱粉粒を持つたものを云い、非グラニユール状多糖類と
は、そのような澱粉粒を持たないものを云う。グラニユ
ール状多糖類には、とうもろこし澱粉,馬鈴薯澱粉、小
麦粉澱粉のような澱粉類が含まれる。非グラニユール状
多糖類には、繊維素,α化澱粉、ローカストビーンガム
、グアーガム、タマリンドガム等が含まれる。多糖類の
誘導体には、多糖類をアルキル化、ヒドロキシアルキル
化、アルキルヒドロキシアルキル化等のようにエーテル
化した誘導体、または多糖類をアセチル化、アシル化等
のようにエステル化した誘導体が含まれる。苛性アルカ
リとしては、苛性ソーダ及び苛性カリが用いられる。こ
れらの苛性アルカリは,固体状態で加えることを必要と
する。固体状態とは、溶液になつていない状態のもので
ある。従つて、苛性アルカリは水を吸収したものであつ
てもよく,水を吸収してもなお固体状態にとどまつてい
るものは、すべてこれを使用することができる。固体状
態の苛性アルカリを用いる理由は次のとおりである。溶
液となつた苛性アルカリが多糖類に接触すると,接触部
分においては,その系が少量の多糖類に大量の苛性アル
カリ溶液を加えたと同じ状態になり、接触しなかつた部
分との間に不均一が生ずる。その結果、多糖類がその接
触部分だけで膨潤し、接触しなかつた部分は膨潤しない
ために、反応を不均一にするおそれがあるからである。
ところが、固体状態にあれば、多糖類表面に接触しても
,接触した多糖類表面は部分的に膨潤しないで、系内に
含まれている水及び有機溶媒に溶解した後にアルカリ付
加物を形成する。また、反応系を攪拌することにより、
苛性アルカリは多糖類との摩擦によつて絶えず磨かれる
ので、アルカリ付加物を均一に形成できる。したがつて
、反応を均一に行わせることができるからである。加え
る苛性アルカリの量は、多糖類原料に対して2ないし6
4重量%の範囲内とする。多糖類と反応するエーテル化
剤は、モノクロル酢酸であつてもよく,またモノクロル
酢酸の塩であつてもよい。Polysaccharides include both granular polysaccharides and non-granular polysaccharides. Here, granule-like polysaccharides refer to those having starch grains with a size of approximately 1 to 100 microns, and non-granule-like polysaccharides refer to those having no such starch grains. Granule-like polysaccharides include starches such as corn starch, potato starch, and wheat starch. Non-granular polysaccharides include cellulose, pregelatinized starch, locust bean gum, guar gum, tamarind gum, and the like. Derivatives of polysaccharides include derivatives obtained by etherifying polysaccharides such as alkylation, hydroxyalkylation, alkylhydroxyalkylation, etc., or derivatives obtained by esterifying polysaccharides such as acetylation, acylation, etc. . As the caustic alkali, caustic soda and caustic potash are used. These caustic alkalis need to be added in solid form. A solid state is a state that is not in solution. Therefore, the caustic alkali may be one that has absorbed water, and any caustic alkali that remains in a solid state even after absorbing water can be used. The reason for using solid caustic alkali is as follows. When a solution of caustic alkali comes into contact with a polysaccharide, the system in the contact area becomes the same as adding a large amount of caustic solution to a small amount of polysaccharide, and there is non-uniformity between the system and the part that did not come into contact. occurs. As a result, the polysaccharide swells only in the contact areas and does not swell in the non-contact areas, which may cause the reaction to become non-uniform.
However, if it is in a solid state, even if it comes into contact with the polysaccharide surface, the contacted polysaccharide surface will not partially swell, but will form an alkaline adduct after being dissolved in the water and organic solvent contained in the system. do. In addition, by stirring the reaction system,
Since the caustic alkali is constantly abraded by friction with the polysaccharide, the alkaline adduct can be formed uniformly. This is because the reaction can therefore be carried out uniformly. The amount of caustic alkali to be added is 2 to 6 per polysaccharide raw material.
The content shall be within the range of 4% by weight. The etherifying agent that reacts with the polysaccharide may be monochloroacetic acid or a salt of monochloroacetic acid.
モノクロル酢酸の塩としてはナトリウム塩、カリウム塩
、アンモニウム塩を用いることができる。加えるエーテ
ル化剤の量は、希望するエーテル化度すなわち置換度に
よつて異なるが、多糖類原料に対して2.5ないし76
重量%の範囲内で適当に定める。この発明方法を実施す
るには、水は必ず必要とされるが、反応の初期に水は必
ずしもこれを加える必要がない。As the salt of monochloroacetic acid, sodium salt, potassium salt, and ammonium salt can be used. The amount of etherification agent added varies depending on the desired degree of etherification, that is, degree of substitution, but is between 2.5 and 76% based on the polysaccharide raw material.
It is determined appropriately within the range of weight %. Although water is always required to carry out the method of this invention, it is not necessary to add water at the beginning of the reaction.
それは、原料多糖類が必ず数重量%の水分を含んでいる
からである。原料多糖類に初めから含まれている水分も
含めて、水は多糖類原料に対して20重量%以下とする
。その理由は、水が20重量%を越えると、多糖類が苛
性アルカリの作用を受けて局部的に糊化しやすくなるか
らである。この発明方法は,反応の終結に至るまで、多
糖類を糊化させないことを特色とするから、糊化を避け
るために、水は反応の初期に20重量?以下とするので
ある。有機溶媒としては、各種のものを用いることがで
きる。This is because the raw material polysaccharide always contains several percent by weight of water. The amount of water, including the water originally contained in the polysaccharide raw material, is 20% by weight or less based on the polysaccharide raw material. The reason for this is that if the water content exceeds 20% by weight, the polysaccharide is likely to be locally gelatinized by the action of caustic alkali. The method of this invention is characterized by not gelatinizing the polysaccharide until the end of the reaction. Therefore, in order to avoid gelatinization, 20% by weight of water is added at the beginning of the reaction. It is as follows. Various organic solvents can be used.
例えば、アルコール類、ケトン類、炭化水素類,ハロゲ
ン化炭化水素類を用いることができる。これらは、何れ
もエーテル化剤及び苛性アルカリに不活性のものである
。これらのうちでも、沸点が低いものが望ましい。好ま
しい例は,メタノール エタノール イソプロパノール
アセトン,メチルエチルケトン,ジオキサン、ヘキサ
ンベンゼン、トルエン、キシレン、ジクロロメタンクロ
ロホルム、四塩化炭素、トリクレン等を単独で又は2種
以上の混合溶媒として用いる場合である。これらの有機
溶媒は、多糖類原料に対し5ないし40重量%の範囲内
とする。多糖類原料に対し、水を20重量%以下にし,
有機溶媒を5ないし40重量%としたのは,多糖類原料
を僅かに湿つた状態に維持するためである。For example, alcohols, ketones, hydrocarbons, and halogenated hydrocarbons can be used. All of these are inert to etherifying agents and caustic alkalis. Among these, those with low boiling points are desirable. Preferred examples include methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, dioxane, hexane benzene, toluene, xylene, dichloromethane chloroform, carbon tetrachloride, trichlene, etc., used alone or as a mixed solvent of two or more. The amount of these organic solvents is within the range of 5 to 40% by weight based on the polysaccharide raw material. Reduce the water content to 20% by weight or less based on the polysaccharide raw material,
The reason why the organic solvent is 5 to 40% by weight is to maintain the polysaccharide raw material in a slightly moist state.
水と有機溶媒との総量が70重量?を越えると、多糖類
原料はスラリー状を呈することがあるが、水が20重量
%以下で、有機溶媒が5ないし40重量%の範囲内にあ
るときは,多糖類原料はスラリー状にはなり得ない。こ
の発明方法では、多糖類原料に、苛性アルカリとエーテ
ル化剤と溶媒とを加えるが、苛性アルカリを溶媒に溶解
して加えさえしなければ,その添加方法及び順序は任意
である。Is the total weight of water and organic solvent 70? If the water content exceeds 20% by weight, the polysaccharide raw material may become slurry-like, but if the water content is 20% by weight or less and the organic solvent is within the range of 5 to 40% by weight, the polysaccharide raw material will not become slurry-like. I don't get it. In the method of this invention, caustic alkali, an etherifying agent, and a solvent are added to the polysaccharide raw material, but the addition method and order are arbitrary as long as the caustic alkali is not dissolved in the solvent and added.
すなわち、先に溶剤及びエーテル化剤を加えておいて、
あとから苛性アルカリを加えてもよく,また先に溶媒及
び苛性アルカリを加えておいて、あとからエーテル化剤
を加えてもよい。溶媒の添加と苛性アルカリの添加との
間には、30分ないし1時間程度の間隔をおき、その間
充分攪拌を続ける。また、あとから苛性アルカリの固体
を加えるときには、苛性アルカリを少しづつ長時間にわ
たつて加える。この発明方法では,上記のものを上記の
割合で加えることを必要とするのは、反応の初期である
。こうして得られた混合物は、表面が僅かに湿つた程度
の固体状を呈する。それは、水が多糖類原料中に初めか
ら含まれている水分をも含めて、20重量?以下であり
、有機溶媒が5ないし40重量%であつて、それを合わ
せても最高で60重量%になるに過ぎないからである。
この発明方法では、上記の混合物をよく攪拌する。That is, by adding the solvent and etherification agent first,
The caustic alkali may be added later, or the solvent and the caustic alkali may be added first and the etherifying agent may be added later. There is an interval of about 30 minutes to 1 hour between the addition of the solvent and the addition of the caustic alkali, and sufficient stirring is continued during that time. Also, when adding solid caustic alkali later, add the caustic alkali little by little over a long period of time. In the process of this invention, it is necessary to add the above in the above proportions at the beginning of the reaction. The mixture thus obtained has a solid state with a slightly moist surface. Is that 20% by weight, including the water originally contained in the polysaccharide raw material? This is because the organic solvent is 5 to 40% by weight, and the total amount is only 60% by weight at most.
In the method of this invention, the above mixture is thoroughly stirred.
この間に苛性アルカリは、多糖類原料との摩擦によつて
微粉状にされ,溶媒によつて溶解され、アルカリ付加物
を形成する。このアルカリ付加物がモノクロル酢酸また
はその塩と反応するのである。何れにしても、苛性アル
カリは多糖類原料を局部的に糊化することがない。この
状態で温度を上げると.モノタロル酢酸によるエーテル
化の反応が進められる。この発明方法では,上述の原料
を加えたのち、その混合物を40ないし90℃に維持す
る。During this time, the caustic alkali is pulverized by friction with the polysaccharide raw material and dissolved by the solvent to form an alkaline adduct. This alkaline adduct reacts with monochloroacetic acid or its salt. In any case, caustic alkali does not locally gelatinize the polysaccharide raw material. If you raise the temperature in this state. The etherification reaction with monotaloracetic acid proceeds. In the method of the invention, after adding the above-mentioned raw materials, the mixture is maintained at a temperature of 40 to 90°C.
このために、必要とあれば反応容器を外から加熱する。
このような温度に保持する理由は,40℃以下では反応
速度が遅くて反応完了までに長時間を要するからであり
、逆に90℃以上では,系内に含まれている水分のため
に、生成物の糊化するおそれがあるからである。多糖類
原料がモノクロル酢酸および苛性アルカリと反応し始め
ると,反応によつて熱が発生するが,容器の外側を冷却
するか、又は薬品を少しづつ加えることにより、均一な
生成物を得ることができる。また、苛性アルカリの固体
表面は、多糖類原料との摩擦によつて絶えず磨かれるの
で,反応は途中で停止することなく,最後まで徐々に進
行する。反応終了後、生成多糖類に酸例えば酢酸を加え
て、PIlを7に調節する。For this purpose, if necessary, the reaction vessel is heated externally.
The reason why the temperature is maintained at such a temperature is that below 40°C, the reaction rate is slow and it takes a long time to complete the reaction.On the other hand, above 90°C, due to the moisture contained in the system, This is because there is a risk that the product will gelatinize. When the polysaccharide raw material begins to react with monochloroacetic acid and caustic, the reaction generates heat, but it is possible to obtain a homogeneous product by cooling the outside of the container or adding chemicals little by little. can. In addition, since the solid surface of the caustic alkali is constantly polished by friction with the polysaccharide raw material, the reaction does not stop midway and progresses gradually to the end. After the reaction is complete, an acid such as acetic acid is added to the polysaccharide produced to adjust the PII to 7.
その後、加えた有機溶媒又は水を除くために、減圧乾燥
して製品を得る。この発明方法によれば,少量の水と有
機溶媒とを用い、その合計量は、多糖類原料中に含まれ
ている水を含めても、多糖類原料に対し60重量%以下
で、しかも溶媒中の大部分が有機溶媒であるから、多糖
類原料を僅かに湿つた状態のまま,モノクロル酢酸によ
るエーテル化反応を最後まで円滑に行わせることができ
る。その結果、この発明方法によれば、大容量の反応器
を必要としないでしかも副反応を抑制して、効率よく容
易に反応を行わせることができる。さらに、反応終了後
は溶媒の除去が容易である。この発明方法によれば、こ
のように数多くの利点がもたらされる。その上に、この
発明方法によつて得られた製品は、従来品に優るとも劣
らぬ均一良好な品質を持ち、従来品と同様に各種の用途
に使用することができる。従つて,この発明方法は実用
上の価値が高い。この発明方法は、澱粉のようなグラニ
ユール状多糖類を有機アミン触媒の下にヒドロキシアル
キル化したのに引き続いて、行うこともできる。また、
多糖類原料に対して0.001ないし0.1重量%の架
橋剤を加えて、この発明方法を行い、任意の粘度の多糖
類グリコール酸アルカリを製造することもできる。架橋
剤の例は、エピクロルヒドリン、ジグリシジルエーテル
である。次に実施例を挙げて、この発明方法を具体例に
ついて説明する。Thereafter, in order to remove the added organic solvent or water, the product is dried under reduced pressure to obtain a product. According to the method of this invention, a small amount of water and an organic solvent are used, and the total amount thereof is 60% by weight or less based on the polysaccharide raw material, even including the water contained in the polysaccharide raw material, and the solvent Since most of the solvent is an organic solvent, the etherification reaction with monochloroacetic acid can be carried out smoothly to the end while keeping the polysaccharide raw material slightly moist. As a result, according to the method of the present invention, it is possible to efficiently and easily carry out the reaction without requiring a large-capacity reactor, while suppressing side reactions. Furthermore, the solvent can be easily removed after the reaction is completed. The method of the invention thus provides numerous advantages. Moreover, the products obtained by the method of the present invention have uniform and good quality that is as good as, if not better than, conventional products, and can be used for various purposes in the same way as conventional products. Therefore, the method of this invention has high practical value. The process of the invention can also be carried out following the hydroxyalkylation of granular polysaccharides such as starch under organic amine catalysts. Also,
By adding 0.001 to 0.1% by weight of a crosslinking agent to the polysaccharide raw material and carrying out the method of this invention, an alkali polysaccharide glycolate of any viscosity can be produced. Examples of crosslinking agents are epichlorohydrin, diglycidyl ether. Next, the method of the present invention will be explained with reference to Examples.
その中で得られた製品がどの程度モノクロル酢酸成分を
含むかは,置換度によつて示し、またその製品が均一か
どうかは、これを水に溶解して水溶液としたときの水溶
液の透明度と、この水溶液を200メツシユのスクリー
ンに通して、スクリーン上に残渣を生ずるかどうかで見
た。なお、置換度の測定法は、R.W.Eyler著、
AnalyticalChemistryl9、24(
1947)を参考にした。実施例 1
この実施例では、原料多糖類中に含まれている水分のほ
かには水を加えないで実施した。The extent to which the resulting product contains monochloroacetic acid components is indicated by the degree of substitution, and whether the product is homogeneous is determined by the transparency of the aqueous solution when dissolved in water. This aqueous solution was passed through a 200 mesh screen to see if any residue was formed on the screen. The method for measuring the degree of substitution is as per R. W. Written by Eyler,
Analytical Chemistry 9, 24 (
1947) was used as a reference. Example 1 In this example, no water was added other than the water contained in the raw material polysaccharide.
密閉できる容器に、とうもろこし澱粉(水分率13.5
%)10009とイソプロパノール1009とモノクロ
ル酢酸ソーダ2079とを加えて、30分間攪拌した。In an airtight container, add corn starch (moisture content: 13.5
%) 10009, isopropanol 1009, and monochlorosodium acetate 2079 were added and stirred for 30 minutes.
その後、これに固体状態の苛性ソーダ719を加え、さ
らに30分間攪拌したのち、80℃に昇温して3時間攪
拌を続け,その間温度を80℃に保つて、エーテル化反
応を行わせた。反応終了後,酢酸でPI{を7に調節し
,30分間減圧乾燥し、製品としてカルボキシメチルス
ターチを得た。Thereafter, solid caustic soda 719 was added thereto, and after further stirring for 30 minutes, the temperature was raised to 80°C and stirring was continued for 3 hours, during which time the temperature was maintained at 80°C to carry out the etherification reaction. After the reaction was completed, the PI{ was adjusted to 7 with acetic acid, and the mixture was dried under reduced pressure for 30 minutes to obtain carboxymethyl starch as a product.
この製品の置換度は0.28であり、反応効率は85%
で良好なことを認めた。また、その製品を水に溶解させ
たところ,均一透明に溶解し, 200メツシユのスク
リーンを通したところ.残渣を認めなかつた。また、製
品の4%水溶液の粘度は4000センチポイズであつて
,何れも良好な品質だと認められた。実施例 2
この実施例では、水分率のさらに少ないとうもろこし澱
粉を用い、有機溶剤と固体状の苛性ソーダとを同時に添
加した以外は、実施例1と同様に処理した。The degree of substitution of this product is 0.28, and the reaction efficiency is 85%.
It was recognized that it was good. When the product was dissolved in water, it became uniformly transparent and when passed through a 200 mesh screen. No residue was observed. Furthermore, the viscosity of the 4% aqueous solution of the product was 4000 centipoise, and both were recognized to be of good quality. Example 2 In this example, corn starch with an even lower moisture content was used, and the process was carried out in the same manner as in Example 1, except that an organic solvent and solid caustic soda were added at the same time.
すなわち、密閉できる容器に水分率10%のとうもろこ
し澱粉10009と、メタノール1009と,モノクロ
ル酢酸ソーダ2079と固体状態の苛性ソーダ719と
を同時に加えて密封したのち,30分間攪拌した。That is, corn starch 10009 with a moisture content of 10%, methanol 1009, monochloroacetic acid sodium 2079, and solid caustic soda 719 were added simultaneously to a sealable container, and the container was sealed and stirred for 30 minutes.
次いで80℃に昇温して3時間攪拌し、その間温度を8
0℃に維持し、反応させた。反応終了後,酢酸でpl{
を7に調節し、30分間減圧乾燥して製品を得た。Then, the temperature was raised to 80°C and stirred for 3 hours, during which time the temperature was raised to 80°C.
The temperature was maintained at 0°C and the reaction was carried out. After the reaction is complete, pl{
was adjusted to 7 and dried under reduced pressure for 30 minutes to obtain a product.
製品のグリコール酸基によるエーテル化度は0.24で
、反応効率は75?であつた。また、製品を水に溶解し
たところ、均一透明な水溶液となり、2000メツシユ
のスクリーンによつてF過したが、残渣は認められなか
つた。4%水溶液の粘度は4000Cpsであつた実施
例 3
この実施例では、モノクロル酢酸のほかに、エピクロル
ヒドリンを架橋剤として同時に加え、反応を行つた。The degree of etherification due to glycolic acid groups in the product is 0.24, and the reaction efficiency is 75? It was hot. Further, when the product was dissolved in water, it became a homogeneous and transparent aqueous solution, which was passed through a 2000 mesh screen, but no residue was observed. The viscosity of the 4% aqueous solution was 4000 Cps Example 3 In this example, in addition to monochloroacetic acid, epichlorohydrin was simultaneously added as a crosslinking agent to carry out the reaction.
密閉できる容器にとうもろこし澱粉(水分率13.5%
)10009を加えたのち,これにイソプロパノール1
509と、モノクロル酢酸1689と、エピクロルヒド
リン0.19との混合溶液を加え,30分間攪拌した。Corn starch (moisture content 13.5%) in an airtight container
) 10009, and then add isopropanol 1
A mixed solution of 509, monochloroacetic acid 1689, and epichlorohydrin 0.19 was added and stirred for 30 minutes.
次いで,外側を冷却しながら、固体状の苛性ソーダ14
29を少しづつ2時間にわたつて加えた。そのまま1時
間攪拌を続けたのち,60℃に昇温して4時間攪拌しな
がら反応させた。この間温度を60℃に維持した。反応
終了後、酢酸でPHを7に調節し、30分間減圧乾燥し
て製品を得た。製品の置換度は0.28であり,反応効
率は84%であり、製品の水溶液は均一透明であつて,
200メツシユスクリーンによる残渣は認められなかつ
た。4%水溶液の粘度は9000cpsであつた。Next, solid caustic soda 14 is added while cooling the outside.
29 was added little by little over 2 hours. After continuing to stir for 1 hour, the temperature was raised to 60° C. and the reaction was carried out with stirring for 4 hours. During this time, the temperature was maintained at 60°C. After the reaction was completed, the pH was adjusted to 7 with acetic acid, and the product was dried under reduced pressure for 30 minutes to obtain a product. The degree of substitution of the product is 0.28, the reaction efficiency is 84%, and the aqueous solution of the product is homogeneous and transparent.
No residue was observed with the 200 mesh screen. The viscosity of the 4% aqueous solution was 9000 cps.
実施例 4
この実施例では,澱粉をプロピレンオキサイドによつて
ヒドロキシアルキル化したのち,モノクロル酢酸によつ
てグリコール酸エーテル化した。Example 4 In this example, starch was hydroxyalkylated with propylene oxide and then glycolic acid etherified with monochloroacetic acid.
まず密閉できる容器にとうもろこし澱粉(水分率13,
5%)10009を加え,密閉したのち、100mmH
gまで減圧脱気した。次に、バルブを開きトリエチルア
ミン10gを注入したのち、30分間攪拌した。その後
30分経過してから,バルブを開いてプロピレンオキサ
イド209を注入した後、70℃に昇温して2時間攪拌
した。その間,温度を70〜80℃に維持して、澱粉を
ヒドロキシプロピル化した。その後、容器を冷却してイ
ソプロパノール1509とモノクロル酢酸1689との
混合溶液を加えて、30分間攪拌した。First, put corn starch (moisture content 13,
After adding 5%) 10009 and sealing, 100mmH
It was degassed under reduced pressure to g. Next, the valve was opened and 10 g of triethylamine was injected, followed by stirring for 30 minutes. After 30 minutes had passed, the valve was opened and propylene oxide 209 was injected, and then the temperature was raised to 70° C. and stirred for 2 hours. Meanwhile, the temperature was maintained at 70-80°C to hydroxypropylate the starch. Thereafter, the container was cooled, a mixed solution of isopropanol 1509 and monochloroacetic acid 1689 was added, and the mixture was stirred for 30 minutes.
次いで、外側を氷冷しながら、固体状の苛性ソーダ14
29を少しづつ2時間にわたつて加えた。そのまま1時
間攪拌を続けた後、6『Cに昇温し攪拌しながらモノク
ロル酢酸と反応させた。この間,温度を6『Cに維持し
た。反応終了後,酢酸でPHを7に調節し,30分間減
圧乾燥して製品を得た。Next, solid caustic soda 14 was added while cooling the outside with ice.
29 was added little by little over 2 hours. After continuing to stir for 1 hour, the temperature was raised to 6°C, and the mixture was reacted with monochloroacetic acid while stirring. During this time, the temperature was maintained at 6'C. After the reaction was completed, the pH was adjusted to 7 with acetic acid, and the product was dried under reduced pressure for 30 minutes.
製品の置換度は0.30で、反応効率は90%であつた
。また製品の4%水溶液の粘度は4000cpsであり
、その水溶液は均一透明であり、200メツシユスクリ
ーンによる残渣は全く認められなかつた。実施例 5
この実施例では、多糖類原料をプロピレンオキサイドに
よりヒドロキシプロピレン化したのち、モノクロル酢酸
によるエーテル化を行つた。The degree of substitution of the product was 0.30, and the reaction efficiency was 90%. Further, the viscosity of a 4% aqueous solution of the product was 4000 cps, the aqueous solution was uniform and transparent, and no residue was observed when using a 200 mesh screen. Example 5 In this example, a polysaccharide raw material was hydroxypropylenized with propylene oxide and then etherified with monochloroacetic acid.
密閉できる容器に馬鈴薯澱粉(水分率15%)1000
9を加えて密閉したのち、100mmHgまで減圧した
。次いで、バルブを開いてトリエチルアミン109を注
入したのち,30分間攪拌した。その後30分経過して
のち,バルブを開いてプロピレンオキサイド309を注
入し、70℃に昇温し、2時間攪拌を続けて反応させ,
この間温度を70℃に維持した。反応終了後、容器を冷
却し、イソプロパノール1509とモノクロル酢酸16
89とエビクロルヒドリン0.1gとの混合溶液を加え
て,30分間攪拌した。Potato starch (moisture content 15%) 1,000 ml in an airtight container
9 was added and sealed, and the pressure was reduced to 100 mmHg. Next, after opening the valve and injecting triethylamine 109, the mixture was stirred for 30 minutes. After 30 minutes, the valve was opened, propylene oxide 309 was injected, the temperature was raised to 70°C, and the reaction was continued with stirring for 2 hours.
During this time, the temperature was maintained at 70°C. After the reaction is complete, cool the container and add isopropanol 1509 and monochloroacetic acid 16
A mixed solution of 89 and 0.1 g of shrimp chlorohydrin was added and stirred for 30 minutes.
その後、外側を水冷しながら、固体状の苛性ソーダ14
2f7を少しづつ2時間にわたつて加えた。その後1時
間攪拌を続けたのち、60℃に昇温させ,3時間攪拌を
続けて60℃で反応を行わせた。反応終了後、酢酸でP
Hを7に調節し、30分間減圧乾燥して製品を得た。製
品の置換度は0.32であり、反応効率は94%で、製
品は水に溶解して均一透明な溶液を作り、200メツシ
ユスクリーンによる残渣は認められなかつた。Then, while cooling the outside with water, solid caustic soda 14
2f7 was added in portions over 2 hours. After that, stirring was continued for 1 hour, and then the temperature was raised to 60°C, and stirring was continued for 3 hours to carry out the reaction at 60°C. After the reaction is complete, add P with acetic acid.
The H was adjusted to 7 and dried under reduced pressure for 30 minutes to obtain a product. The degree of substitution of the product was 0.32, the reaction efficiency was 94%, the product was dissolved in water to form a homogeneous and clear solution, and no residue was observed by 200 mesh screen.
また、4%水溶液の粘度は10000cpsであつた。
実施例 6
ボールミルにセルロース粉末(水分率6%)10009
とメタノール509と固体状の苛性ソーダ80f1を加
えて、2時間回転させた。Further, the viscosity of the 4% aqueous solution was 10,000 cps.
Example 6 Cellulose powder (moisture content 6%) 10009 in a ball mill
509 methanol and 80 fl of solid caustic soda were added thereto, and the mixture was rotated for 2 hours.
内容物を密閉できる容器に移して密閉したのち,100
mmHgまで減圧脱気した。次いで、バルブを開きプロ
ピレンオキサイド170f!を注入したのち,70℃に
昇温して反応を開始させ,温度を70〜90℃に維持し
て、3時間攪拌を続けながら反応させた。反応終了後、
容器を冷却し、固体状の苛性ソーダ1009とイソプロ
パノール1009を加えて、30分間攪拌した。After transferring the contents to an airtight container and sealing it,
It was degassed under reduced pressure to mmHg. Next, open the valve and use propylene oxide 170f! was injected, the temperature was raised to 70°C to start the reaction, the temperature was maintained at 70 to 90°C, and the reaction was continued for 3 hours with stirring. After the reaction is complete,
The container was cooled, solid caustic soda 1009 and isopropanol 1009 were added, and the mixture was stirred for 30 minutes.
次にモノクロル酢酸ソーダ5179を加えて、そのまま
30分間攪拌した。その後,温度を60℃に昇温して反
応を開始させ攪拌を続けながら4時間60℃で反応を行
わせた。反応終了後、酢酸でPHを7に調節し、30分
間減圧乾燥して,製品を得た。製品の置換度は0.65
であり、反応効率は85?であつた。Next, monochloroacetic acid soda 5179 was added and the mixture was stirred for 30 minutes. Thereafter, the temperature was raised to 60° C. to start the reaction, and the reaction was carried out at 60° C. for 4 hours while stirring was continued. After the reaction was completed, the pH was adjusted to 7 with acetic acid, and the product was dried under reduced pressure for 30 minutes to obtain a product. Product substitution degree is 0.65
And the reaction efficiency is 85? It was hot.
製品は水に溶解して均一透明な溶液を生成し,200メ
ツシユスクリーンによる残渣は全く認められなかつた。
4%水溶液の粘度は8000cpsであつた。The product dissolved in water to produce a homogeneous clear solution, with no residue observed through a 200 mesh screen.
The viscosity of the 4% aqueous solution was 8000 cps.
実施例 7
この実施例では,多糖類原料としてグアーガムを用いて
、モノクロル酢酸ソーダによるエーテル化を行なつた。Example 7 In this example, guar gum was used as a polysaccharide raw material and etherified with sodium monochloroacetate.
密閉できる容器にグアーガム(水分率10%)1000
9にメタノール1409を加えて、30分間攪拌した。Guar gum (moisture content 10%) 1000 g in an airtight container
Methanol 1409 was added to 9 and stirred for 30 minutes.
その後、これに1109の固体状態の苛性ソーダを加え
、さらに30分間攪拌した。その後、モノクロル酢酸ソ
ーダ2689を加えて30分間攪拌した後,内温を60
℃に昇温して5時間撹拌を続け、その間内温を60゜C
に保つてエーテル化反応を行わせた。反応終了後,酢酸
でPHを7に調節し,内温を80℃に昇温して30分間
減圧乾燥し,製品としてカルボキシメチルグアーガムを
得た。Thereafter, solid caustic soda 1109 was added thereto, and the mixture was further stirred for 30 minutes. Then, after adding monochloroacetic acid soda 2689 and stirring for 30 minutes, the internal temperature was lowered to 60℃.
℃ and continued stirring for 5 hours, during which time the internal temperature was kept at 60℃.
The etherification reaction was carried out by maintaining the temperature at After the reaction was completed, the pH was adjusted to 7 with acetic acid, the internal temperature was raised to 80° C., and the mixture was dried under reduced pressure for 30 minutes to obtain carboxymethyl guar gum as a product.
この製品の置換度は0.31であり,反応効率は75%
で良好なことを認めた。また、その製品を水に溶解させ
たところ、均一透明に溶解し、200メツシユスクリー
ンを通したところ、残渣を認めなかつた。また、製品の
4%水溶液の粘度は10000センチポイズであつて,
何れも良好な製品だと認められた。実施例 8
この実施例では、多糖類として脱脂したタマリンドガム
を用い,モノクロル酢酸ソーダによるエーテル化を行な
つた。The degree of substitution of this product is 0.31, and the reaction efficiency is 75%.
It was recognized that it was good. When the product was dissolved in water, it was uniformly and transparently dissolved, and no residue was observed when it was passed through a 200 mesh screen. In addition, the viscosity of the 4% aqueous solution of the product is 10,000 centipoise,
All products were recognized as being of good quality. Example 8 In this example, defatted tamarind gum was used as the polysaccharide and etherified with sodium monochloroacetate.
密閉できる容器に脱脂したタマリンドガム(水分率10
%)1000f!と,イソプロパノール1509と.モ
ノクロル酢酸ソーダ2689とを加え30分間攪拌した
。Defatted tamarind gum (moisture content: 10
%) 1000f! and isopropanol 1509. Sodium monochloroacetate 2689 was added and stirred for 30 minutes.
次いで、固体状の苛性ソーダ110f!を加えて外側を
冷却しながら30分間攪拌したのち,内温を60℃に昇
温して6時間攪拌を続け、その間内温を60℃に保つて
エーテル化反応を行わせた。反応終了後、酢酸でPHを
7に調節し、1時間減圧乾燥し,製品としてカルボキシ
メチルタマリンドガムを得た。Next, 110f of solid caustic soda! After stirring for 30 minutes while cooling the outside, the internal temperature was raised to 60°C and stirring was continued for 6 hours, during which time the internal temperature was maintained at 60°C to carry out the etherification reaction. After the reaction was completed, the pH was adjusted to 7 with acetic acid, and the mixture was dried under reduced pressure for 1 hour to obtain carboxymethyl tamarind gum as a product.
この製品の置換度は0.34であり,反応効率は80%
で良好なことを認めた。また、この製品を水に溶解させ
たところ,均一透明に溶解し,200メツシユスクリー
ンに通したところ残渣を認めなかつた。また、製品の4
%水溶液の粘度は8000センチポイズであつて、何れ
も良好な品質だと認められた。比較例 1
この比較例は、多糖類原料に対し20重量%以上の水と
、400重量%の有機溶媒とを用い,また苛性ソーダを
水溶液の形で加えた例である。The degree of substitution of this product is 0.34, and the reaction efficiency is 80%.
It was recognized that it was good. When this product was dissolved in water, it was uniformly and transparently dissolved, and no residue was observed when it was passed through a 200 mesh screen. In addition, product 4
The viscosity of the % aqueous solution was 8000 centipoise, and all were recognized to be of good quality. Comparative Example 1 In this comparative example, 20% by weight or more of water and 400% by weight of an organic solvent were used with respect to the polysaccharide raw material, and caustic soda was added in the form of an aqueous solution.
とうもろこし澱粉(水分率13.5%)10009に、
イソプロパノール41を加え,攪拌しながら苛性ソーダ
1429と水2009との混合溶液を加えた。外側を氷
冷しながら,モノクロル酢酸168f1をゆつくり加え
て,そのまま1時間撹拌する。内容物を密閉できる容器
に移して密閉した後、70℃に昇温して反応を開始させ
、3時間攪拌を続けて温度70℃で反応させた。反応終
了後、酢酸でPHを7に調節し、溶媒を淵別したのち、
3時間減圧乾燥して製品を得た。Corn starch (moisture content 13.5%) 10009,
Isopropanol 41 was added, and a mixed solution of caustic soda 1429 and water 2009 was added while stirring. While cooling the outside with ice, slowly add 168f1 of monochloroacetic acid and stir for 1 hour. After the contents were transferred to a sealable container and sealed, the temperature was raised to 70°C to start the reaction, and stirring was continued for 3 hours to allow the reaction to occur at a temperature of 70°C. After the reaction was completed, the pH was adjusted to 7 with acetic acid, and the solvent was filtered off.
A product was obtained by drying under reduced pressure for 3 hours.
製品の置換度は0.28であり、反応効率は85%であ
つた。また、製品は水に溶解して均一透明な水溶液を生
成し,200メツシユスクリーンによる残渣は認められ
なかつた。4%水溶液の粘度は5000cpsであつた
。The degree of substitution of the product was 0.28, and the reaction efficiency was 85%. Further, the product dissolved in water to produce a homogeneous and transparent aqueous solution, and no residue was observed by a 200 mesh screen. The viscosity of the 4% aqueous solution was 5000 cps.
この比較例は、実施例1に比べると、大容量の反応容器
を必要とし、攪拌が容易でないという点で難があつた。
比較例 2
この比較例では、多糖類原料に含まれる水分も含めて、
多糖類原料に対して20重量%より僅かに多くし.また
苛性ソーダを水溶液の形で加えた。Compared to Example 1, this comparative example had disadvantages in that it required a large-capacity reaction vessel and was not easy to stir.
Comparative Example 2 In this comparative example, including the water contained in the polysaccharide raw material,
Slightly more than 20% by weight based on the polysaccharide raw material. Caustic soda was also added in the form of an aqueous solution.
とうもろこし澱粉(水分率13,5%)10009にモ
ノクロル酢酸ソーダ3469を加えて粉体混合機で3時
間混合した。混合物を密閉できる容器に移して、攪拌し
ながら、苛性ソーダ1199を水1009に溶解した溶
液をこの上に2時間にわたつて攪拌しながら噴霧した。
噴霧終了後、なお攪拌を続けながら、40℃に昇温させ
て反応を開始させ、40℃で15時間反応させた。反応
終了後、酢酸でPHを7に調節し,1時間減圧乾燥して
製品を得た。製品は置換度0.25であり、反応効率は
45%であつた。Sodium monochloroacetate 3469 was added to corn starch (moisture content 13.5%) 10009 and mixed for 3 hours using a powder mixer. The mixture was transferred to a sealable container and, with stirring, a solution of caustic soda 1199 in water 1009 was sprayed onto it over a period of 2 hours with stirring.
After the spraying was completed, the temperature was raised to 40° C. while stirring to start the reaction, and the reaction was continued at 40° C. for 15 hours. After the reaction was completed, the pH was adjusted to 7 with acetic acid, and the mixture was dried under reduced pressure for 1 hour to obtain a product. The product had a degree of substitution of 0.25 and a reaction efficiency of 45%.
また製品は水に溶解すると,粒状不溶解分が多く、20
0メツシユスクリーンによる残渣が多く認められた。4
%水溶液の粘度は10000cpsであつた。In addition, when the product is dissolved in water, there are many particulate undissolved components,
Many residues due to the 0 mesh screen were observed. 4
% aqueous solution was 10,000 cps.
Claims (1)
モノクロル酢酸又はその塩を反応させて多糖類グリコー
ル酸塩を製造するにあたり、反応の初期に、苛性アルカ
リとして固体状態のものを加え、100重量部の多糖類
又はその誘導体に対し、その中に初めから含まれる水分
も含めて、水を20重量部以下に保持し、有機溶媒を5
ないし40重量部加えて、反応を行わせることを特徴と
する、多糖類グリコール酸塩の製造方法。1. When manufacturing a polysaccharide glycolate by reacting a polysaccharide or its derivative with monochloroacetic acid or its salt in the presence of a caustic alkali, at the beginning of the reaction, add a solid state as a caustic alkali, % of the polysaccharide or its derivative, the water content is kept at 20 parts by weight or less, including the water originally contained therein, and the organic solvent is kept at 5 parts by weight or less.
A method for producing polysaccharide glycolate, which comprises adding from 40 parts by weight to carrying out the reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55108051A JPS5941642B2 (en) | 1980-08-06 | 1980-08-06 | Method for producing polysaccharide glycolate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55108051A JPS5941642B2 (en) | 1980-08-06 | 1980-08-06 | Method for producing polysaccharide glycolate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5731901A JPS5731901A (en) | 1982-02-20 |
JPS5941642B2 true JPS5941642B2 (en) | 1984-10-08 |
Family
ID=14474672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55108051A Expired JPS5941642B2 (en) | 1980-08-06 | 1980-08-06 | Method for producing polysaccharide glycolate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5941642B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008314A1 (en) * | 2010-07-15 | 2012-01-19 | 花王株式会社 | Method for producing carboxymethyl cellulose |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3135739A (en) * | 1961-08-21 | 1964-06-02 | Penick & Ford Ltd Inc | Etherifying granule starch in aliphatic ketone solvent medium |
GB1259099A (en) * | 1968-05-29 | 1972-01-05 | ||
JPS5315954A (en) * | 1976-07-27 | 1978-02-14 | Maruzen Sewing Machine | Knife driver for sewing machine |
-
1980
- 1980-08-06 JP JP55108051A patent/JPS5941642B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3135739A (en) * | 1961-08-21 | 1964-06-02 | Penick & Ford Ltd Inc | Etherifying granule starch in aliphatic ketone solvent medium |
GB1259099A (en) * | 1968-05-29 | 1972-01-05 | ||
JPS5315954A (en) * | 1976-07-27 | 1978-02-14 | Maruzen Sewing Machine | Knife driver for sewing machine |
Also Published As
Publication number | Publication date |
---|---|
JPS5731901A (en) | 1982-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3965091A (en) | Process for the production of water-adsorbing but water-insoluble cellulose ethers | |
US2733238A (en) | Reaction of starch and alkylene oxides | |
US4959464A (en) | Process for derivatizing polygalactomannan using water soluble aluminum salts in the process | |
US4920214A (en) | Process for producing modified cyclodextrins | |
US2802000A (en) | Ungelatinized cold water soluble starch ethers | |
JPH01215801A (en) | Modified galactomannan and production thereof | |
US3940384A (en) | Methyl hydroxypropyl cellulose acetate and process | |
US3378546A (en) | Hydroxypropyl starch ether | |
US2516633A (en) | Preparation of starch ethers in original granule form | |
Rajagopalan et al. | Granular cold-water-soluble starches prepared at atmospheric pressure | |
US2744894A (en) | Hydroxyalkylation of polysaccharides | |
CA1061782A (en) | Preparation and purification of cellulose ethers | |
US4097667A (en) | Hydroxyalkyl cellulose ethers | |
US5057157A (en) | Preparation of granular cold water swelling/soluble starches by alcoholic-alkali treatments | |
KR20120075746A (en) | Hydroxyalkyl carboxyalkyl starch and method for manufacturing the same | |
US3725386A (en) | Method for purifying crude, dry granular reacted cold water swelling hydroxypropyl starch derivatives | |
JPS5941642B2 (en) | Method for producing polysaccharide glycolate | |
JPS5941645B2 (en) | Method for producing hydroxyalkylated starch or dextrin | |
US4341892A (en) | Preparation of alkali cellulose having a low water content | |
US2801241A (en) | Process for the production of starch ethers | |
US2935509A (en) | Preparation of starch derivatives containing nitrogen | |
US2834777A (en) | Methods of treating cellulose ethers | |
JPH061801A (en) | Process for cationing nongranular polysaccharide | |
JPS6218561B2 (en) | ||
US3014901A (en) | Process for preparing ungelatinized starch ethers |