JPS5941424A - Manufacture of high-tensile strength hot-rolled steel sheet having low yield ratio - Google Patents

Manufacture of high-tensile strength hot-rolled steel sheet having low yield ratio

Info

Publication number
JPS5941424A
JPS5941424A JP15026782A JP15026782A JPS5941424A JP S5941424 A JPS5941424 A JP S5941424A JP 15026782 A JP15026782 A JP 15026782A JP 15026782 A JP15026782 A JP 15026782A JP S5941424 A JPS5941424 A JP S5941424A
Authority
JP
Japan
Prior art keywords
steel sheet
yield ratio
rolled steel
cooling
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15026782A
Other languages
Japanese (ja)
Inventor
Nobuo Aoyanagi
青柳 信男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15026782A priority Critical patent/JPS5941424A/en
Publication of JPS5941424A publication Critical patent/JPS5941424A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To obtain a steel sheet having a yield ratio below 70% and a composite structure as being hot-rolled regardless of performing low-temp. coiling, by adding P as a low cost component, and specifying a cooling condition. CONSTITUTION:A hot-rolled steel sheet having a composition containing, by wt., 0.03-0.15% C, Si<=1.5%, 0.3-0.6% Mn, 0.03-0.20% P, Al<=0.1% and S<=0.010% is finish rolled at a temp. above its Ar3 transformation point. Thereafter, said steel sheet is immediately air-cooled over 3-20sec, rapidly cooled and then coiled at a temp. below 300 deg.C. Before the air-cooling, it may be cooled down to 700 deg.C at a cooling speed above 30 deg.C/sec. Hence, the low-yield ratio high-tensile strength steel sheet having an excellent shape and a stabilized material property is obtained.

Description

【発明の詳細な説明】 この発明は、低降伏比高張力熱延鋼板の製造方法に関し
、とくに熱延ままで、降伏比70襲以下を有利に実現す
ること、また発展的に耐候性の向上を図ることを目的と
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-tensile hot-rolled steel sheet with a low yield ratio, and in particular to advantageously achieve a yield ratio of 70 or less in the as-hot-rolled state, and to further improve weather resistance. The purpose is to achieve this goal.

自動車業界では低燃費を主目的に車体1暇の軽欧化が指
向されて代替材料の開発が進められ、この中で高張力鋼
板の採用による軽敞化は一部で実用化されている。
In the automobile industry, the main aim is to make the car body lighter and more compact, and the development of alternative materials is progressing. Among these, the use of high-tensile steel plates to make the car lighter and lighter has been put into practical use in some cases.

しかし高強度のためスプリングノ環ツクや伸び特性が劣
多い加工後の形状精度が要求されるものや複雑な厳しい
加工には耐えられず、実用上の難点をなしているのが現
実である。
However, due to its high strength, it has poor spring ring strength and elongation characteristics, and cannot withstand complex and severe machining that requires shape accuracy after machining, making it a practical problem.

これらを解決するために低降伏比の高張力鋼板が開発さ
れ、その製造方法としては、熱延後再加熱する方法と、
熱延ままで得る方法との二つがあるが、前者は熱処理工
程を必要とするため後者の熱延ままで得る方法がとくに
注目されている。
To solve these problems, high-strength steel sheets with low yield ratios have been developed, and their manufacturing methods include hot rolling and then reheating;
There are two methods, one is to obtain the material as hot rolled, and the former requires a heat treatment process, so the latter method is attracting particular attention.

熱延ままで低降伏比の腹合組織を得る方法については、
熱延後のコイルをα・γの2相状態で巻取り、その後の
徐冷時に未変態のγ相をマルテンサイトなどに低温変態
させる方法と、熱延後の冷却過程でフェライトと低温変
態相とを生成させた後、コイルに巻取る方法とに二大別
されるが、前者はSi 、 Mn 、 (tr 、 M
oなど合金元素を多数に必要とし、製造コストが非常に
高い欠点があジ、後者は合金元素は比較的少激で済むが
200℃以下の極低温巻取りが必要なため、形状が不安
定化し易いだけでなく、製造用能範囲が狭く材質も不均
一不安定と彦る欠点を残している。
For information on how to obtain a flattened structure with a low yield ratio while hot-rolling,
There is a method in which the hot-rolled coil is wound in a two-phase state of α and γ, and then the untransformed γ phase is transformed into martensite at a low temperature during the subsequent slow cooling. There are two main methods: producing Si, Mn, (tr, M
The other disadvantage is that it requires a large number of alloying elements such as o, and is very expensive to manufacture.The latter requires relatively few alloying elements, but it requires extremely low temperature winding below 200°C, so the shape is unstable. Not only is it easy to change, but it also has the drawbacks of a narrow manufacturing range and unstable, non-uniform materials.

発明者らはこれらの欠点を克服するため、成分的には安
価なPを添加し、以下に述べる冷却方法を適用すること
によシ合金元素の添加量を極めて少なくして、低温巻取
シラ行なうにも拘らず形状が良好で安定した材質特性を
有する低降伏比高張力鋼板を得る方法を見出した。
In order to overcome these drawbacks, the inventors added P, which is inexpensive as a component, and applied the cooling method described below to extremely reduce the amount of P alloying elements. We have found a method to obtain a low yield ratio, high tensile strength steel plate that has a good shape and stable material properties despite the above-mentioned conditions.

この発明は、c : o、oa〜0.15重社%(以下
単打し、S : 0.010%以下の組成になる熱延鋼
板を2、/k r 3変態点以上の仕上げ圧延の直後、
またはこれに引続き700℃に至る世に、毎秒30℃以
上の冷却速度で冷却をした後、8〜20秒間にわたる空
冷を経て急冷をし、800℃以下の温度で巻取りを行な
って組織中に低温変態相を有する降伏比70チ以下の複
合組織鋼板を得ることを上記課題の解決手段とするもの
である。
This invention provides a hot rolled steel sheet having a composition of C: o, oa ~ 0.15% (hereinafter referred to as single stroke), S: 0.010% or less, immediately after finish rolling at a transformation point of 2,/k r 3 or higher. ,
Or, following this, in a world where the temperature reaches 700℃, after cooling at a cooling rate of 30℃ or more per second, rapid cooling through air cooling for 8 to 20 seconds, and winding at a temperature of 800℃ or less, the low temperature is added to the structure. The object of the present invention is to obtain a composite structure steel sheet having a transformed phase and a yield ratio of 70 inches or less.

上記熱延鋼板としては、そのS含有鼠の2〜5倍に相当
するREMまたは1〜3倍に当るOai含有する組成、
Ou : 0.10〜1.0%をさらに含有する組成、
またNi : 0.1−1.0%、Or : 0.1〜
1.5%の倒れか少々くとも一方をさらに含有する組成
のものが、実際上、よシ好ましい。
The hot rolled steel sheet has a composition containing REM equivalent to 2 to 5 times the S content or Oai equivalent to 1 to 3 times the S content,
Ou: a composition further containing 0.10 to 1.0%,
Also, Ni: 0.1-1.0%, Or: 0.1~
Practically preferred compositions further contain at least 1.5% of silane.

この発明は主としてPのα変態促進効果についての新規
知見に基づき、制御圧延、制御冷却を絡めた極低温巻取
りによる複合組織鋼板の開発研究の成果に由来するもの
である。
This invention is mainly based on new findings regarding the α-transformation accelerating effect of P, and is derived from the results of research and development of composite structure steel sheets by cryogenic winding involving controlled rolling and controlled cooling.

この発明において、熱延鋼の組成成分を限定する理由か
ら、順次に詳しく説明を進める。
In this invention, a detailed explanation will be given in order for the reason for limiting the compositional components of hot rolled steel.

c : o、oa〜0.15% C鼠は0.03%未満では十分彦引張り強さが得られず
、−万0.15 %を超えると溶接性や加工性が劣化す
る上、α変態を抑制して第2相が多くなり、かつベイナ
イト生成から形状や材質が不安定で不均一となる不利を
来す。よって帆03〜0.15チの範囲に限定する。
C: o, oa ~ 0.15% If C content is less than 0.03%, sufficient tensile strength cannot be obtained, and if it exceeds 0.15%, weldability and workability deteriorate, and alpha transformation occurs. This has the disadvantage that the second phase increases due to the suppression of bainite, and the shape and material become unstable and non-uniform due to the formation of bainite. Therefore, the sail is limited to a range of 03 to 0.15 inches.

Si : 1.5%以下 5iEtcは多いほどα変態を促進させ高延性が期待で
きるが、多すぎると靭性や溶接性を劣化し、さらには経
済性の面も考慮して1.5%以下とした。
Si: 1.5% or less The more 5iEtc there is, the more the α transformation is promoted and high ductility can be expected, but if it is too much, the toughness and weldability deteriorate. did.

Mn  :  0.3〜0.6  % Mn瞳は0,3%未満では低温変態相が得られ力いので
0.3%以上で高い方が好ましい。しかし経済的には少
々い方が好ましく、上限を0.6%以下としたが、この
ようにMn1iが少なくても低降伏比の複合組織鋼が得
られる点は、次に述べるP添加とともにこの発明の成分
上の大きな特徴の1つである。
Mn: 0.3 to 0.6% If the Mn pupil is less than 0.3%, a low-temperature transformed phase will not be obtained, so a higher Mn pupil of 0.3% or more is preferable. However, from an economic standpoint, it is preferable to have a small amount of Mn1i, and the upper limit was set to 0.6% or less. This is one of the major features of the invention.

p : o、oa〜0.20% P鼠は0.03%以上でα変態が促進されてγ中へのC
濃化が著しくカリ、$1と同様に強度=延性バランスに
優れ、低降伏比を齋すことが見出された。しかし0.2
%を超えると靭性の劣化が大きく彦る。従って0.08
%〜0.2%を限定した。
p: o, oa ~ 0.20% In P mice, α metamorphosis is promoted at 0.03% or more, and C into γ
It was found that it was significantly concentrated, had an excellent balance of strength and ductility like $1, and had a low yield ratio. But 0.2
%, the toughness deteriorates significantly. Therefore 0.08
% to 0.2%.

At : 0.1%以下 At量は脱酸元素として使用され、0.1%を超えて使
用することは介在物の増加をもたらし、かつ経済的でな
い。この点から0.1%以下とした。
At: 0.1% or less The amount of At is used as a deoxidizing element, and using more than 0.1% results in an increase in inclusions and is not economical. From this point of view, the content was set at 0.1% or less.

S : 0.010%以下 S敢は伸びフランジの加工性から低目が好ましく、こ\
に0.010%以下を要する。
S: 0.010% or less S is preferably low from the viewpoint of stretch flange workability.
0.010% or less is required.

以上のべたIところのほかREMおよびOaはMnSを
、球状化させ加工性を向上させるので、必要に応じて添
加することができ、このときREM/S 。
In addition to the above, REM and Oa make MnS spheroidal and improve processability, so they can be added as necessary.At this time, REM/S.

Ca/′Sがおのおの2,1以下ではあま9効果が力く
、また5、゛3以上では大型介在物が形成され易く、ま
た介在物の量が多くなり、加工性の劣化をもたらすので
それぞれ2〜5.1〜3の範囲とすることが好ましい。
When Ca/'S is less than 2 and 1, respectively, the Ama9 effect is strong, and when it is more than 5 and 3, large inclusions are likely to be formed, and the amount of inclusions increases, resulting in deterioration of workability. It is preferable to set it as the range of 2-5.1-3.

次にCUは耐食性を向上させ、Pと複合で添加すること
でさらにその効果は著しくなるが0.10頭以上でその
効果が有利に発揮され、反面1.0%を超えると溶接性
の劣化が大きく、従って0.10襲〜1.0%にするこ
とが望ましい。
Next, CU improves corrosion resistance, and the effect becomes even more remarkable when added in combination with P, but the effect is advantageous at 0.10% or more, but on the other hand, when it exceeds 1.0%, weldability deteriorates. is large, therefore it is desirable to set it to 0.10% to 1.0%.

Niはγを安定化し靭性を向上させるために、帆1%以
上でその効果が有効に発揮される。しかし1.0%を超
えるとα変態が抑制されて第2相の増加をもたらし、降
伏比が筒くな9、かつ経済的でなく々る。従って0.1
%〜1.0%にすることが好ましい。
Ni stabilizes γ and improves toughness, so its effect is effectively exhibited at a sail content of 1% or more. However, if it exceeds 1.0%, the α transformation is suppressed, resulting in an increase in the second phase, the yield ratio becomes low, and it becomes uneconomical. Therefore 0.1
% to 1.0%.

OrもN1同様にγの安定化に寄与し、0.10%以上
でその効果が発揮されるが、1.5%を超えると溶接性
の劣化をまねきかつ経済的でない。
Like N1, Or also contributes to stabilizing γ, and its effect is exhibited at 0.10% or more, but if it exceeds 1.5%, it leads to deterioration of weldability and is not economical.

以上のべたように、との発明で鋼成分としての最大の特
徴は、Pを添加し低Hn範囲でしかも低降伏比の高張力
鋼板を得る点にある。
As described above, the greatest feature of the invention as a steel component is that P is added to obtain a high tensile strength steel plate with a low Hn range and a low yield ratio.

次に熱延条件について説明する。Next, hot rolling conditions will be explained.

スラブ加熱温度は特に限定はなく最終仕上げ温度がA 
r B点以下に彦らない範囲で、γ粒の粗大化防止から
1200℃以下の低温がよい。しかし、もし仕上げ温度
がAr3点以下の場合、展伸したαと第2相となりかつ
圧延歪の残存から加工性が劣化したり、異方性が大きく
なり、かつ降伏比も高くなることから、A r B点以
上の仕上げ温度にすることが必要である。
There is no particular limit to the slab heating temperature, and the final finishing temperature is A.
r A low temperature of 1200° C. or lower is preferable in order to prevent the coarsening of γ grains, as long as the temperature does not drop below the B point. However, if the finishing temperature is below Ar 3, the processability will deteriorate due to the expanded α and the remaining rolling strain, the anisotropy will increase, and the yield ratio will also increase. It is necessary to maintain the finishing temperature at or above the A r B point.

ただ以上の要件を満たしただけでは、圧延後の冷却方法
を考慮しなければこの発明の狙いは満足されない。すな
わち、この冷却方法はα変態を促進させ、オーステナイ
ト中へのC濃化を促進させるように仕上げ圧延後、急冷
を開始するまでに8秒間以上の空冷を行々う。この空冷
は8秒未満ではα変態が不十分となシ第2相がベイナイ
ト主体の組織となって70%以下の降伏比が得られない
Merely satisfying the above requirements will not satisfy the aim of the present invention unless the cooling method after rolling is taken into account. That is, in this cooling method, air cooling is performed for 8 seconds or more before starting rapid cooling after finish rolling so as to promote α transformation and C concentration in austenite. If this air cooling is carried out for less than 8 seconds, the α transformation will be insufficient and the second phase will become a bainite-based structure, making it impossible to obtain a yield ratio of 70% or less.

空冷時間は3秒間以上で長い程好捷しいが、過度になる
とパーライトが生成し材質が劣化するため20秒間以内
とした。ηおこの空冷の前半を毎秒30℃以上の冷却速
度で700℃迄の間を急冷し、その後に空冷全3〜20
秒間にわたらせると、早くα変態域へ突込み、よりα変
態を促進するためとくに好ましい。しかし700℃より
低い温度にまで急冷を続けるとαは細かく針状化し、ベ
イナイトの猷も増加して降伏比が高くなるので700℃
に至る間に急冷を加えるに止めるのが好ましい。
The air cooling time is 3 seconds or more, and the longer the better, but if it becomes excessive, pearlite will be generated and the material will deteriorate, so the air cooling time was set to 20 seconds or less. η The first half of the air cooling process is performed at a cooling rate of 30°C or more per second to 700°C, and then the air cooling is continued for 3 to 20°C.
It is particularly preferable to apply it for a few seconds because it quickly enters the α-transformation region and further promotes α-transformation. However, if the rapid cooling continues to a temperature lower than 700℃, α will become finely acicular, the amount of bainite will increase, and the yield ratio will increase.
It is preferable to only apply rapid cooling during the process.

上記のようによシ好ましくはα変態促進冷却を実施後、
直ちに30℃/sea以上で急冷し300℃以下の温度
で巻取りを行ない未変態γを低温変態させる。80℃/
 880未満では低温変態相は得られず、300℃をこ
えた巻取や温度でも低温変態相は得られない。
After preferably carrying out α-transformation promoting cooling as described above,
Immediately, the untransformed γ is quenched at a temperature of 30° C./sea or higher and wound up at a temperature of 300° C. or lower to transform the untransformed γ at a low temperature. 80℃/
If the temperature is less than 880, a low-temperature transformed phase cannot be obtained, and even if the winding temperature exceeds 300° C., a low-temperature transformed phase cannot be obtained.

と空冷時間t□の影qIをあられし、T□は700℃以
上、tlはa sec以上で降伏比70%以下の目的と
する特性値が得られることを示す。
and the influence qI of the air cooling time t□, and it is shown that the desired characteristic values of yield ratio of 70% or less can be obtained when T□ is 700°C or more and tl is asec or more.

第8図は、P添加量のレベルが異なる場合につき巻取り
温度が、降伏比に及ぼす影響を比較して示し、P量が発
明範囲外では、800℃以下の巻取り温度でも低降伏比
は得られず、またP添加量が発明範囲内でも巻取シ温度
が300℃を超える範囲では低降伏比が得られカいこと
を示している。
Figure 8 shows a comparison of the influence of the winding temperature on the yield ratio for different levels of P addition. When the P content is outside the invention range, the yield ratio is low even at a winding temperature of 800°C or less. This shows that even if the amount of P added is within the invention range, a low yield ratio can be obtained when the winding temperature exceeds 300°C.

以下この発明の実施例を示す。Examples of this invention will be shown below.

実施例 転炉で溶製後、表1に示すように成分調整を行なって1
5 ton鋳型に造塊後、分塊圧延によって220ra
m厚、925mm幅のスラブをツくッた。各スラブ’i
 1200℃に加熱後、粗圧延機5スタンド仕上圧延機
7スタンドからなる連続式熱間圧延機にて表1に示す熱
延条件で、2.6mm厚に仕上後コイルに巻取った。第
1図に従い冷却速度は急冷部QCでは30〜b ℃/SeC以下である。このコイルから圧延と直角方向
にJI85号引張試験片を採取し引張試験を行ない、表
1に示す結果を得た。
Example After melting in a converter, the components were adjusted as shown in Table 1.
After forming the ingot into a 5 ton mold, it is rolled to 220ra by blooming.
A slab with a thickness of m and a width of 925 mm was cut. Each slab'i
After heating to 1200° C., it was finished to a thickness of 2.6 mm using a continuous hot rolling mill consisting of a 5-stand rough rolling mill and a 7-stand finishing mill under the hot rolling conditions shown in Table 1, and then wound into a coil. According to FIG. 1, the cooling rate in the quenching section QC is below 30-b°C/SeC. A JI No. 85 tensile test piece was taken from this coil in a direction perpendicular to the rolling direction, and a tensile test was conducted, and the results shown in Table 1 were obtained.

ム1〜煮7はこの発明の各要件を満足し70%以下の低
降伏比を示す。しかし煮8〜&14はこの発明の要件の
すべてを満足していないために降伏比が70%以上と高
い。
Mums 1 to 7 satisfy each requirement of the present invention and exhibit a low yield ratio of 70% or less. However, since the steels No. 8 to No. 14 do not satisfy all of the requirements of this invention, their yield ratios are as high as 70% or more.

この発明で得られる鋼板は比較鋼板に比較して同−TS
レベルでも高い伸び値を示し延性に優れていることがわ
かる。
The steel plate obtained by this invention has the same -TS compared to the comparative steel plate.
It can be seen that it shows a high elongation value even at a high level and has excellent ductility.

比較鋼板の屋8〜AIOはO、P 、 Mnがそれぞれ
低く、A I 1〜A 14は圧延条件が満足されてい
ない。この中でA 11はArBが800℃であり76
0℃のFTでは冷間加工組織の残存によって高い降伏比
を示す。A12は過度な前半冷却のためベイナイト主体
の組織となって、降伏比が高く伸びも低い。扁18は空
冷時間をとらず前半から急冷したためベイナイト主体の
組織となって降伏比が高く伸びも低い。A14は巻取多
温度が高いため一部パーライトが認められ強度が低く、
降伏比も高い。
Comparative steel sheets Ya8 to AIO have low O, P, and Mn, and A11 to A14 do not satisfy the rolling conditions. Among these, A 11 is ArB at 800℃ and 76
FT at 0°C shows a high yield ratio due to the residual cold worked structure. A12 has a structure mainly composed of bainite due to excessive cooling in the first half, and has a high yield ratio and low elongation. Flat No. 18 was rapidly cooled from the first half without taking any air cooling time, so it has a structure mainly composed of bainite, which has a high yield ratio and low elongation. A14 has a high winding temperature, so some pearlite is observed and its strength is low.
The yield ratio is also high.

以上の実施例で明らか力ように、P添加によって0.6
0%以下の低Mn鋼でも圧延条件と冷却条件を選択する
ことによって低降伏比の複合組織鋼板が容易に得られる
As is clear from the above examples, by adding P, 0.6
Even with low Mn steel of 0% or less, a composite structure steel sheet with a low yield ratio can be easily obtained by selecting rolling conditions and cooling conditions.

【図面の簡単な説明】 第1図は圧延後の冷却ノ(ターン図、 第2図は空冷開始温度と空冷時間力ζ降伏比へ及ばず影
響を示すグラフ、 第3図はP添加量と巻取り温度〃;降伏比へ及)Yす影
響を示すグラフである。 特許出願人  川崎製鉄株式会社 (%)1イ、’1PJtd (%)1マ、η砺
[Brief explanation of the drawings] Figure 1 is a graph showing the effect of cooling after rolling (turn diagram), Figure 2 is a graph showing the effect of air cooling start temperature and air cooling time on the yield ratio, Figure 3 is a graph showing the influence of the amount of P added and It is a graph showing the influence of winding temperature on yield ratio. Patent applicant: Kawasaki Steel Corporation (%) 1i, '1PJtd (%) 1ma, ηto

Claims (1)

【特許請求の範囲】 LO:0.03〜0015重量%、sl: 1.5重置
S : 0.010重t1%以下の組成になる熱延鋼板
を、A r 3変態点以上での仕上げ圧延の直後、また
はこれに引続き700℃に至る間に毎秒30℃以上の冷
却速度で冷却をした後、3〜20秒間にわたる空冷を経
て急冷?し、300℃以下のlJA度で巻取シを行なっ
て、組緑中に一低温変卯相全有する降伏比70%以下の
複合組織鋼板を得ることを特徴とする低降伏比高張力熱
延鋼板の製造方法。 2 熱延鋼板として、そのS含有量の2〜5倍に相当す
るREMまたは、1〜8倍に当るGaを、含有する組成
になるものを用いる、特許請求の範囲】記載の方法。 & 熱延鋼板として、(Eu : 0.10〜1.0重
ia%をさらに含有する組成になるものを用いる特許請
求の範囲1または2記載の方法。 弧 熱延鋼板として、Ni : O,]、O〜1.0重
欧裂、Qr : 0.10〜1.5重はチのうち少なく
とも1′!Mをさらに含有する組成のものを用いる特許
請求の範囲1〜8の何れか一つに記載の方法。
[Claims] Finishing of a hot rolled steel sheet having a composition of LO: 0.03 to 0015% by weight, SL: 1.5, S: 0.010% by weight or less, at an A r 3 transformation point or higher Immediately after rolling, or subsequently cooling at a cooling rate of 30°C or more per second while reaching 700°C, and then rapidly cooling through air cooling for 3 to 20 seconds? A low yield ratio, high tensile strength hot rolled steel sheet characterized by obtaining a composite structure steel plate having a yield ratio of 70% or less and having all the low temperature deformation phases in the assemblage by winding at 1JA degrees of 300°C or less. Method of manufacturing steel plates. 2. The method according to claim 1, wherein a hot rolled steel sheet having a composition containing REM corresponding to 2 to 5 times the S content or Ga corresponding to 1 to 8 times the S content of the hot rolled steel sheet is used. & The method according to claim 1 or 2, in which a hot rolled steel sheet having a composition further containing (Eu: 0.10 to 1.0% by weight). Arc As a hot rolled steel sheet, Ni: O, ], O to 1.0 heavy weight, Qr: 0.10 to 1.5 weight is any one of claims 1 to 8 using a composition further containing at least 1'!M of Q. The method described in.
JP15026782A 1982-08-30 1982-08-30 Manufacture of high-tensile strength hot-rolled steel sheet having low yield ratio Pending JPS5941424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15026782A JPS5941424A (en) 1982-08-30 1982-08-30 Manufacture of high-tensile strength hot-rolled steel sheet having low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15026782A JPS5941424A (en) 1982-08-30 1982-08-30 Manufacture of high-tensile strength hot-rolled steel sheet having low yield ratio

Publications (1)

Publication Number Publication Date
JPS5941424A true JPS5941424A (en) 1984-03-07

Family

ID=15493200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15026782A Pending JPS5941424A (en) 1982-08-30 1982-08-30 Manufacture of high-tensile strength hot-rolled steel sheet having low yield ratio

Country Status (1)

Country Link
JP (1) JPS5941424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129725A (en) * 1983-01-17 1984-07-26 Kobe Steel Ltd Production of hot rolled high tension steel sheet having excellent cold workability
US4807537A (en) * 1985-02-14 1989-02-28 Kabushiki Kaisha Toshiba Transport apparatus having vehicle removing mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129725A (en) * 1983-01-17 1984-07-26 Kobe Steel Ltd Production of hot rolled high tension steel sheet having excellent cold workability
US4807537A (en) * 1985-02-14 1989-02-28 Kabushiki Kaisha Toshiba Transport apparatus having vehicle removing mechanism

Similar Documents

Publication Publication Date Title
EP0068598B1 (en) Dual phase-structured hot rolled high-tensile strength steel sheet and a method of producing the same
JPS5827329B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3541726B2 (en) High ductility hot rolled steel sheet and method for producing the same
JP2004300452A (en) Method for producing high strength cold-rolled steel sheet having excellent impact property and shape-fixability
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JPS5941424A (en) Manufacture of high-tensile strength hot-rolled steel sheet having low yield ratio
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPS586937A (en) Production of hot-rolled high-tensile steel plate for working
JP3546963B2 (en) Method of manufacturing high-strength hot-rolled steel sheet with excellent workability
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JPS59222528A (en) Production of hot rolled high tension steel plate
JPH0747772B2 (en) Method for manufacturing high strength hot rolled steel sheet with excellent workability
JPH08325633A (en) Production of high strength hot rolled steel sheet
JPH04276024A (en) Manufacture of high strength hot rolled steel sheet excellent in stretch-flanging property
JP3338499B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent workability
JPH10204543A (en) High tensile strength hot rolled steel plate excellent in workability, and its manufacture
JP4002315B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JPS5848616B2 (en) Manufacturing method for low yield ratio hot-rolled high-strength steel plate with excellent ductility
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JPH0382708A (en) Production of high strength hot rolled steel plate for high degree working excellent in fatigue characteristic
JPH04246127A (en) Production of hot rolled high strength steel plate for working excellent in durability and fatigue characteristic
JPH06145792A (en) Production of high-strength hot-rolled steel plate excellent in fatigue characteristic and workability and having &gt;=590n/mm2 strength