JPS5941310A - Molded article of vinylidene fluoride resin - Google Patents
Molded article of vinylidene fluoride resinInfo
- Publication number
- JPS5941310A JPS5941310A JP15066682A JP15066682A JPS5941310A JP S5941310 A JPS5941310 A JP S5941310A JP 15066682 A JP15066682 A JP 15066682A JP 15066682 A JP15066682 A JP 15066682A JP S5941310 A JPS5941310 A JP S5941310A
- Authority
- JP
- Japan
- Prior art keywords
- vinylidene fluoride
- modulus
- fluoride resin
- molded article
- young
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Artificial Filaments (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はヤング率が大きく且つ表面性、透明性に優れた
弗化ビニリデン樹脂成形物に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vinylidene fluoride resin molded product having a large Young's modulus and excellent surface properties and transparency.
従来、弗化ビニリデン樹脂の系において知られているヤ
ング率の太きいものは250〜300 k17/mm2
であった。かかるヤング率では多くの用途に対し、不十
分である。例えば釣糸においては魚信が悪く、漁獲率が
低いという事態を招き1通常の繊組に於てはこしが無い
。また電子楽器の弦とかテニスラケットのガツトにおい
ては反撥係数が小さく、それらの性能が十分発押できな
いのである。更に弗化ビニリデン樹脂は配候性に優れて
いる故、ヤング率を高めれば屋外の諸用途1例えば建築
材料、産gh用資材、運送材料等に広く需要か期待され
、また弗化ビニリデン樹脂は水中での強度の低下が殆ん
どなくヤング率を高めれば海洋開発への期待も太きいも
のである。The conventional vinylidene fluoride resin system with a large Young's modulus is 250 to 300 k17/mm2.
Met. Such a Young's modulus is insufficient for many applications. For example, when it comes to fishing line, the fish confidence is poor, resulting in a low catch rate, and there is no hope for regular thread fishing. Furthermore, the repulsion coefficient of the strings of electronic musical instruments and the strings of tennis rackets is small, and their performance cannot be fully activated. Furthermore, vinylidene fluoride resin has excellent weatherability, so if the Young's modulus is increased, it is expected to be in wide demand for various outdoor applications such as construction materials, industrial GH materials, transportation materials, etc. If Young's modulus is increased with almost no decrease in strength underwater, there are great expectations for marine development.
また弗化ビニリデン樹脂は波長2800〜3300A域
の所謂ドルノ光線を透過する性質を利用して日光浴室の
窓ガラスとして用いれば通常のガラスでは遮蔽して通さ
ない紫外線が得られ健康に良いのであるが、従来の弗化
ビニリデン樹脂フィルムではヤング率が低いため、僅か
な力を加えただけでも変形たるみを生じ、扱いを丁寧に
する必要があった。In addition, vinylidene fluoride resin has the property of transmitting so-called Dorno rays in the wavelength range of 2800 to 3300A, so if it is used as window glass for a solar bathroom, it will be able to obtain ultraviolet rays that are blocked and not transmitted by ordinary glass, which is good for health. Since conventional vinylidene fluoride resin films have a low Young's modulus, they deform and sag even when a slight force is applied, so they must be handled carefully.
かかる要請から弗化ビニリデン樹脂成形物のヤング率を
高める試みは種々なされている。例えばポリエチレンや
ポリプロピレンの如き分子間凝集力の小さい高分子にお
いて、高いヤング率とすることに成功している超延伸法
を分子間凝集力の大きい弗化ビニリデン樹脂へ適用しよ
うとする試みもその一つである。超延伸法は周知の通り
、非常にゆっくりした速度で冷延伸し延伸倍率を30〜
35倍とする方法であるが、かかる方法によっては弗化
ビニリデン樹脂は勿論のことながら分子間凝集力の大き
い樹脂はいまだ成形されていない。In response to such demands, various attempts have been made to increase the Young's modulus of vinylidene fluoride resin molded products. For example, an attempt has been made to apply the ultra-stretching method, which has been successful in achieving a high Young's modulus in polymers with small intermolecular cohesive forces such as polyethylene and polypropylene, to vinylidene fluoride resins with large intermolecular cohesive forces. It is one. As is well known, the super-stretching method involves cold-stretching at a very slow speed with a stretching ratio of 30 to
However, vinylidene fluoride resin, as well as resins with large intermolecular cohesive forces, have not yet been molded by this method.
しかも分子間凝集力の小さい樹脂で得られるヤング率の
大きい成形物はフィブリル化し易く表面性が悪(、透明
性の点でも悪いと共に引張強度が使用に伴し・低下する
ものである。(例えば繊維学会言、;5. Vol 3
8.席6.1982.第279頁を参照)本発明はかか
る現状に鑑み、ヤング率を高めると共に1表面性と透明
性に優れる弗化ビニリデン樹脂成形物を4ノ、′供する
ものであり、その要旨とするところは分子鎖方向の結晶
長が200^以上を有し、[14つ復Jilli率が2
5XIQ 以−ヒの値を有する弗化ビニリデン樹脂
成形物にある。Furthermore, molded products with a high Young's modulus obtained from resins with low intermolecular cohesive force tend to fibrillate, resulting in poor surface properties (and poor transparency as well as tensile strength that decreases with use). Fiber Science Society Proceedings; 5. Vol 3
8. Seat 6.1982. (See page 279) In view of the current situation, the present invention provides a vinylidene fluoride resin molded product that increases Young's modulus and has excellent surface properties and transparency. The crystal length in the chain direction is 200^ or more, and the Jilli ratio is 2
It is a vinylidene fluoride resin molded product having a value of 5XIQ or higher.
本発明の目的をより完全に1よすためには分子鎖方向の
結晶ト■は250^以上とし、複屈折率も30X10
以上、t+4fに好ましくは33X10−”以上と
するものが好ましい。In order to achieve the object of the present invention more completely, the crystalline torque in the molecular chain direction should be 250^ or more, and the birefringence should be 30X10.
As mentioned above, it is preferable that t+4f be 33X10-'' or more.
ここで分子鎖方向の結晶長は次の方法で求められたもの
である。即ち、XM回折で分子鎖方向に直角な回折面1
通常その中でも最も回折強度の大きい回折面1例えばポ
リ弗化ビニリデンホモホIJマーでいえばα型結晶では
(002)面、β型結晶では(001)面に関してX純
ビームを延伸軸に平行に入射したときの回折強度をチャ
ート上に読み取り、そのピークの半価幅を求める。一方
、シリコーン単結晶粉末を用いて測定条件下での椴械的
拡がりを求める。測定試料の半価幅値からぜ)械的拡が
りの半価幅値を引いた値を試料の真の半価幅値(βW)
とする。この真の半価幅値を用い、シェラ−の式
%式%
かう結晶長(Llを求める。ここでθは測定した回折面
のゾラッグの反射角、に=1.0なる定数、さらにλは
X#J! GuKαの波長(1,542^)である。Here, the crystal length in the molecular chain direction was determined by the following method. That is, in XM diffraction, the diffraction plane 1 perpendicular to the molecular chain direction
Normally, the diffraction plane 1 has the highest diffraction intensity among them. For example, in polyvinylidene fluoride homophomer IJ polymer, the The diffraction intensity at the time of incidence is read on the chart, and the half width of the peak is determined. On the other hand, the mechanical spread under measurement conditions is determined using silicone single crystal powder. The value obtained by subtracting the half-width value of mechanical expansion from the half-width value of the measurement sample is the true half-width value (βW) of the sample.
shall be. Using this true half-width value, calculate the crystal length (Ll) using Scherrer's formula. Here, θ is the Zorag reflection angle of the measured diffraction surface, a constant equal to 1.0, and λ is X#J! This is the wavelength (1,542^) of GuKα.
また複屈折率(Δn)の測定は次式により求められるO
ここで干渉縞の数nはナトリウムランプからのD絆(2
=589mtりを光源とし、偏光子と検光子を直交させ
た偏光顕微鏡下で争)めに切った糸の切り口から求めら
れる。またεは糸の直径dに対応する部分からベレツク
のコンにンセーターにより求められる。(例えば「禮維
便覧 原料編」第969頁、丸首、1968年11月発
11を参照)このような成形物は例えば弗化ビニリデン
樹脂の溶融状態から冷却しながら非等温下で延伸するこ
とにより得られる。この際、延伸は溶融押出速度に対す
る巻取り速度比、すなわちドラフト率を次の様な範囲内
でなすものである。即ち成形されるべき形状が糸であ)
るときにけ300〜50000゜好ましくは500〜2
0000 、より一層好ましくは1000〜15000
とするものであり、成形されるべき形状がフィルム
であるときには、50以上、好ましくは100以上とす
るものである。In addition, the measurement of birefringence (Δn) is obtained by the following formula. Here, the number n of interference fringes is D bond (2
= 589 mt as a light source, and is determined from the cut end of the thread under a polarizing microscope with a polarizer and an analyzer orthogonal to each other. Further, ε is obtained from the portion corresponding to the diameter d of the thread using Berek's condenser. (For example, see "Reiwei Handbook, Raw Materials Edition," p. 969, round neck, November 1968 issue 11.) Such molded products can be produced, for example, by stretching vinylidene fluoride resin from its molten state under non-isothermal conditions while cooling it. can get. At this time, the stretching is performed by controlling the winding speed ratio to the melt extrusion speed, that is, the draft rate, within the following range. In other words, the shape to be formed is a thread)
300 to 50,000°, preferably 500 to 2
0000, even more preferably 1000-15000
When the shape to be molded is a film, the number is 50 or more, preferably 100 or more.
また冷却温度とI2ては樹脂の最大結晶化速度を与える
温度よりも低く、より一層好ましくは樹脂の最大結晶化
速度を与える温度より50C以上低い温度でなされる。Further, the cooling temperature I2 is lower than the temperature that gives the maximum crystallization rate of the resin, and more preferably, it is performed at a temperature that is 50C or more lower than the temperature that gives the maximum crystallization rate of the resin.
本発明成形物はヤング率が太きく1例えば成形物が糸の
ときにはそのヤング率は450 ¥−,’?/mm
以」二とするものが得られろ。成形条件によっては更に
太きいものが11)もれ1例えば上記方法の場合にはド
ラフト率を大きくすれば600 k’j/mm 以上
のものが得られる。かかる方法で得られる成形物はα型
結晶構造を呈するものである・この様な高ドラフト率で
得られた成形物は11セリプロピレンやポリエチレンテ
レフタレート。The molded product of the present invention has a large Young's modulus.1For example, when the molded product is a thread, its Young's modulus is 450 ¥-,'? /mm
Get what you want. 11) Leakage 1 For example, in the case of the above method, if the draft rate is increased, a thickness of 600 k'j/mm or more can be obtained depending on the molding conditions. The molded product obtained by this method exhibits an α-type crystal structure.The molded product obtained with such a high draft rate is 11 ceripropylene or polyethylene terephthalate.
ナイロン−6等、他のポリマーとは異なり、弗化ビニリ
デン樹脂の場合上F成形物を更に10〜50%程度冷延
伸することによって通常はβ型結晶構造に転移するとと
もに意外にもヤング率が一層向上し、800 k?/m
m 以上のものが容易に得られろ。トゝラフト率を太
き(すれば1000kg/間 以上、更には1200
kl?/mW 以上のもσ)も得られるのである。か
かる成形物を冷延伸したものも分子鎖方向の結晶長は2
0OA以上を有し口つ複屈折率が25X10 以上
を有する。Unlike other polymers such as nylon-6, in the case of vinylidene fluoride resin, when the upper F molded product is further cold-stretched by about 10 to 50%, it usually transforms into a β-type crystal structure and surprisingly increases the Young's modulus. Even better, 800k? /m
m or more can be obtained easily. Increase the raft rate (1000 kg/hour or more, or even 1200 kg/hour)
kl? /mW or more can also be obtained. The crystal length in the molecular chain direction of a cold-stretched product also has a crystal length of 2.
It has an OA of 0OA or more and a birefringence of 25X10 or more.
また、成形物がフィルムであるときも、そのヤフグ率は
ト8ラフト方向に300 kg/mrn 2以上のもの
が得られ、同様にドラフト率を大きくすることにより、
350ky/醋 以上、更には400睦/1!TR2以
上のものが4’eEもれろ。またこの方法で得られたフ
ィルムはα型精晶構造を呈するものであり。In addition, even when the molded product is a film, a draft ratio of 300 kg/mrn2 or more can be obtained in the raft direction, and by similarly increasing the draft ratio,
More than 350ky/醋 and even more than 400ky/1! Anything with TR2 or higher is 4'eE. Furthermore, the film obtained by this method exhibits an α-type crystalline structure.
ドラフト方向に更に延伸可能であり1通常はβ型結晶構
造に転移するとともに500 kg/rnm 以上の
ものが容易に91Fもれ、 600 kg / ram
以上のものすら得られるのである。かかる延伸フィ
ルムも糸の場合と同様に分子釦方向の結晶長は200A
以上を有し且つ複屈折率が25X10 以上を有す
る。尚ここでヤング率とはテンシロン(引張試験機)に
より引張速度10 mrn / minで試技100y
y+mのサンプルを23Cで引張った時の初期モジュラ
スである。It can be further stretched in the draft direction, and normally transforms into a β-type crystal structure and easily leaks 91F at 500 kg/rnm or more, 600 kg/ram.
You can get even more than that. The crystal length of this stretched film in the molecular button direction is 200A, as in the case of yarn.
and has a birefringence of 25×10 or more. In addition, Young's modulus here refers to a test run of 100y at a tensile speed of 10 mrn/min using Tensilon (tensile testing machine).
This is the initial modulus when the sample of y+m is pulled at 23C.
またかかる成形物は表面性が従来のヤング率が大きい弗
化ビニリデン樹脂成形物のそれと較べ。Moreover, the surface properties of such molded products are compared with those of conventional vinylidene fluoride resin molded products having a large Young's modulus.
優れたものである。It is excellent.
図工は比較91. lで詳述する従来の糸、図2は実施
流側6で詳述する本発明の糸の電顕写真である0図1に
示す杼に従来の糸は球晶構造物の延伸によって生じたと
思われる延伸方向に平行なすしが無数にあり1表面性が
悪い。これに対し図2に示す枳に本発明の糸表面には図
1に見られるような無数のすじは存在せず、表面性が良
好であることが認められる。Compare 91 for arts and crafts. FIG. 2 is an electron micrograph of the yarn of the present invention detailed in Section 1, and FIG. 2 is an electron micrograph of the yarn of the present invention detailed in Section 6. There are countless slits parallel to the expected stretching direction, and the surface properties are poor. On the other hand, in the yarn surface of the yarn of the present invention shown in FIG. 2, there are no innumerable streaks as seen in FIG. 1, and it is recognized that the surface property is good.
また本発明で云5弗化ビニリデン樹脂とはポリ弗化ビニ
リデンホモポリマーのみを指すのではなく、弗化ビニリ
デンを50モル%以上と、これと共重合可能なコモノマ
ー1種以上とのコポリマー、或いはこれら少なくともい
ずれかを主成分とする組成物をも含むものである。Furthermore, in the present invention, the term "vinylidene fluoride resin" refers not only to polyvinylidene fluoride homopolymer, but also to a copolymer of 50 mol% or more of vinylidene fluoride and one or more comonomers copolymerizable with it, or It also includes compositions containing at least one of these as a main component.
実施例1〜4.および比較例1〜6
実施例1〜4および比較例3〜6は東洋精機社製メルト
インデキサ−(概略を図3に示す)を用い、径1 mm
φ、厚さ3mmのノズル3から押出量0.63 ’j
/minで、ηinhが1.1 di/gであるポリ弗
化ビニリデンホモポリマーのベレットを押出した。押出
し後、ノズル6直下約80c1rLにセットしたガイド
90−ル4を通し、25C雰囲気温度下で自然冷却させ
、直径10cTLの巻取りロール5で巻取った。尚巻き
取りロールの表面温度は25Cである。このような装置
で溶融温度、ドリフト率をIf 1表に示す4・1ζに
種々に変えたときに得られた糸の物性、即ち東洋ボール
ドウィン社製引張り試験機により23C,紙長100m
m、引張り速度100zH/minで引張った時の破断
強度及び紙長100mm、引張速度10 mm / m
inで引張った時の応力−歪曲線から求めた初期ヤング
率を第1表に示す。更に比較例1として実施例と同一の
樹脂から成る原糸を160Cで6倍に延伸し、162C
で緊張熱処理した糸、及び比較例として100Cで4.
5倍に延伸した糸の値も示す。Examples 1-4. and Comparative Examples 1 to 6 In Examples 1 to 4 and Comparative Examples 3 to 6, a melt indexer manufactured by Toyo Seiki Co., Ltd. (the outline is shown in FIG. 3) was used, and the diameter was 1 mm.
φ, extrusion amount from nozzle 3 with a thickness of 3 mm: 0.63 'j
/min, a pellet of polyvinylidene fluoride homopolymer with ηinh of 1.1 di/g was extruded. After extrusion, it was passed through a guide 90-rule 4 set at about 80 c1rL directly below the nozzle 6, allowed to cool naturally under an ambient temperature of 25C, and wound up with a winding roll 5 having a diameter of 10 cTL. The surface temperature of the take-up roll was 25C. The physical properties of the yarn obtained when the melting temperature and drift rate were variously changed to 4.1ζ shown in Table If 1 using such an apparatus, that is, 23C and paper length of 100 m using a tensile tester manufactured by Toyo Baldwin Co., Ltd.
m, breaking strength when pulled at a tensile speed of 100 zH/min, paper length 100 mm, and tensile speed 10 mm/m
Table 1 shows the initial Young's modulus determined from the stress-strain curve when tensile at in. Furthermore, as Comparative Example 1, a raw yarn made of the same resin as in the example was stretched six times at 160C, and 162C
Yarn tension heat treated at 100C as a comparative example and 4.
The values for the yarn drawn five times are also shown.
実施例5
実施例4で得られた糸を150Cのシリコーン浴中で2
0%延伸した糸はヤング率が1460 kg/nnrn
であり、引張破断強度が112kg/mm であ
った。この糸はβ型結晶から成りその結晶長は420A
であった。また数屈折率は42X10−3であった。Example 5 The yarn obtained in Example 4 was heated in a silicone bath at 150 C.
Young's modulus of 0% stretched yarn is 1460 kg/nnrn
The tensile strength at break was 112 kg/mm. This thread is made of β-type crystal and its crystal length is 420A.
Met. Further, the number refractive index was 42×10 −3 .
実施例6
実施例4と同様の装置を用いた・但しノズルを変エテ径
3間φ、厚さ3闘のノズルとし、さらにドラフト率を1
0,800とし、他の条件は実施例4と同じとして紡糸
した。得られた糸のヤング率は860 kg /myn
で、引張破断強度は92 kW/+++m 2であ
った、この糸の結晶長は330Aであり、複屈折率は3
9X10 であった。この糸の表面−F写真を図2
に示す。さらにこの糸を実施例5と同様の条件で21%
延伸した。糸のヤング率は1400kg/闘 であり、
破断強度は120kg/mη12であった。またこの糸
の表面電顕写真を図4に示す。こσ)ときの結晶長は4
50Aであり複屈折率は41X10 であった。Example 6 A device similar to Example 4 was used, except that the nozzle had a variable diameter of 3 mm and a thickness of 3 mm, and the draft rate was changed to 1.
0,800, and other conditions were the same as in Example 4. The Young's modulus of the obtained yarn was 860 kg/myn
The tensile strength at break was 92 kW/+++ m2, the crystal length of this thread was 330 A, and the birefringence was 3.
It was 9×10. Figure 2 shows the surface-F photograph of this thread.
Shown below. Furthermore, this yarn was 21%
Stretched. The Young's modulus of the yarn is 1400 kg/kg,
The breaking strength was 120 kg/mη12. Furthermore, a surface electron micrograph of this thread is shown in FIG. The crystal length at this time is 4
50A, and the birefringence was 41×10.
実施例7及び比較例7〜8
ηinhが1.0dtl&であるポリ弗化ビニリデンホ
モポリマーのベレットヲ幅25.4mm、厚さ0.5
mmの長方形状のダイスを付けた小型押出機で樹脂湯度
220 C,押出量45g/分で押出した◎押出された
フィルムは直接二個のゴムローラーからなるピンチロー
ラ−で巻取った。この際ピンチローラ−をできるだけダ
イスに近づけ、ダイス先端から樹月旨がピンチローラ−
でピンチされるところまでの距離は約3Crnであった
。さらにこのダイス先端とピンチローラ−の間にセット
した市販のヘアードライヤーで冷風を吹きつけた。Example 7 and Comparative Examples 7 to 8 A pellet of polyvinylidene fluoride homopolymer with ηinh of 1.0 dtl has a width of 25.4 mm and a thickness of 0.5 mm.
The film was extruded using a small extruder equipped with a mm rectangular die at a resin temperature of 220 C and an extrusion rate of 45 g/min. The extruded film was directly wound up with a pinch roller consisting of two rubber rollers. At this time, bring the pinch roller as close as possible to the die, and make sure that the pinch roller is straight from the tip of the die.
The distance to the point where it was pinched was about 3 Crn. Furthermore, cold air was blown using a commercially available hair dryer set between the tip of the die and the pinch roller.
また比較例7としてダイス先端とピンチローラ−との距
離を50cWLとし、その他は実施例7と同様に巻取っ
てフィルムを得た。このようにして得られたフィルムの
物性値を第2表に示す。また、同一樹脂からなる厚さ1
00μの原反を100Cで一軸方向に4倍延伸したフィ
ルムの物性値を比較例8として同様に示す。ただしヤン
グ率及び引張り破断強度はドラフトあるいは延伸方向に
ついての測定値である・Further, as Comparative Example 7, a film was obtained by winding up in the same manner as in Example 7 except that the distance between the die tip and the pinch roller was 50 cWL. Table 2 shows the physical properties of the film thus obtained. In addition, the thickness 1 made of the same resin
Comparative Example 8 also shows the physical property values of a film obtained by stretching a 00μ original film 4 times in the uniaxial direction at 100C. However, Young's modulus and tensile strength at break are measured values in the draft or stretching direction.
図1、図21図4はそれぞれ比較例1の糸、実施例6の
未延伸糸、延伸糸のいずれも倍率を1000倍とする表
面電顕写真であり、図3は実施例1〜4に於て実施され
た装置の縦断io1図である。ここで
1:試料、2:ヒーター、3:ノズル。
4 +4’ +4″ニガイトゝロール、5:巻き取りロ
ール、6:プジンジヤー。
(ほか3名)
第 1 図
第2図
図面のαI占(内容に変更なしΣ
第 4 図
手続補正書
昭和574F 12月7.3 日
昭和57年特r「願第 150666月2、発明の名称
弗化ビニリデン樹脂成形物
3、補正をする者
事件との関係 特許出願人
名称 呉羽化学−1業株式会社
霞が関ビル内郵便局 私書箱第49弓
7 補正の対象
適正な図面(第6図)
3、補正の内容
別紙の通り
手続補正書
昭和58年i月試日
昭和57年特i’「願第160666 刊2、発明の
名称
弗化ビニリデン佃j BFf 、1成形物3 補正をす
る者
事(q゛との関係 特許出願人
名称 呉羽化孕丁条株式会付
分士卸ツノ同の士コ結晶長が2ooX以1−をイ〕し、
3
目つ伏ノ11(折鼾Sが 5XHI 以上の値を+
Jする弗化ビニリデン拉jjl?fハ!、彫物。
2)r−+J明のD I’ +lll1な+j7+’、
’j’J Jの桟を15記のUtl (補止する。
0ψ拓1111−4第3自12行目、161丁N、19
イーT目、梅−4貞トーカ・ら6イ丁目、第6頁トから
60目、;jlL 7貞10イy目、第9貞丁から6イ
丁L1、第10貝フイ丁目、−トから2イ]目、第11
真の第1表土級唄目、第16臼の第2表土以填目の「結
晶1(」σ翔りに1−平均」を加入づ−る。
O明廟りI雷果8貝下かり5何目、「)νさJ rl−
長さ」とイIIノ止するC
以上Figures 1, 21 and 4 are surface electron micrographs of the yarn of Comparative Example 1, the undrawn yarn of Example 6, and the drawn yarn, respectively, at a magnification of 1000 times, and Figure 3 is a photograph of the yarn of Examples 1 to 4. FIG. 1 is a vertical cross-sectional view of the device implemented in Here, 1: sample, 2: heater, 3: nozzle. 4 +4'+4''Nigaite roll, 5: Take-up roll, 6: Pujinja. (3 others) Figure 1 αI reading of Figure 2 drawing (no change in content Σ Figure 4 Procedural amendments December 1974F) 7.3 Japanese Patent Application No. 150666 June 2, Name of Invention Vinylidene Fluoride Resin Molding 3, Relationship with the Amended Person Case Name of Patent Applicant Kureha Chemical - 1 Industry Co., Ltd. Kasumigaseki Building Mail Bureau P.O. Box No. 49 Bow 7 Appropriate drawing to be amended (Fig. 6) 3. Details of the amendment Procedural amendment as shown in the attached document Trial date of 1988 Special i' Application No. 160666 Publication 2. Name vinylidene fluoride BFf, 1 molded product 3 Person making the amendment (Relationship with q゛ Name of patent applicant Kureha Kako Dingjo Co., Ltd., branch wholesaler with the same crystal length as 2ooX or more 1- and
3 Eyes closed 11 (Snoring S increases the value of 5XHI or more
What about vinylidene fluoride? fha! , carvings. 2) r-+J Ming's D I'+llll1+j7+',
'j'JJ's crosspiece is 15th Utl (supplement.
E T, Ume-4 Sada Toka, Ra 6 I-chome, 6th page T to 60th; to 2 A], 11th
Added "Crystal 1 ("1-average to σ flying") of the 1st topsoil class of the 1st topsoil class of the 16th mortar. 5th number, ``)νsaJ rl-
"Length" and AIII stop C
Claims (1)
率が25X10 以上の値を有する弗化ビニリゲン
樹脂成形物。A molded vinylene fluoride resin having a crystal length in the molecular chain direction of 200A or more and a birefringence of 25X10 or more.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15066682A JPS5941310A (en) | 1982-09-01 | 1982-09-01 | Molded article of vinylidene fluoride resin |
US06/745,510 US4670527A (en) | 1981-03-02 | 1985-06-17 | Shaped article of vinylidene fluoride resin and process for preparing thereof |
US06/777,868 US4667001A (en) | 1981-03-02 | 1985-09-19 | Shaped article of vinylidene fluoride resin and process for preparing thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15066682A JPS5941310A (en) | 1982-09-01 | 1982-09-01 | Molded article of vinylidene fluoride resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5941310A true JPS5941310A (en) | 1984-03-07 |
JPH0313967B2 JPH0313967B2 (en) | 1991-02-25 |
Family
ID=15501821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15066682A Granted JPS5941310A (en) | 1981-03-02 | 1982-09-01 | Molded article of vinylidene fluoride resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5941310A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60215810A (en) * | 1984-04-11 | 1985-10-29 | Unitika Ltd | Polyvinylidene fluoride monofilament and its production |
JPS61162318A (en) * | 1985-01-11 | 1986-07-23 | Mitsubishi Petrochem Co Ltd | Manufacture of uniaxially stretched material of vinylidene fluoride series resin |
JPS63112717A (en) * | 1987-08-17 | 1988-05-17 | Kureha Chem Ind Co Ltd | Monofilament of vinylidene fluoride resin |
WO2016147713A1 (en) * | 2015-03-19 | 2016-09-22 | 株式会社クレハ | Vinylidene fluoride resin fibers and method for producing same |
WO2018051787A1 (en) | 2016-09-14 | 2018-03-22 | 株式会社クレハ | Vinylidene fluoride resin fibers and sheet-like structure |
US10837126B2 (en) | 2016-09-14 | 2020-11-17 | Kureha Corporation | Vinylidene fluoride resin fibers and sheet-like structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892533A (en) * | 1981-11-16 | 1983-06-01 | ソルヴエイ・エ・コムパニ− | Method and device for extruding vinylidene fluoride polymer film |
-
1982
- 1982-09-01 JP JP15066682A patent/JPS5941310A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892533A (en) * | 1981-11-16 | 1983-06-01 | ソルヴエイ・エ・コムパニ− | Method and device for extruding vinylidene fluoride polymer film |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60215810A (en) * | 1984-04-11 | 1985-10-29 | Unitika Ltd | Polyvinylidene fluoride monofilament and its production |
JPH0461086B2 (en) * | 1984-04-11 | 1992-09-29 | Unitika Ltd | |
JPS61162318A (en) * | 1985-01-11 | 1986-07-23 | Mitsubishi Petrochem Co Ltd | Manufacture of uniaxially stretched material of vinylidene fluoride series resin |
JPS63112717A (en) * | 1987-08-17 | 1988-05-17 | Kureha Chem Ind Co Ltd | Monofilament of vinylidene fluoride resin |
JPH0350001B2 (en) * | 1987-08-17 | 1991-07-31 | Kureha Chemical Ind Co Ltd | |
WO2016147713A1 (en) * | 2015-03-19 | 2016-09-22 | 株式会社クレハ | Vinylidene fluoride resin fibers and method for producing same |
WO2018051787A1 (en) | 2016-09-14 | 2018-03-22 | 株式会社クレハ | Vinylidene fluoride resin fibers and sheet-like structure |
US10837126B2 (en) | 2016-09-14 | 2020-11-17 | Kureha Corporation | Vinylidene fluoride resin fibers and sheet-like structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0313967B2 (en) | 1991-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1047965B1 (en) | An optical film and process for manufacture thereof | |
US4670527A (en) | Shaped article of vinylidene fluoride resin and process for preparing thereof | |
US4643529A (en) | Polarizing film | |
JP2546222B2 (en) | Syndiotactic polystyrene film | |
Rhee et al. | Crystal structure, morphology, orientation, and mechanical properties of biaxially oriented polyamide 6 films | |
US4156709A (en) | Process for preparing a polypropylene film for shrink packaging | |
JP2024144775A (en) | Polarizing film, polarizing plate, and method for producing the polarizing film | |
JPS5941310A (en) | Molded article of vinylidene fluoride resin | |
JPH0724911A (en) | Syndyotactic polystyrene film | |
Pezzutti et al. | Uniaxial orientation of linear low density polyethylene | |
KR20230029609A (en) | Polyvinyl alcohol film and manufacturing method of optical film using the same | |
EP0167628A1 (en) | Polarizing film and method of manufacturing the same | |
JPWO2020175242A1 (en) | A polarizing film, a polarizing plate, and a method for manufacturing the polarizing film. | |
TW202101044A (en) | Polarizing film, polarizing plate, and method for producing said polarizing film | |
EP1078285A1 (en) | Optical film having continuous and disperse phases | |
KR100238790B1 (en) | Polypropylene film and manufacturing method for the same | |
WO2021256329A1 (en) | Polarizing film, polarizing plate, and method for producing said polarizing film | |
de Champchesnel et al. | The influence of initial morphology of one-way drawn poly (ethylene terephthalate) films on their transverse drawing | |
JPS60218603A (en) | Production of polarizing film | |
JPH04333002A (en) | Polarization film and manufacture thereof | |
WO2020184083A1 (en) | Polarizing film, polarizing plate, and production method for said polarizing film | |
JPS59114028A (en) | Manufacture of thermoplastic resin film | |
JP3560163B2 (en) | Biaxially oriented polyester film and method for producing the same | |
KR20090032289A (en) | Heat shrinkable and biodegradable film and preparation thereof | |
JPS62121032A (en) | Biaxially oriented fluorine stretched film and its manufacture |