JPS5940889B2 - Manufacturing method for steel materials with excellent resistance to hydrogen-induced cracking - Google Patents

Manufacturing method for steel materials with excellent resistance to hydrogen-induced cracking

Info

Publication number
JPS5940889B2
JPS5940889B2 JP9359175A JP9359175A JPS5940889B2 JP S5940889 B2 JPS5940889 B2 JP S5940889B2 JP 9359175 A JP9359175 A JP 9359175A JP 9359175 A JP9359175 A JP 9359175A JP S5940889 B2 JPS5940889 B2 JP S5940889B2
Authority
JP
Japan
Prior art keywords
less
hydrogen
steel
induced cracking
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9359175A
Other languages
Japanese (ja)
Other versions
JPS5216421A (en
Inventor
節男 岡本
昭夫 池田
喜久長 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9359175A priority Critical patent/JPS5940889B2/en
Publication of JPS5216421A publication Critical patent/JPS5216421A/en
Publication of JPS5940889B2 publication Critical patent/JPS5940889B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 この発明は、強度がAPI規格X−42〜X−80相当
程度の耐水素誘起割れ性にすぐれた鋼材の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a steel material having a strength equivalent to API standards X-42 to X-80 and excellent resistance to hydrogen-induced cracking.

近年パイプラインの敷設が盛んとなったが、このパイプ
ラインにおいて腐食による材料の脆化が問題となってい
る。
Pipeline construction has become popular in recent years, but embrittlement of materials due to corrosion has become a problem in these pipelines.

特に、石油や天然ガスのパイプライン輸送においては、
原油や天然ガスに硫化水素を含む場合が多く、これらの
硫化水素が水と共存して鋼表面の腐食に関与する確率が
高く、その際腐食により発生する水素が鋼中に侵入して
起る破壊が問題となっている。
In particular, in the pipeline transportation of oil and natural gas,
Crude oil and natural gas often contain hydrogen sulfide, and there is a high probability that these hydrogen sulfides coexist with water and contribute to corrosion of the steel surface, and in this case, the hydrogen generated by corrosion penetrates into the steel. Destruction is a problem.

この水素の侵入による破壊は、一般の硫化物による応力
腐食割れとは異なる現象で、割れは応力無負荷の状態で
鋼の内部に生じ、鋼板の場合、板断面内で直線状あるい
は階段状に連続的につながった形態をもつ。
This fracture due to hydrogen penetration is a different phenomenon from stress corrosion cracking caused by general sulfides. Cracks occur inside the steel under no stress load, and in the case of steel plates, cracks occur in a straight or step-like manner within the cross section of the plate. It has a continuously connected form.

この割れは、板表裏面に通じた貫通割れとなった場合、
油漏れを生じパイプラインの破壊につながる性質のもの
であり、この発明においては、かかる割れを水素誘起割
れと称す。
If this crack becomes a through crack that extends to the front and back surfaces of the board,
This type of cracking causes oil leakage and leads to destruction of the pipeline, and in this invention, such cracking is referred to as hydrogen-induced cracking.

この水素誘起割れQζ連続鋳造材や厚さ400關以上の
大形鋼塊など内部偏析を有する素材より製造された鋼板
をラインパイプに使用した場合に発生し、鋼板中央部特
に板表面よすt/4 (ただしtは板厚)以上の内部に
あるマンガン、りんなどのミクロ偏析に基づきマルテン
サイトなどの低温変態組織が発生してこれに沿って水素
誘起割れを生じ、これが原因でパイプラインの破壊事故
が起りやすい。
Hydrogen-induced cracking occurs when a steel plate made from a material with internal segregation, such as Qζ continuous casting material or a large steel ingot with a thickness of 400 mm or more, is used for a line pipe. /4 (where t is the plate thickness) or more, due to the micro-segregation of manganese, phosphorus, etc., a low-temperature transformation structure such as martensite is generated, and hydrogen-induced cracking occurs along this structure, which causes pipeline damage. Destruction accidents are likely to occur.

この発明は、かかる苛酷な環境下で脆化に対処し得る強
靭性を有し、かつ水素誘起割れを起しがたい鋼材の製造
法を持案するものである。
The present invention proposes a method for manufacturing a steel material that has the toughness to withstand embrittlement under such harsh environments and is resistant to hydrogen-induced cracking.

この発明は、連続鋳造または厚さ400mm以上の大形
鋼塊より製造される、炭素0.05〜0.15%、けい
素0.5%以下、マンガン0.9〜1.6%、りん0.
03%以下、いおう0.002〜0.015%、銅0.
20〜0.40%、アルミニウム0.1%以下を含有し
、さらにニオブ0.1%以下、バナジウム0.1%以下
、モリブデン1%以下、クロム0.5%以下、ニッケル
0.3%以下の1種または2種を含有する鋼片を、熱間
圧延したのち、冷却過程における温度650〜250℃
の鋼片を冷却速度50〜1000℃/ hr で冷却し
、API規格X42〜X80相当程度の強度を有する耐
水素誘起割れ性のすぐれた鋼材を製造する方法である。
This invention is produced by continuous casting or from a large steel ingot with a thickness of 400 mm or more, containing 0.05 to 0.15% carbon, 0.5% or less silicon, 0.9 to 1.6% manganese, and phosphorus. 0.
0.03% or less, sulfur 0.002 to 0.015%, copper 0.03% or less
20 to 0.40%, aluminum 0.1% or less, further niobium 0.1% or less, vanadium 0.1% or less, molybdenum 1% or less, chromium 0.5% or less, nickel 0.3% or less After hot rolling a steel billet containing one or two of
This is a method for producing steel materials with excellent hydrogen-induced cracking resistance and a strength equivalent to API standards X42 to X80 by cooling steel pieces at a cooling rate of 50 to 1000°C/hr.

上記のとおり、この発明は熱間圧延したのちの放冷時に
生ずるマルテンサイトなどの低温変態組織の生成を阻止
することにより、水素誘起割れを防止することを主な目
的とするが、この水素誘起割れの現象は、上記のミクロ
偏析に基づく低温変態組織が顕著に現れる連続鋳造材、
および厚さ400龍以上の大形鋼塊より製造された前記
成分の鋼が特に顕著である。
As mentioned above, the main purpose of this invention is to prevent hydrogen-induced cracking by preventing the formation of low-temperature transformed structures such as martensite that occur when cooling after hot rolling. The phenomenon of cracking occurs in continuous casting materials where low-temperature transformed structures based on the above-mentioned microsegregation are prominent.
The above-mentioned steels manufactured from large steel ingots with a thickness of 400 mm or more are particularly notable.

したがって、この発明は前記成分のものを対象とし連続
鋳造および厚さ400mm以上の大形鋼塊より製造され
る鋼材を対象とする。
Therefore, the present invention is directed to steel materials having the above-mentioned components, which are produced by continuous casting and from large-sized steel ingots having a thickness of 400 mm or more.

この発明の対象鋼における炭素は0.05%未満では所
要の強度が得られず、015%を越えると溶接性に難点
を生ずるので0.05〜0.15%とした。
If the carbon content in the target steel of this invention is less than 0.05%, the required strength cannot be obtained, and if it exceeds 0.15%, weldability will be impaired, so the carbon content is set at 0.05 to 0.15%.

けい素は脱酸剤として必要であるが、0.5%を越える
と脆性が増すので望ましくない。
Silicon is necessary as a deoxidizing agent, but if it exceeds 0.5%, it increases brittleness and is therefore undesirable.

マンガンは強靭性の増加、脱硫剤として必要であるが、
0.9%未満では十分な強靭性が得られず、1.6%を
越えると靭性の劣化が生ずる。
Manganese is necessary for increasing toughness and as a desulfurizing agent,
If it is less than 0.9%, sufficient toughness cannot be obtained, and if it exceeds 1.6%, the toughness will deteriorate.

つんば低温変態組織を形成する元素で、水素誘起割れに
大きな関係があるから含有量は低いほど望ましいので0
.03%以下とした。
Tsunba is an element that forms a low-temperature transformation structure, and has a great relationship with hydrogen-induced cracking, so the lower the content, the better.
.. 0.3% or less.

いおりは水素誘起割れに対し鋭敏な効果を有し、0.0
]、 5%を越えると割れ感受性が増大するので望ま
しくない。
Iori has a sensitive effect on hydrogen-induced cracking and has a 0.0
], exceeding 5% is undesirable because cracking susceptibility increases.

また、0.002%未満では製造が困難となる。Moreover, if it is less than 0.002%, manufacturing becomes difficult.

銅は強度の向上、水素吸収量の低減に有効であるが0.
2%未満では、その効果を期待できず、0.4%を越え
て添加してもその効果はさして向上しない。
Copper is effective in improving strength and reducing hydrogen absorption, but 0.
If it is less than 2%, the effect cannot be expected, and if it is added in excess of 0.4%, the effect will not improve much.

アルミニウムは鋼の脱酸剤として必要であるが、0.1
%を越えると靭性が劣化するので望ましくない。
Aluminum is necessary as a deoxidizer for steel, but 0.1
% is undesirable because the toughness deteriorates.

ニオブ、バナジウムおよびモリブデンは強度および靭性
を向上するのに有効であるが、ニオブ、バナジウムは0
.1%を、モリブデンは1%を越えるとその効果はほぼ
飽和し、カリ原価が高騰するので好ましくない。
Niobium, vanadium and molybdenum are effective in improving strength and toughness, but niobium, vanadium
.. If molybdenum exceeds 1%, the effect will be almost saturated and the cost of potash will rise, which is not preferable.

クロムは強度の向上、水素吸収量の低減に有効であるが
、0.5%を越えて添加してもその効果は飽和状態とな
り、また経済的にも不利である。
Chromium is effective in improving strength and reducing hydrogen absorption, but if it is added in an amount exceeding 0.5%, the effect reaches a saturated state and is also economically disadvantageous.

ニッケルは一般に靭性の向上に有効な元素であるが、こ
の発明においては銅を添加した場合の熱間加工性の向上
、溶接性の向上を目的とするが、銅0.4%以下の含有
では0.3%以下で十分目的を達成し得る。
Nickel is generally an element effective in improving toughness, but in this invention, the purpose is to improve hot workability and weldability when copper is added, but if the copper content is 0.4% or less, The purpose can be sufficiently achieved with 0.3% or less.

また、熱間圧延を終ったのち、ミクロ偏析のある鋼片中
央部におけるマルテンサイトなどの低温変態組織の生成
を阻止するため冷却過程の制御が最も重要で徐冷する必
要がある。
Furthermore, after hot rolling, control of the cooling process is most important and slow cooling is necessary in order to prevent the formation of low-temperature transformed structures such as martensite in the central part of the steel billet where there is micro-segregation.

しかし、650℃を越えた温度域での徐冷は鋼の強度お
よび靭性を阻害するため望ましくなく、また250℃未
満では低温変態が終了しているから徐冷しても意味がな
い。
However, slow cooling at temperatures above 650°C is undesirable because it impairs the strength and toughness of the steel, and slow cooling at temperatures below 250°C is meaningless because the low-temperature transformation has finished.

したがって、この発明においては冷却過程中の温度65
0〜250℃の鋼片を徐冷するよう規制する。
Therefore, in this invention, the temperature during the cooling process is 65
It is regulated that steel slabs at 0 to 250°C are slowly cooled.

そして、650〜250℃の温度域における冷却速度の
上限を1000℃/ hr とするのは、これを越え
て速く冷却すれば低温変態組織の生成防止が困難となる
The reason why the upper limit of the cooling rate in the temperature range of 650 to 250°C is set to 1000°C/hr is that if the cooling rate exceeds this, it becomes difficult to prevent the formation of a low-temperature transformed structure.

また、50℃/ hr より遅く冷却すれば焼もどし
脆性など靭性劣化の原因となるから好ましくない。
Furthermore, cooling slower than 50° C./hr is not preferable because it causes deterioration in toughness such as tempering brittleness.

また、この発明を実施した鋼材の耐水素誘起割れ性は焼
もどし処理を施しても変りなく、すぐれた性質を有する
Further, the hydrogen-induced cracking resistance of the steel material according to the present invention remains unchanged even after tempering, and has excellent properties.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第1表および第2表は、本発明による製造法と、従来実
施されている製造法により厚さ12mmの鋼板を製造し
、該鋼板の機械的性質および硫化水素割れに関する試験
結果を比較したものである。
Tables 1 and 2 compare test results regarding mechanical properties and hydrogen sulfide cracking of steel plates produced with a thickness of 12 mm by the production method according to the present invention and the conventional production method. It is.

第2表に記載の硫化水素割れ試1験については次のよう
に実施した。
The first hydrogen sulfide cracking test listed in Table 2 was conducted as follows.

すなわち、各鋼板の板厚中心部より第1図に示すごとく
巾(W’) 25 mm、厚さくt) 9 mvt、長
さく1)1、30 mmの試験片を採取し、人工海水ま
たは淡水に硫化水素を飽和させた溶液に応力無負荷の状
態で96時間浸漬したのち、■試験片につき異なった9
断面を検鏡し水素誘起割れの判定を行った。
That is, as shown in Figure 1, a test piece with a width (W') of 25 mm, a thickness of t) of 9 mvt, and a length of 1. After being immersed in a solution saturated with hydrogen sulfide for 96 hours without stress loading,
The cross section was examined and hydrogen-induced cracking was determined.

なお本試験には、A〜■の成分組成を有する素材につき
20個の試験片を準備し各冷却速度に対して10個ずつ
供した。
In this test, 20 test pieces were prepared for materials having the component compositions A to ①, and 10 test pieces were used for each cooling rate.

第1.2表より明らかなように、本発明を実施すると、
機械的性質は従来と同等で、硫化水素割れについては、
階段状割れにしても直線状割れにしても発生は皆無であ
ったが、成分組成あるいは冷却速度の一方または両方が
本発明の技術範囲に属さないと上記の割れが発生しやす
いことが認められる。
As is clear from Table 1.2, when the present invention is implemented,
The mechanical properties are the same as before, and regarding hydrogen sulfide cracking,
Although there were no occurrences of step-like cracks or linear cracks, it is recognized that the above-mentioned cracks are likely to occur if either or both of the component composition and cooling rate do not fall within the technical scope of the present invention. .

したがって、本発明は、上記の水素誘起割れ防止にきわ
めて有効なことがわかる。
Therefore, it can be seen that the present invention is extremely effective in preventing the above-mentioned hydrogen-induced cracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硫化水素割れ試験における試験片の採取位置お
よび寸法を示す斜視図である。
FIG. 1 is a perspective view showing the sampling position and dimensions of a test piece in a hydrogen sulfide cracking test.

Claims (1)

【特許請求の範囲】 1 連続鋳造材または厚さ400mmJJ、上の大型鋼
塊より製造される鋼材であって、炭素0,05〜0.1
5%、けい素0.5%以下、マンガン0.9〜1.6%
、りん0.03%以下、いおう0.002〜0.015
%、銅0.20〜0.40%、アルミニウム0.1%以
下を含有し、さらにニオブ0.1%以下、バナジウム0
.1%以下、モリブデン1%以下、クロム0.5%以下
、ニッケル0.3%以下の1種または2種を含み残部は
実質的に鉄よりなる鋼材を熱間圧延し、その冷却過程に
おいて650〜250℃の湯度範囲を50〜b 度で冷却することを特徴とする耐水素誘起割れ性のすぐ
れた鋼材の製造法。
[Scope of Claims] 1. A steel material manufactured from a continuous cast material or a large steel ingot with a thickness of 400 mmJJ, which contains carbon 0.05 to 0.1
5%, silicon 0.5% or less, manganese 0.9-1.6%
, Phosphorus 0.03% or less, Sulfur 0.002-0.015
%, copper 0.20-0.40%, aluminum 0.1% or less, niobium 0.1% or less, vanadium 0
.. 1% or less, molybdenum 1% or less, chromium 0.5% or less, nickel 0.3% or less, and the remainder is essentially iron. A method for producing a steel material with excellent resistance to hydrogen-induced cracking, characterized by cooling a hot water temperature range of ~250°C to 50°C to 50°C.
JP9359175A 1975-07-30 1975-07-30 Manufacturing method for steel materials with excellent resistance to hydrogen-induced cracking Expired JPS5940889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9359175A JPS5940889B2 (en) 1975-07-30 1975-07-30 Manufacturing method for steel materials with excellent resistance to hydrogen-induced cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9359175A JPS5940889B2 (en) 1975-07-30 1975-07-30 Manufacturing method for steel materials with excellent resistance to hydrogen-induced cracking

Publications (2)

Publication Number Publication Date
JPS5216421A JPS5216421A (en) 1977-02-07
JPS5940889B2 true JPS5940889B2 (en) 1984-10-03

Family

ID=14086529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9359175A Expired JPS5940889B2 (en) 1975-07-30 1975-07-30 Manufacturing method for steel materials with excellent resistance to hydrogen-induced cracking

Country Status (1)

Country Link
JP (1) JPS5940889B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910415B2 (en) * 1978-12-27 1984-03-08 新日本製鐵株式会社 Manufacturing method for high-tensile wire rods and steel bars with excellent stress corrosion cracking resistance
AU527097B2 (en) * 1979-01-12 1983-02-17 Nippon Steel Corporation Artifically aged low yield to tensile strength ratio high strength steel sheet

Also Published As

Publication number Publication date
JPS5216421A (en) 1977-02-07

Similar Documents

Publication Publication Date Title
JP5439887B2 (en) High-strength steel and manufacturing method thereof
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
US4325748A (en) Method for producing steel plate having excellent resistance to hydrogen induced cracking
JP4709568B2 (en) UO steel pipe with excellent sour resistance
JPS5940889B2 (en) Manufacturing method for steel materials with excellent resistance to hydrogen-induced cracking
JP3845366B2 (en) Corrosion resistant steel with excellent weld heat affected zone toughness
JP7177924B2 (en) Austenitic high-manganese steel material for cryogenic use with excellent corrosion resistance and its manufacturing method
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0371506B2 (en)
JPS581168B2 (en) Greta Line Pipe Hot Coil Size Seizou Hohou
JP2000178697A (en) Martensitic stainless steel excellent in corrosion resistance and weldability
JPS62274049A (en) Continuously-cast steel for resistance welded tube excellent in sour resistance and toughness at low temperature
JP2721420B2 (en) Sour-resistant steel for electric resistance welded steel
JPS60228655A (en) Steel material having superior resistance to hydrogen induced cracking
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
JPS5818967B2 (en) Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking
JPH022925B2 (en)
CN112941422B (en) CO-resistant 2 Steel plate for corrosion and preparation method thereof
JPS61221326A (en) Production of steel material having excellent resistance to sulfide corrosion cracking
JPS63270444A (en) Steel for line pipe having excellent sour resistance
JPS61143555A (en) Steel having superior resistance to hydrogen induced cracking
JPS581015A (en) Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance
JPS5835255B2 (en) Structural low alloy steel
JPS6035982B2 (en) Steel for line pipes with excellent hydrogen sulfide cracking resistance
JP2949013B2 (en) Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility