JPS594065A - Integrated circuit - Google Patents

Integrated circuit

Info

Publication number
JPS594065A
JPS594065A JP57112778A JP11277882A JPS594065A JP S594065 A JPS594065 A JP S594065A JP 57112778 A JP57112778 A JP 57112778A JP 11277882 A JP11277882 A JP 11277882A JP S594065 A JPS594065 A JP S594065A
Authority
JP
Japan
Prior art keywords
bias
circuit
cell
voltage
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57112778A
Other languages
Japanese (ja)
Other versions
JPH0345545B2 (en
Inventor
Eiji Sugiyama
英治 杉山
Mitsuaki Natsume
夏目 光章
Toshiharu Saito
斎藤 寿治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57112778A priority Critical patent/JPS594065A/en
Priority to EP89202021A priority patent/EP0344873B1/en
Priority to DE89202020T priority patent/DE3382727D1/en
Priority to DE8383303805T priority patent/DE3381460D1/en
Priority to DE89202021T priority patent/DE3382726D1/en
Priority to EP83303805A priority patent/EP0098173B1/en
Priority to EP89202020A priority patent/EP0348017B1/en
Publication of JPS594065A publication Critical patent/JPS594065A/en
Priority to US07/229,724 priority patent/US4904887A/en
Priority to US07/325,914 priority patent/US4952997A/en
Priority to US07/325,913 priority patent/US4891729A/en
Publication of JPH0345545B2 publication Critical patent/JPH0345545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11801Masterslice integrated circuits using bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To save power consumption and improve reliability of LSI for fluctuation of power supply by providing a bias cell SBC which generates one reference voltage to a plurality of gate cells and supplying a power to each logic gate through bias buffer circuits. CONSTITUTION:The cell EXC for junction with external circuits, bias cell SBC for generating the reference voltage and cell INC in internal logic circuits are sequentially arranged on a chip CHP. An INC comprises a bias buffer INB, the reference voltage sent from the one SBC is supplied to a plurality of INB's and is input to each logic gate circuit. On the other hand, the reference voltage is supplied to an EXC as a bias voltage. Power consumption can be reduced by supplying a voltage to all gates on the chip from the one bias circuit as explained above and the reference level which does not cause mis-operation with fluctuation of power source voltage ca be supplied to the master slice LSI of emitter junction logic.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明はエミッタカップルドロジックの基準レベルを出
力するマスクスライスLSIの基準レベル供給回路を構
成する集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an integrated circuit that constitutes a reference level supply circuit for a mask slice LSI that outputs a reference level for emitter-coupled logic.

(2)技術の背景 デジタル回路技術の進歩に伴い高速での処理が要求され
ている。これらの高速処理にはエミッタカップルドロジ
ック(以下ECLと呼ぶ)が一般的によく用いられてい
る。一方、半導体集積回路の技術の進歩により、ECL
のマスクスライスLSIも実用化されている。このEC
LマスクスライスLSIは目的に応じた高速処理が可能
であり、さらに小型になるという特徴を有している。
(2) Technical Background With the advancement of digital circuit technology, high-speed processing is required. Emitter-coupled logic (hereinafter referred to as ECL) is commonly used for these high-speed processes. On the other hand, due to advances in semiconductor integrated circuit technology, ECL
A mask slice LSI has also been put into practical use. This EC
The L-mask slice LSI is capable of high-speed processing depending on the purpose and has the characteristics of being compact.

(3)従来技術と問題点 ECL回路は電圧値によって入力信号がハイ(H)レベ
ル、ロー(L)レベルを判別するため基準電圧を必要と
する。またECl−回路を駆動するための電流源を必要
とするものもある。そのため、ECL回路には基準電圧
を発生し、さらに駆動用の電流源を有するバイアス回路
が必要である。
(3) Prior Art and Problems The ECL circuit requires a reference voltage to determine whether an input signal is at a high (H) level or a low (L) level based on the voltage value. Others require a current source to drive the ECl-circuit. Therefore, the ECL circuit requires a bias circuit that generates a reference voltage and also has a current source for driving.

従来、マスクスライスLSIにおけるE CI−回路の
バイアス回路は各セル内に配置され、セル内のゲート回
路に基準電圧と駆動用バイアス電流を供給していた。第
1図(al、 (b)はマスクスライスLSIのセル構
成並びにセル内の配置図を示す。
Conventionally, a bias circuit of an ECI-circuit in a mask slice LSI is placed in each cell, and supplies a reference voltage and a driving bias current to a gate circuit in the cell. FIGS. 1(a) and 1(b) show the cell configuration and layout inside the cell of a mask slice LSI.

LSIのチップCHP上に例えば5×5のセルCが配置
し、その外周にポンディングパッドBPが配置している
。各セルCは第1図(blに示す如く4個のゲート回路
Gがバイアス回路BCをはさんで構成してなる。■セル
は例えば4個のOR。
For example, a 5×5 cell C is arranged on an LSI chip CHP, and a bonding pad BP is arranged around its outer periphery. Each cell C is composed of four gate circuits G sandwiching a bias circuit BC as shown in FIG.

NORゲートとバイアス回路BCからなるその回路によ
ってOR,NORゲートが動作する。
The circuit consisting of the NOR gate and the bias circuit BC operates the OR and NOR gates.

他の従来の構成においては、LSI外部の回路と結合す
る外部用セルとLSI内部での論理処理を行う内部用セ
ルに分けられ、これらのセルが前述のバイアス回路をそ
れぞれ有する。外部用セルは外部回路とのロジックレベ
ルを一定に保つため、基準の電圧レベル値を出力するバ
イアス回路を有し、内部用セルは外部回路との結合がな
いため簡単なバイアス回路を有していた。
In other conventional configurations, the LSI is divided into external cells that connect with circuits outside the LSI and internal cells that perform logic processing within the LSI, and each of these cells has the aforementioned bias circuit. External cells have a bias circuit that outputs a reference voltage level value in order to maintain a constant logic level with the external circuit, while internal cells have a simple bias circuit because they are not coupled to the external circuit. Ta.

第2図はそのセル構成を示す。インターナルセルINC
の外周にエクスターナルセルEXCが配置し、さらにそ
の外部にポンディングパッドBPが配置している。
FIG. 2 shows the cell configuration. internal cell inc
An external cell EXC is arranged on the outer periphery of the cell EXC, and a bonding pad BP is further arranged outside of the external cell EXC.

第3図は外部用セルEXC,内部用セルINCの各ゲー
ト回路Gが必要とする基準電圧値を発生するバイアス回
路BCの回路構成を示す。バイアス回路BCの出力VB
Bは各ゲート回路の基準入力端子に入力している。
FIG. 3 shows the circuit configuration of a bias circuit BC that generates a reference voltage value required by each gate circuit G of the external cell EXC and the internal cell INC. Output VB of bias circuit BC
B is input to the reference input terminal of each gate circuit.

第4図(8)はバイアス回路BC1(bl、 (C1は
ゲート回路G、(dlは前記バイアス回路、ゲート回路
のセル上の構成をそれぞれ示す。バイアス回路BCはト
ランジスタTr+’、Tr2’と抵抗rl。
FIG. 4 (8) shows the bias circuit BC1 (bl), (C1 is the gate circuit G, (dl is the bias circuit and the structure on the gate circuit), respectively. The bias circuit BC consists of the transistors Tr+', Tr2' and the resistor. rl.

r2.r3よりなりトランジスタによる負帰還回路によ
って定電圧ve8を発生し第4図(dlに示すようにセ
ル上のゲート回路Gの中間に配置する。第4図(blの
ゲート回路はトランジスタT r G + 。
r2. r3, a constant voltage ve8 is generated by a negative feedback circuit using a transistor, and placed in the middle of the gate circuit G on the cell as shown in FIG. 4 (dl).The gate circuit in FIG. .

TrG++、、抵抗RG + 〜RG 3よりなり、ト
ランジスタTrG3.TrGaのベースが第4図(d)
における入力G、8であり、トランジスタTrG1’の
エミッタが第4図(dlにおける正出力G十、トランジ
スタT r G 2のエミッタが負出力G−である。
TrG++, , resistors RG + to RG3, and transistors TrG3. The base of TrGa is shown in Figure 4(d).
4, the emitter of the transistor TrG1' is the positive output G+ in FIG. 4 (dl), and the emitter of the transistor TrG2 is the negative output G-.

またトランジスタT r G liのベースにバイアス
回路BCの出力■酔が入力する。第4図tC)のゲート
回路は(b)に示したゲート回路のトランジスタTrG
3.Tr’Ga、TrG5のエミッタと抵抗RG3間に
トランジスタT r G 6を挿入したものであり、そ
のゲートは駆動用のバイアス人力■。5となる。
Further, the output voltage of the bias circuit BC is input to the base of the transistor T r G li. The gate circuit in Figure 4 tC) is the transistor TrG of the gate circuit shown in (b).
3. A transistor TrG6 is inserted between the emitters of Tr'Ga and TrG5 and the resistor RG3, and its gate is biased manually for driving. It becomes 5.

前述の従来の方式は複数個のゲート例えば4個のゲート
に1個のバイアス回路から基準電圧を供給している。こ
の供給方式は複数の基準電圧発生回路を有するため多く
の電力を必要とする問題を有している。
In the conventional method described above, a reference voltage is supplied to a plurality of gates, for example, four gates, from one bias circuit. This supply method has a problem in that it requires a large amount of power because it includes a plurality of reference voltage generating circuits.

理想的には1個のバイアス回路よりチップ上の全ゲート
に電圧を供給する方式が望まれる。しかしながら、バイ
アス回路の駆動能力等によって一つのバイアス回路から
は前述のように複数個例えば4個程が供給される。
Ideally, a method is desired in which one bias circuit supplies voltage to all gates on the chip. However, depending on the driving ability of the bias circuit, one bias circuit supplies a plurality of, for example, about four, as described above.

(4)発明の目的 本発明は前記問題を解決するものであり、その目的は消
費する電力が少なく、電源電圧の変動によって誤動作し
ないECLのマスクスライスLSIの基準レベル供給回
路を構成する集積回路を提供することにある。
(4) Purpose of the Invention The present invention solves the above problems, and its purpose is to provide an integrated circuit constituting a reference level supply circuit for an ECL mask slice LSI that consumes less power and does not malfunction due to fluctuations in power supply voltage. It is about providing.

(5)発明の構成 本発明の特徴とするところは、複数の内部セルと、該複
数の内部セルに対して共通に設けられ、所定電圧を発生
ずるバイアスセルと、該バイアスセルで発生した該所定
電圧を該内部セルに供給するバイアスバッファ回路を有
することを特徴とする集積回路にある。
(5) Structure of the Invention The present invention is characterized by a plurality of internal cells, a bias cell that is provided in common to the plurality of internal cells and generates a predetermined voltage, and a bias cell that generates a predetermined voltage. The integrated circuit has a bias buffer circuit that supplies a predetermined voltage to the internal cells.

(6)発明の実施例 以下図面を用いて本発明の詳細な説明する。(6) Examples of the invention The present invention will be described in detail below using the drawings.

第5図は本発明の第1の実施例のセルの構成を示す。チ
ップCHP上にエクスターナルセルEXC,基準電圧発
生用バイアスセルSBC,複数のインターナルセルIN
Cが順次配置している。
FIG. 5 shows the structure of a cell according to the first embodiment of the present invention. External cell EXC, reference voltage generation bias cell SBC, and multiple internal cells IN on chip CHP
C are arranged sequentially.

エクスターナルセルEXCは外部回路との結合用のセル
であり、そのバイアス電圧はバイアスセルSBCより入
力する。インターナルセルINCは内部ロジック回路に
おけるセルであり、インターナル用バイアスバッファI
NBを有している。インターナル用バイアスバッファI
NBはバイアスセルSBCより得られる基準電圧をイン
ターナルセル内(j)’yニート回路に入力1−るため
のバッファ回路である。1個の基準電圧発生用バイアス
セルSBCは複数のインターナルセルの各バイアスバッ
ファINBに基準電圧を出力する。
External cell EXC is a cell for coupling with an external circuit, and its bias voltage is input from bias cell SBC. Internal cell INC is a cell in the internal logic circuit, and internal bias buffer I
Has NB. Internal bias buffer I
NB is a buffer circuit for inputting the reference voltage obtained from the bias cell SBC to the (j)'y neat circuit in the internal cell. One reference voltage generation bias cell SBC outputs a reference voltage to each bias buffer INB of a plurality of internal cells.

第6図は本発明の第2の実施例の回路構成図を示す。バ
イアスセルSBC内の基準電圧発生用バイアスセルSB
Cは基準電圧■88′を発生し、インターナルバッファ
INBを介してインターナルセルINC内のゲート回路
Gに基準電圧■8Bを出力する。
FIG. 6 shows a circuit diagram of a second embodiment of the present invention. Bias cell SB for reference voltage generation in bias cell SBC
C generates a reference voltage ■88' and outputs a reference voltage ■8B to the gate circuit G in the internal cell INC via the internal buffer INB.

第7図は本発明の第3の実施例の回路図を示す。FIG. 7 shows a circuit diagram of a third embodiment of the invention.

バイアスセルSBC部は基準電圧発生バイアス回路5B
CCを構成し、第1の電源■coと第2の電源■旺は抵
抗R1とトランジスタTr2の直列回路、抵抗R2,R
3とトランジスタTr+と抵抗R4とトランジスタTr
3と抵抗R6の直列回路、トランジスタTraとダイオ
ードD、+、D2と抵抗R9とトランジスタTrsと抵
抗R8とダイオードD3のそれぞれの直列回路によって
接続しており、さらにインターナル用バイアスバッファ
回路群lNB5によってそれぞれトランジスタのT r
 n o  とダイオードDno、Dn+と抵抗Rno
とトランジスタTrn+と抵抗Rn+とダイオードDn
2の直列回路によって接続している。
The bias cell SBC section is a reference voltage generation bias circuit 5B.
A first power supply CO and a second power supply CO constitute a CC, and the first power supply CO and the second power supply O are a series circuit of a resistor R1 and a transistor Tr2, and resistors R2 and R
3, transistor Tr+, resistor R4, and transistor Tr
3 and a resistor R6, a transistor Tra, a diode D, +, D2, a resistor R9, a transistor Trs, a resistor R8, and a diode D3. T r of each transistor
n o and diode Dno, Dn+ and resistor Rno
, transistor Trn+, resistor Rn+, and diode Dn
They are connected by two series circuits.

また、抵抗R2と抵抗R3の接続点はトランジスタTr
aのベースとトランジスタTr1o〜Trno、抵抗R
1とトランジスタTr2のコレクタの接続点はトランジ
スタT r 51 T r I+Tr + o−Tr 
n oのベースにそれぞれ接続している。さらにトラン
ジスタT r 2のベースはトランジスタTr3のコレ
クタに接続している。トランジスタTr+のエミッタは
抵抗R4を介してトランジスタTr2のベースに接続し
、そのコレクタはトランジスタTr+のコレクタに接続
している。トランジスタTr2のベースは抵抗Tr5を
介して電源vFEに接続している。トランジスタT r
 + (7)ニア し’)少電流が増加すると当然エミ
ッタ電流も増加する。エミッタ電流が増加することによ
りトランジスタTr2のベース電流も増加する。
Furthermore, the connection point between the resistor R2 and the resistor R3 is the transistor Tr.
The base of a, transistors Tr1o to Trno, and resistor R
The connection point between the collector of the transistor Tr 1 and the collector of the transistor Tr2 is the transistor Tr 51 Tr I+Tr + o-Tr
It is connected to the base of no. Further, the base of the transistor Tr2 is connected to the collector of the transistor Tr3. The emitter of the transistor Tr+ is connected to the base of the transistor Tr2 via a resistor R4, and the collector thereof is connected to the collector of the transistor Tr+. The base of the transistor Tr2 is connected to the power supply vFE via a resistor Tr5. Transistor T r
+ (7) Near +') As the small current increases, the emitter current naturally increases. As the emitter current increases, the base current of the transistor Tr2 also increases.

さらに、そのコレクタ電流が増加する。これによりトラ
ンジスタTr+のベース電圧が低下しトランジスタTr
+のコレクタ電流は減少する。すなわち、トランジスタ
Tr+、Tr2と抵抗R4は負帰還の回路を構成してお
りトランジスタTr+のコレクタに流れる電流はほぼ一
定となる。すなわちこの回路構成によって抵抗R2,R
3に流れる電流は電源電圧によらずほぼ一定となり、ト
ランジスタTr a、Tr + oA+Trn aのベ
ース電流が一定となる。トランジスタTr4.Tri。
Furthermore, its collector current increases. As a result, the base voltage of the transistor Tr+ decreases, and the transistor Tr+
+ collector current decreases. That is, the transistors Tr+, Tr2 and the resistor R4 form a negative feedback circuit, and the current flowing to the collector of the transistor Tr+ is approximately constant. That is, with this circuit configuration, the resistors R2, R
The current flowing through the transistors 3 is approximately constant regardless of the power supply voltage, and the base currents of the transistors Tr a and Tr + oA + Trna are constant. Transistor Tr4. Tri.

〜Trnoのエミッタは第1のバイアス電圧として出力
しており、前述の理由によりこの出力もほぼ一定となる
The emitter of ~Trno outputs the first bias voltage, and for the reason mentioned above, this output is also approximately constant.

トランジスタTr a、 Tr + o−Tr’n o
のエミッタにはダイオードDI、D21  DI o〜
Dno・ D++〜Dn+が接続されて第2バイアス電
圧として出力しており、この電圧も当然の結果はぼ一定
となる。例えば第1の電源電圧が約−1,3Vであるな
らば第2の電源電圧は約−2,8Vとなる。
Transistor Tr a, Tr + o-Tr'no
The emitter of is a diode DI, D21 DI o~
Dno.D++ to Dn+ are connected and output as a second bias voltage, and this voltage also naturally remains approximately constant. For example, if the first power supply voltage is about -1.3V, the second power supply voltage is about -2.8V.

トランジスタTr 5. T r + + 〜TRn 
+のエミッタは第3の電源電圧として出力している。こ
の電圧もほぼ一定となり、第1の電源電圧が約−1,3
■のときには約−3,7Vを出力する。
Transistor Tr 5. T r + + ~TRn
The + emitter outputs the third power supply voltage. This voltage also becomes almost constant, and the first power supply voltage is about -1.3
In case (2), approximately -3.7V is output.

トランジスタTR3は温度補償用のトランジスタであり
、ダイオードD3と関係して温度補償を行う。例えばチ
ップ上のダイオードの接合面積とトランジスタのエミッ
ターベース間の接合面積を変えて、そこに流れる電流が
温度によって変化することにより補償を行っている。前
述の補償はダイオードの接合、トランジスタのエミッタ
ーベース間の接合に流れる電流密度によって温度特性が
変化することを利用したものである。これらの動作は1
973年10月発行のIEEEジャーナルオブソリノド
ステートサーキソトの362頁乃至367頁に掲載の論
文[従来のECLの欠点を除去した完全補償ECLJ 
 (著者ミラー、オウエンズ及びフェルホフシュタット
)に開示さている。
Transistor TR3 is a temperature compensation transistor, and performs temperature compensation in association with diode D3. For example, compensation is achieved by changing the junction area of the diode on the chip and the junction area between the emitter base of the transistor and the current flowing there changes with temperature. The above-mentioned compensation utilizes the fact that the temperature characteristics change depending on the current density flowing through the junction of the diode and the junction between the emitter and base of the transistor. These actions are 1
A paper published on pages 362 to 367 of the IEEE Journal of Solinod State Circulation published in October 19973 [Completely compensated ECLJ that eliminates the drawbacks of conventional ECL]
(authors Miller, Owens and Verhofstadt).

前述の回路において、第1のバイアス電圧はECL回路
のHレベル、Lレベルを判別する基準電圧として用いら
れる。第2のバイアス電圧はECLの入力が複数個直列
接続した場合、すなわちシリーズゲートの場合の基準電
圧である。第3のバイアス電圧は各デー1−回路を動作
させるためのバイアス用として用いられる。なお、第2
.第3のバイアス電圧は使用する各ゲート回路によって
は必要としない場合がある。
In the circuit described above, the first bias voltage is used as a reference voltage for determining the H level and L level of the ECL circuit. The second bias voltage is a reference voltage when a plurality of ECL inputs are connected in series, that is, in the case of a series gate. The third bias voltage is used for biasing each data 1-circuit to operate. In addition, the second
.. The third bias voltage may not be necessary depending on each gate circuit used.

バイアスバッファ回路群lNB5は複数のバイアスバッ
ファINBよりなり、1(固のノマイアス回路INBは
トランジスタTrno、Trn+、ダイオードDno、
Drz+ Dnz、抵抗Rn n。
The bias buffer circuit group INB5 is composed of a plurality of bias buffers INB.
Drz+Dnz, resistance Rn n.

Rn+よりなる。このバイアスバッファ回路群lNB5
の動作については、前述したが更に詳しく説明すると、
トランジスタTr+o=Trn。
Consists of Rn+. This bias buffer circuit group lNB5
The operation of is described above, but I will explain it in more detail.
Transistor Tr+o=Trn.

はエミッタホロアを構成し、エミッタが内部セルの基準
電圧の出力端子となっている。エミッタホロアであるの
で、このトランジスタは電流増幅動作で電圧利得はほぼ
1となり、電圧”88′とほぼ等しい電圧を出力する。
constitutes an emitter follower, and the emitter serves as an output terminal for the reference voltage of the internal cell. Since this transistor is an emitter follower, the voltage gain is approximately 1 due to current amplification operation, and it outputs a voltage approximately equal to the voltage "88'."

トランジスタTrot〜Trn+もエミッタホロアを構
成し、電圧VcS ′が印加されているので、そのエミ
ッタはその電圧にほぼ等しい電圧用が出力する。すなわ
ち、外部用基準電圧出力も同様の回路を有しており内部
セル用基準電圧並びにバイアス電圧と外部用基準電圧電
圧はほぼ等しい電圧値となる。
The transistors Trot to Trn+ also constitute emitter followers, and since the voltage VcS' is applied, their emitters output a voltage approximately equal to that voltage. That is, the external reference voltage output also has a similar circuit, and the internal cell reference voltage and bias voltage have approximately the same voltage value as the external reference voltage.

(7)発明の効果 前述より明らかなように本発明は複数個のゲートセルに
一つの基準電圧発生機能を有するバイアスセルSBCを
有し、そのバイアス回路の基準電圧出力をバイアスバッ
ファ回路を介して各ゲート回路Gに電圧供給するもので
あり、従来のものと比較してバイアス回路の数が少なく
、消費電力が低下している。さらに、本発明によれば基
準電圧発生回路の数も少なくなっているので電源変動に
対するLSIの信頼性も高くなる。
(7) Effects of the Invention As is clear from the foregoing, the present invention has a bias cell SBC having a reference voltage generation function for a plurality of gate cells, and the reference voltage output of the bias circuit is transmitted to each gate cell through a bias buffer circuit. This circuit supplies voltage to the gate circuit G, and has fewer bias circuits than the conventional circuit, resulting in lower power consumption. Furthermore, according to the present invention, the number of reference voltage generation circuits is reduced, so the reliability of the LSI against power supply fluctuations is also increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来のチップにおけるセル構成図、第
3図はバイアス供給の回路構成図、第4図(a)はバイ
アス回路、第4図(bl、 (C)はゲート回路、第4
図(dlはセル上のバイアス回路、ゲート回路の配置構
成図、第5図は本発明の第1の実施例のセル配置構成図
、第6図は本発明の第2の実施例のバイアス供給の回路
構成図、第7図は本発明の第3の実施例のバイアス回路
図である。 EXC・・・エクスターナルセル、 SBC・・・バイ
アスセル、ハ゛イアス回路、  INB・・・インター
ナルハソファ、 G・・・ゲート回路、RI”Re’、
  R+ o−Rn o、  R+ +〜Rn + 0
・・抵抗、 D I〜D 3.D + o〜Dn o。 DII−Dnl、D12〜Dn2・・・ダイオード、 
 Tr +〜Tr 5.Tr I o−Trn o。 Tr11〜Trn1゛・°トランジスタ。 第4図(C) −313− 第5ryj HP
Figures 1 and 2 are cell configuration diagrams in a conventional chip, Figure 3 is a bias supply circuit configuration diagram, Figure 4 (a) is a bias circuit, Figure 4 (bl, (C) is a gate circuit, Fourth
(dl is a bias circuit on the cell, a layout diagram of the gate circuit, FIG. 5 is a cell layout diagram of the first embodiment of the present invention, and FIG. 6 is a bias supply diagram of the second embodiment of the invention. FIG. 7 is a bias circuit diagram of the third embodiment of the present invention. EXC...external cell, SBC...bias cell, bias circuit, INB...internal filter, G ...gate circuit, RI"Re',
R+ o-Rn o, R+ + ~ Rn + 0
...Resistance, DI~D 3. D + o ~ Dno. DII-Dnl, D12-Dn2...diode,
Tr + ~ Tr 5. Tr I o-Trno. Tr11~Trn1゛・°transistor. Figure 4 (C) -313- 5th ryj HP

Claims (2)

【特許請求の範囲】[Claims] (1)複数の内部セルと、該複数の内部セルに対して共
通に設けられ、所定電圧を発生するバイアスセルと、該
バイアスセルで発生した該所定電圧を該内部セルに供給
するバイアスバッファ回路を有することを特徴とする集
積回路。
(1) A plurality of internal cells, a bias cell that is provided in common to the plurality of internal cells and generates a predetermined voltage, and a bias buffer circuit that supplies the predetermined voltage generated in the bias cell to the internal cell. An integrated circuit characterized by having:
(2)該内部セルはエミッタ結合論理ゲートを含み、該
所定電圧は該エミッタ結合論理ゲートの基準電圧として
用いられるように構成されていることを特徴とする特許
請求の範囲第1項記載の集積回路。
(2) The integrated circuit according to claim 1, wherein the internal cell includes an emitter-coupled logic gate, and the predetermined voltage is configured to be used as a reference voltage for the emitter-coupled logic gate. circuit.
JP57112778A 1982-06-30 1982-06-30 Integrated circuit Granted JPS594065A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP57112778A JPS594065A (en) 1982-06-30 1982-06-30 Integrated circuit
EP83303805A EP0098173B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
DE89202020T DE3382727D1 (en) 1982-06-30 1983-06-30 Integrated semiconductor circuit arrangement.
DE8383303805T DE3381460D1 (en) 1982-06-30 1983-06-30 INTEGRATED SEMICONDUCTOR CIRCUIT ARRANGEMENT.
DE89202021T DE3382726D1 (en) 1982-06-30 1983-06-30 Integrated semiconductor circuit arrangement.
EP89202021A EP0344873B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
EP89202020A EP0348017B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
US07/229,724 US4904887A (en) 1982-06-30 1988-08-04 Semiconductor integrated circuit apparatus
US07/325,914 US4952997A (en) 1982-06-30 1989-03-20 Semiconductor integrated-circuit apparatus with internal and external bonding pads
US07/325,913 US4891729A (en) 1982-06-30 1989-03-20 Semiconductor integrated-circuit apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112778A JPS594065A (en) 1982-06-30 1982-06-30 Integrated circuit

Publications (2)

Publication Number Publication Date
JPS594065A true JPS594065A (en) 1984-01-10
JPH0345545B2 JPH0345545B2 (en) 1991-07-11

Family

ID=14595258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112778A Granted JPS594065A (en) 1982-06-30 1982-06-30 Integrated circuit

Country Status (1)

Country Link
JP (1) JPS594065A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291666A (en) * 1986-06-11 1987-12-18 Canon Inc Developer and developing method
JPS63226942A (en) * 1987-03-16 1988-09-21 Nippon Denso Co Ltd Linear array
JPH02134845A (en) * 1988-11-15 1990-05-23 Nec Corp Ecl type semiconductor integrated circuit device
JPH02146761A (en) * 1988-11-28 1990-06-05 Nec Corp Semiconductor integrated circuit
JPH04253366A (en) * 1991-01-29 1992-09-09 Toshiba Corp Gate array device, input circuit, output circuit, and voltage step down circuit
US6050111A (en) * 1997-02-26 2000-04-18 Nippon Mayer Co., Ltd. Guide drive device in warp knitting machine
CN111901904A (en) * 2020-08-05 2020-11-06 大陆汽车电子(长春)有限公司 Defrosting control method for heatable glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142559A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142559A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Semiconductor integrated circuit device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291666A (en) * 1986-06-11 1987-12-18 Canon Inc Developer and developing method
JPS63226942A (en) * 1987-03-16 1988-09-21 Nippon Denso Co Ltd Linear array
JPH02134845A (en) * 1988-11-15 1990-05-23 Nec Corp Ecl type semiconductor integrated circuit device
JPH02146761A (en) * 1988-11-28 1990-06-05 Nec Corp Semiconductor integrated circuit
JPH04253366A (en) * 1991-01-29 1992-09-09 Toshiba Corp Gate array device, input circuit, output circuit, and voltage step down circuit
US6050111A (en) * 1997-02-26 2000-04-18 Nippon Mayer Co., Ltd. Guide drive device in warp knitting machine
CN111901904A (en) * 2020-08-05 2020-11-06 大陆汽车电子(长春)有限公司 Defrosting control method for heatable glass
CN111901904B (en) * 2020-08-05 2022-07-19 大陆汽车电子(长春)有限公司 Defrosting control method for heatable glass

Also Published As

Publication number Publication date
JPH0345545B2 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
US3743923A (en) Reference voltage generator and regulator
US7352609B2 (en) Voltage controlled static random access memory
JPS6028414B2 (en) semiconductor logic circuit
JP2982196B2 (en) Different power supply interface circuit
JPS594065A (en) Integrated circuit
EP0568808B1 (en) Memory having distributed reference and bias voltages
JPH03241594A (en) Sense circuit for semiconductor memory
US6535017B1 (en) CMOS ECL input buffer
JPS62501391A (en) Tri-state driver circuit
US4553107A (en) Current mirror circuit having stabilized output current
JPH0760352B2 (en) Temperature-compensated current source and voltage regulator using the same
JPH0432571B2 (en)
US11841723B2 (en) Distributed LDO structure without external capacitor
US20010013794A1 (en) Buffer circuit
JP2846372B2 (en) Semiconductor circuit
JP3300990B2 (en) Power circuit
US6037637A (en) BiCMOS logical integrated circuit
US5406136A (en) High speed ECL output circuit having reduced power consumption
JPS6315519A (en) Interface circuit
JPH04104517A (en) Bias circuit
US6856198B2 (en) Amplifier and method for voltage-to-current conversion
JPH11214983A (en) Semiconductor integrated circuit device
JPH0644395B2 (en) Semiconductor memory device
JPH0457517A (en) Logic circuit
JPH06232725A (en) Semiconductor integrated circuit device