JPS5939962B2 - electric vehicle control device - Google Patents

electric vehicle control device

Info

Publication number
JPS5939962B2
JPS5939962B2 JP52013893A JP1389377A JPS5939962B2 JP S5939962 B2 JPS5939962 B2 JP S5939962B2 JP 52013893 A JP52013893 A JP 52013893A JP 1389377 A JP1389377 A JP 1389377A JP S5939962 B2 JPS5939962 B2 JP S5939962B2
Authority
JP
Japan
Prior art keywords
field
current
circuit
control
field current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52013893A
Other languages
Japanese (ja)
Other versions
JPS53100520A (en
Inventor
憲章 弘瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52013893A priority Critical patent/JPS5939962B2/en
Publication of JPS53100520A publication Critical patent/JPS53100520A/en
Publication of JPS5939962B2 publication Critical patent/JPS5939962B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は、駆動電動機として他励電動機を用い、アクセ
ルペダルの踏込量でこの駆動電動機の電機子電流を設定
し、この設定値により電機子の帰還値と突合わせ、その
結果により閉ループの界磁系制御で速度制御を行なう電
気自動車制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a separately excited motor as a drive motor, sets the armature current of the drive motor according to the amount of depression of the accelerator pedal, and matches the armature feedback value with this set value. The results relate to improvements in electric vehicle control devices that perform speed control using closed-loop field system control.

第1図はこの種従来の界磁チョッパ形他励電動機による
電気自動車の代表的な主回路を示したもので、1は直流
電源、2は界磁電流検出用抵抗、3は駆動電動機の他励
界磁巻線、4はフライホィールダイオード、5はトラン
ジスタチョッパ、6は電機子電流検出用抵抗、7、10
、11は電磁接触器、8と9は電機子電流制限抵抗器(
以下単に制限抵抗器)、12は回生用ダイオード、13
は駆動電動機の電機子である。
Figure 1 shows a typical main circuit of an electric vehicle using a conventional field chopper type separately excited motor of this type, in which 1 is a DC power supply, 2 is a field current detection resistor, and 3 is a drive motor and other circuits. Excitation field winding, 4 is a flywheel diode, 5 is a transistor chopper, 6 is a resistor for armature current detection, 7, 10
, 11 is a magnetic contactor, 8 and 9 are armature current limiting resistors (
(hereinafter simply a limiting resistor), 12 is a regeneration diode, 13
is the armature of the drive motor.

この回路では、電磁接触器T、1O、11によつて接続
した制限抵抗器8、9を順次短絡または挿入して電機子
回路抵抗を可変して速度制御する。
In this circuit, speed is controlled by varying the armature circuit resistance by sequentially shorting or inserting limiting resistors 8 and 9 connected by electromagnetic contactors T, 1O, and 11.

即ち、電機子回路は制限抵抗器8、9の短絡または挿入
により1−6−7−8−9−13−1、1−6−7−1
0−9−13−1、1−6−7−10−11−13−1
の3モードが形成される。そして、この3モードにおい
て、それぞれ界磁チョッパ5により界磁電流を制御し、
電動機を直線状に速度制御し車両をショックレスに走行
させる。尚、電磁接触器7、10、11のオン、オフは
アクセルの踏込量と電動機回転数によつて決められる。
また制動は、電動機の界磁を強め、発電機として回生に
より13−12−6−1−13の回路にて行なう。前記
界磁制御は、界磁制御域を大きくとりかつトルク制御的
な効果を加えるため、界磁電流の最大、最小の界磁可変
域を予かじめりミッタ回路により定めておき、その可変
域内において力行時の踏込量を電機子電流の設定値とし
て電機子電流と比較し、設定値に比して電機子電流が小
さいと界磁電流を減少させ、また逆に電機子電流が大き
いと界磁電流を増加させるように閉ループ制御している
That is, the armature circuit is changed to 1-6-7-8-9-13-1, 1-6-7-1 by shorting or inserting the limiting resistors 8 and 9.
0-9-13-1, 1-6-7-10-11-13-1
Three modes are formed. In these three modes, the field current is controlled by the field chopper 5,
To control the speed of an electric motor in a straight line and run the vehicle without shock. Note that whether the electromagnetic contactors 7, 10, and 11 are turned on or off is determined by the amount of accelerator depression and the motor rotation speed.
Further, braking is performed by the circuit 13-12-6-1-13 by strengthening the field of the electric motor and regenerating it as a generator. In the above-mentioned field control, in order to widen the field control range and add a torque control effect, the maximum and minimum field variable ranges of the field current are predetermined by a limiter circuit, and within these variable ranges, during power running. Compare the amount of depression with the armature current as the set value of the armature current, and if the armature current is smaller than the set value, the field current will be decreased, and conversely, if the armature current is large, the field current will be increased. Closed-loop control is used to ensure that

尚、制動時には制動電流設定値と電機子電流を比較し、
設定値に比して電機子電流が大きいと界磁電流を減少さ
せ、電機子電流が小さいと界磁電流を増加させるように
界磁電流を閉ループ制・ 御している。この制御におい
て、界磁電流可変域を定める最大りミッタ値は界磁チョ
ッパ5の最大電流定格及び界磁巻線3の許容温度から定
められ、最小リミツタ値は電動機の整流不良及び車両の
最高速度の点から定められる。このような界磁チヨツパ
形他励電動機による電気自動車では、スタート時及び低
速走行時に問題がある。
In addition, when braking, compare the braking current setting value and armature current,
The field current is controlled in a closed loop so that when the armature current is large compared to the set value, the field current is decreased, and when the armature current is small, the field current is increased. In this control, the maximum limiter value that determines the field current variable range is determined from the maximum current rating of the field chopper 5 and the allowable temperature of the field winding 3, and the minimum limiter value is determined from the maximum current rating of the field chopper 5 and the allowable temperature of the field winding 3. It is determined from the point of Electric vehicles using such field chopper type separately excited motors have problems when starting and when running at low speeds.

即ち、この場合には電動機には制限抵抗8,9で決まる
電機子電流しか流れないので、仮りにアクセルを一杯に
踏込み、従つて電機子電流設定値が大きくなつたりする
と、前述した界磁制御動作から界磁電流は下限リミツタ
にかかる最小値に弱まり、トルクが減少して加速が小さ
〈なる。これはアクセルの踏込量の大きいときの方が踏
込量の小さいときに比ベトルクが減じて加速が小さくな
る現象であり、現在の一般のガソリン自動車の走行感覚
と矛循する。本発明はこの点にかんがみ、界磁電流の可
変域を電動機の回転数により可変させるようにして上記
矛循を解決し、ガソリン車と同等の走行感覚が得られる
ようにした電気自動車制御装置を提供することを目的と
する。
That is, in this case, only the armature current determined by the limiting resistors 8 and 9 flows through the motor, so if the accelerator is fully depressed and the armature current setting increases, the above-mentioned field control operation will change. The field current weakens to the minimum value applied to the lower limiter, the torque decreases, and the acceleration becomes smaller. This is a phenomenon in which the comparative torque decreases and the acceleration decreases when the accelerator pedal is depressed more than when the accelerator pedal is depressed less, which is contradictory to the driving sensation of current ordinary gasoline-powered cars. In view of this point, the present invention solves the above contradiction by varying the variable range of the field current depending on the rotation speed of the electric motor, and provides an electric vehicle control device that provides a driving sensation equivalent to that of a gasoline vehicle. The purpose is to provide.

以下本発明の一実施例を第2図の閉ループ界磁制御系及
び第3図の界磁可変域特性により説明する。
An embodiment of the present invention will be described below with reference to the closed loop field control system shown in FIG. 2 and the field variable range characteristics shown in FIG.

第2図で14はアクセルペダルの踏込量に応じた信号を
出力するアクセルペダル踏込量検出器で、電機子電流を
設定するものである。6は第1図で示した電動機の電機
子電流検出用としての抵抗、15はこの電機子電流を前
記設定値から減算する減算器で、その減算結果をヒステ
リシス幅を有するシュミット回路16により、設定値に
比して電機子電流が大きいとオフ、小さいとオンのオン
、オフ波に変換する。
In FIG. 2, reference numeral 14 denotes an accelerator pedal depression amount detector that outputs a signal corresponding to the amount of depression of the accelerator pedal, and is used to set the armature current. 6 is a resistor for detecting the armature current of the motor shown in FIG. 1, 15 is a subtracter for subtracting this armature current from the set value, and the result of the subtraction is set by a Schmitt circuit 16 having a hysteresis width. If the armature current is larger than the value, it turns off, and if it is smaller, it turns into an on/off wave.

このシユミツト回路16のヒステリシス幅が電機子電流
のリツプル値となる。シユミツト回路16の出力をノア
回路17により界磁制御域の下限を定める界磁電流下限
値リミツタ回路18の出力と論理和をとり、このノア回
路17の出力をノア回路19により界磁制御域の上限を
定める界磁電流上限値リミツタ回路20と論理和をとる
。そしてノア回路19の出力により第1図の界磁チヨツ
パ5をチヨツピングさせ、界磁巻線3に電流を流す。こ
の界磁巻線3に流れる電流を第1図の抵抗2で検知して
前記界磁電流下限値リミツタ回路18の入力とする。リ
ミツタ回路18はヒスモリシス幅を有するシユミツト回
路で、シユミツトレベルに比して界磁電流が大きいとオ
ン(Lレベル)、小さいとオフ(Hレベル)のオンオフ
波に変換し界磁電流の下限値のリミツタ制御を行なう。
The hysteresis width of this Schmitt circuit 16 becomes the ripple value of the armature current. The output of the Schmitt circuit 16 is logically summed with the output of the field current lower limit value limiter circuit 18 which uses a NOR circuit 17 to set the lower limit of the field control range, and the output of this NOR circuit 17 is used to set the upper limit of the field control range using the NOR circuit 19. A logical OR is performed with the magnetic current upper limit value limiter circuit 20. The output of the NOR circuit 19 causes the field chopper 5 shown in FIG. The current flowing through the field winding 3 is detected by the resistor 2 shown in FIG. 1 and is input to the field current lower limit value limiter circuit 18. The limiter circuit 18 is a Schmitt circuit with a hismolysis width, which converts the field current into an on-off wave that is on (L level) when it is larger than the Schmitt level and off (H level) when it is smaller than the Schmitt level, and sets the lower limit value of the field current. Performs limiter control.

ヒステリシス幅はリミツタ時の界磁チヨツパ5の最高周
波数を制限するためである。また抵抗2で検出した界磁
電流を前記界磁上限値リミツタ回路20に入力する。
The purpose of the hysteresis width is to limit the maximum frequency of the field chopper 5 during limiter operation. Further, the field current detected by the resistor 2 is input to the field upper limit value limiter circuit 20.

このリミツタ回路20はヒステリシス幅を有するシユミ
ツト回路でシユミツトレベルに比して界磁電流が大きい
とオフ(Hレベル)、小さいとオン(Lレベル)のオン
オフ信号に変換し界磁電流の土限リミツタ制御を行なう
。ヒステリシス幅はリミツタ時の界磁チヨツパ5の最高
周波数を制限するためである。この回路では、定常制御
よりノア回路17によりリミツタ回路18の下限リミツ
タ値を先行させ、またノア回路19によりリミツタ回路
20の上限リミツタ値を先行させている。尚、21はソ
フトスタート回路で、アクセルペダルを踏込みアクセル
ペダルスイッチ22がオンしたとき4〜5秒程度の1次
遅れ波形を発生させ、土限値リミツタ回路20のシユミ
ツトレベルをパターン制御する。このソフトスタート回
路21は電動機の回転数が低い領域においてのみ作動さ
せる。これは回転数が高いとこのソフトスタート回路2
1によりかえつてトルクが増加し、トルクシヨツクを生
じる現象を除〈ためである。ここで本発明では、電動機
の回転数を検出する回転数検出器23を設け、この回転
数検出器23の出力をF−変換器24を通して前記界磁
電流下限値リミッタ回路18に入力し、第3図(a曲線
は上限設定値)に示すように、制限抵抗8,9が挿入さ
れている速度の低い領域に}いて、速度が低い程その下
限値bが高くなるように界磁電流下限値リミツタ回路1
8の設定レベルを変更させるつぎに上記構成装置の作用
を説明する。
This limiter circuit 20 is a Schmitt circuit with a hysteresis width, and when the field current is larger than the Schmitt level, it is turned off (H level), and when it is smaller than the Schmitt level, it is turned on (L level). Performs limiter control. The purpose of the hysteresis width is to limit the maximum frequency of the field chopper 5 during limiter operation. In this circuit, the lower limit value of the limiter circuit 18 is advanced by the NOR circuit 17 and the upper limit value of the limiter circuit 20 is advanced by the NOR circuit 19 than in the steady state control. A soft start circuit 21 generates a first-order delayed waveform of about 4 to 5 seconds when the accelerator pedal is depressed and the accelerator pedal switch 22 is turned on, thereby controlling the limit level of the earth limit value limiter circuit 20 in a pattern. This soft start circuit 21 is operated only in a region where the rotational speed of the electric motor is low. This is the soft start circuit 2 when the rotation speed is high.
This is to eliminate the phenomenon in which the torque increases due to 1 and causes a torque shock. Here, in the present invention, a rotation speed detector 23 is provided to detect the rotation speed of the electric motor, and the output of this rotation speed detector 23 is inputted to the field current lower limit value limiter circuit 18 through the F-converter 24. As shown in Figure 3 (curve a is the upper limit set value), in the low speed region where the limiting resistors 8 and 9 are inserted, the field current lower limit is set so that the lower the speed is, the higher the lower limit value b is. Value limiter circuit 1
Next, the operation of the above-mentioned component device will be explained.

加算器15で電機子電流設定値14と電鼾電流帰還値6
を比較し、その偏差がシユミツト回路16を介しノア回
路17,19を通して界磁チヨツパ5を動作させ界磁巻
線3を励磁する。この場合、電機子電流が設定値より小
さければ加算器15の出力がシユミツト回路16、ノア
回路17,19を介して界磁チヨツパ5がオンし界磁巻
線3が励磁されるが、逆に大きければシユミツト回路1
6の出力がなくなり界磁チヨツパ5がオフし、界磁巻線
3は励磁されない。即ち、界磁チヨツバ5は電機子電流
と設定値との差に応じてオンオフし、界磁電流を制御す
る。この動作に}いて、界磁巻線3の電流は抵抗2で検
出されその検出値が界磁電流下限値リミツタ回路18に
加えられ、界磁電流が下限値以下になるとこの下限値リ
ミツタ回路18から出力が生じ、この出力がノア回路1
7,19を介して界磁チヨツパ5に加えられ界磁巻線3
を励磁する。このため界磁巻線3の界磁電流は、電機子
電流が設定値より大きいか小さいかにかかわりなく連続
的に供給され、下限値より大きくなる。また、前記界磁
電流検出値は界磁電流上限値リミツタ回路20にも与え
られ、界磁電流が上限値以上になるとこの上限値リミツ
タ回路20から出力が生じ、この出力はノア回路19に
加えられ、ノア回路19はオフして界磁チヨツパ5の入
力をしや断する。このため界磁巻線3には電流が流れな
くなり、界磁電流は上限値より小さくなる。このように
して界磁電流は上下限値内に制御される。この動作に卦
いて、回転数検出器23で電動機の回転数が検出され、
F−変換器24はこの回転数検出器23の出力周波数に
応じた電圧に変換して下限値リミツタ回路18に入力し
、その下限値を第3図のb曲線のように、速度の低い領
域において速度が低い程高くなるように制御している。
このように、低速領域において界磁電流の下限値が高く
なるようにしておけば、アクセル踏込量が大きくても制
御される界磁電流の下限値が高いことから大きな加速力
が得られることになり、アクセルの踏込量が大きいとき
の方が小さいときに比べ加速力が減少する、という矛循
を除くことができる。したがつて、アクセル踏込みによ
る低車速時に}ける走行感覚はガソリン車と同等に改善
でき、そして加速制御が順調に進段できるようになるこ
とから制限抵抗8,9の挿入時間が短縮でき、電力損失
が低減できる利点がある。
Adder 15 calculates armature current setting value 14 and snoring current feedback value 6.
The deviation is used to operate the field chopper 5 through the Schmitt circuit 16 and the NOR circuits 17 and 19 to excite the field winding 3. In this case, if the armature current is smaller than the set value, the output of the adder 15 passes through the Schmitt circuit 16 and the NOR circuits 17 and 19, turns on the field chopper 5, and excites the field winding 3; If it is large, Schmitt circuit 1
6 is no longer output, the field chopper 5 is turned off, and the field winding 3 is not excited. That is, the field stopper 5 is turned on and off according to the difference between the armature current and the set value to control the field current. In this operation, the current in the field winding 3 is detected by the resistor 2, and the detected value is applied to the field current lower limit value limiter circuit 18. When the field current becomes less than the lower limit value, this lower limit value limiter circuit 18 is applied. An output is generated from the NOR circuit 1.
7, 19 to the field chopper 5 and the field winding 3
Excite. Therefore, the field current of the field winding 3 is continuously supplied regardless of whether the armature current is larger or smaller than the set value, and becomes larger than the lower limit value. The field current detection value is also given to a field current upper limit value limiter circuit 20, and when the field current exceeds the upper limit value, an output is generated from this upper limit value limiter circuit 20, and this output is added to the NOR circuit 19. As a result, the NOR circuit 19 is turned off and the input to the field chopper 5 is interrupted. Therefore, no current flows through the field winding 3, and the field current becomes smaller than the upper limit value. In this way, the field current is controlled within the upper and lower limits. In addition to this operation, the rotation speed of the electric motor is detected by the rotation speed detector 23,
The F-converter 24 converts the voltage into a voltage according to the output frequency of the rotation speed detector 23 and inputs it to the lower limit value limiter circuit 18, and the lower limit value is set in the low speed region as shown in curve b in FIG. The control is such that the lower the speed, the higher the speed.
In this way, if the lower limit value of the field current is set to be high in the low speed region, a large acceleration force can be obtained even if the amount of accelerator depression is large because the lower limit value of the field current to be controlled is high. Therefore, it is possible to eliminate the paradox that the accelerating force decreases when the accelerator depression amount is large compared to when the accelerator depression amount is small. Therefore, the driving sensation at low vehicle speeds when the accelerator is depressed can be improved to the same level as that of a gasoline-powered vehicle, and since the acceleration control can proceed smoothly, the time required to insert the limiting resistors 8 and 9 can be shortened, and the electric power This has the advantage of reducing losses.

尚、本発明は電機子チヨツパを使用した回路にも適用す
ることができ、また制動時においても力行時と同様採用
できる以上記載の本発明によれば、低車速時の走行感覚
をガソリン車と同等に改善できる電気自動車制御装置が
提供できる。
The present invention can also be applied to a circuit using an armature tipper, and can be applied during braking in the same way as during power running.According to the above-described invention, the driving sensation at low speeds can be compared to that of a gasoline vehicle. An electric vehicle control device that can be equally improved can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は界磁チヨツパ形他励電動機による電気自動車の
主回路図、第2図は本発明の一実施例のプロツク図、第
3図は同実施例における界磁可変域特性曲線図である。 1;直流電源、3と13;電動機の界磁巻線と電機子、
5;界磁チヨツパ、7,10,11;電磁接触器、8,
9;制限抵抗器、14:アクセルベタル踏込量検出量、
18;界磁電流下限値リミツタ回路、20;界磁電流上
限値リミツタ回路、23;回転数検出器、24;F−変
換器。
Fig. 1 is a main circuit diagram of an electric vehicle using a field chopper type separately excited motor, Fig. 2 is a block diagram of an embodiment of the present invention, and Fig. 3 is a field variable range characteristic curve diagram in the same embodiment. . 1; DC power supply, 3 and 13; field winding and armature of the motor,
5; Field chopper, 7, 10, 11; Magnetic contactor, 8,
9: Limiting resistor, 14: Detection amount of accelerator pedal depression,
18; Field current lower limit value limiter circuit; 20; Field current upper limit value limiter circuit; 23; Rotation speed detector; 24; F-converter.

Claims (1)

【特許請求の範囲】 1 電機子回路に直列の数段の起動抵抗、これら起動抵
抗をそれぞれ短絡又は捜入する開閉要素及び上下限の制
御域が予かじめ決められた閉ループの界磁電流制御系を
持つ直流電動機を駆動電動機とし、力行時はアクセルペ
ダル踏込量が電機子電流の設定値となるように、界磁電
流を界磁電流制御系により制御し、制御時は一定の電機
子電流値となるように界磁電流を、界磁電流制御系によ
り制御するものにおいて、低車速領域において前記界磁
制御域の下限設定値を高くとるようにした電気自動車制
御装置。 2 界磁制御域の下限設定値を車速の低い程高くとるよ
う可変する特許請求の範囲第1項記載の電気自動車制御
装置。
[Claims] 1. Several stages of starting resistors connected in series with the armature circuit, switching elements that short-circuit or interrogate these starting resistors, and closed-loop field current control in which upper and lower control ranges are predetermined. A DC motor with a system is used as the drive motor, and during power running, the field current is controlled by a field current control system so that the accelerator pedal depression amount becomes the set value of the armature current, and during control, the armature current is constant. An electric vehicle control device which controls a field current by a field current control system so that the field current reaches a certain value, wherein the lower limit setting value of the field control range is set high in a low vehicle speed region. 2. The electric vehicle control device according to claim 1, wherein the lower limit setting value of the field control region is varied so as to be higher as the vehicle speed is lower.
JP52013893A 1977-02-10 1977-02-10 electric vehicle control device Expired JPS5939962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52013893A JPS5939962B2 (en) 1977-02-10 1977-02-10 electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52013893A JPS5939962B2 (en) 1977-02-10 1977-02-10 electric vehicle control device

Publications (2)

Publication Number Publication Date
JPS53100520A JPS53100520A (en) 1978-09-02
JPS5939962B2 true JPS5939962B2 (en) 1984-09-27

Family

ID=11845852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52013893A Expired JPS5939962B2 (en) 1977-02-10 1977-02-10 electric vehicle control device

Country Status (1)

Country Link
JP (1) JPS5939962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234988A (en) * 1988-07-25 1990-02-05 Nec Home Electron Ltd Printed board and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234988A (en) * 1988-07-25 1990-02-05 Nec Home Electron Ltd Printed board and manufacture thereof

Also Published As

Publication number Publication date
JPS53100520A (en) 1978-09-02

Similar Documents

Publication Publication Date Title
US4479080A (en) Electrical braking control for DC motors
US5136219A (en) Electric-car controller
US4427928A (en) Braking control apparatus for an electric motor operated vehicle
JPS5939962B2 (en) electric vehicle control device
US4660699A (en) System for controlling the clutch torque of an electromagnetic clutch for vehicles
JP3668553B2 (en) Electric vehicle control device
JPH0424957B2 (en)
JP2001197614A (en) Motor controller for electric motor car
JP3610708B2 (en) Electric motor drive control device
JPH06101881B2 (en) Braking controller for electric vehicle
JPH04299005A (en) Motor vehicle controller
EP0036744A1 (en) Fail-safe system for pulse-controlled three-terminal D.C. motor
JPS6260887B2 (en)
SU985912A1 (en) Device for automatic control of induction motor in frequency braking mode
JP2609788B2 (en) Electric car control device
JPH11191901A (en) Electric railcar controller
JPH01157203A (en) Speed controller for electric motor car
JPH0223045Y2 (en)
JPH0698421A (en) Device for controlling electric rolling stock
JPH11355908A (en) Controller for electric car
JPS5846923B2 (en) Denkijidoushi Yaseigiyosouchi
JP2015053788A (en) Inverter controller
CN112172538A (en) Vehicle control device
JPH0368602B2 (en)
JPH05284611A (en) Controller for electric automobile