JPS5846923B2 - Denkijidoushi Yaseigiyosouchi - Google Patents

Denkijidoushi Yaseigiyosouchi

Info

Publication number
JPS5846923B2
JPS5846923B2 JP50023676A JP2367675A JPS5846923B2 JP S5846923 B2 JPS5846923 B2 JP S5846923B2 JP 50023676 A JP50023676 A JP 50023676A JP 2367675 A JP2367675 A JP 2367675A JP S5846923 B2 JPS5846923 B2 JP S5846923B2
Authority
JP
Japan
Prior art keywords
current
circuit
armature
field
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50023676A
Other languages
Japanese (ja)
Other versions
JPS5198824A (en
Inventor
憲章 弘瀬
公男 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50023676A priority Critical patent/JPS5846923B2/en
Publication of JPS5198824A publication Critical patent/JPS5198824A/ja
Publication of JPS5846923B2 publication Critical patent/JPS5846923B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 本発明は駆動電動機として分巻電動機を用い、アクセル
ペタル踏込量でこの駆動電動機の電機子電流を設定し、
この設定値に電機子電流の帰還値をつき合わせその結果
(こより閉ループの界磁系制御で速度制御を行なう電気
自動車制御装置に関する。
[Detailed Description of the Invention] The present invention uses a shunt motor as a drive motor, and sets the armature current of this drive motor according to the amount of accelerator pedal depression.
The present invention relates to an electric vehicle control device that performs speed control using closed-loop field system control by matching this set value with the feedback value of the armature current.

第1図は界磁チョッパ形分巻電動機による従来の電気自
動車の代表的な主回路を示し、Eはバッテリ等の直流電
源、MAとMFは分巻電動機Mの電機子と分巻界磁巻線
、R1とR2は電機子回路(こ直列に挿入された起動抵
抗、CTT1〜CTT3は電磁接触器で起動抵抗切換え
用、CHは界磁巻線MF回路に挿入された例えばトラン
ジスタチョッパ、DlとD2はフライホイーリングダイ
オードである。
Figure 1 shows a typical main circuit of a conventional electric vehicle using a field chopper type shunt motor, where E is a DC power source such as a battery, and MA and MF are the armature of the shunt motor M and the shunt field winding. lines, R1 and R2 are the armature circuit (starting resistors inserted in series, CTT1 to CTT3 are electromagnetic contactors for switching the starting resistance, CH is a field winding inserted in the MF circuit, for example, a transistor chopper, Dl and D2 is a flywheeling diode.

この第1図回路のものは、アクセルペタル踏込量で電動
機Mの回転数を設定する方式で、電動機M回転数により
3段階切換え、つまり電動機回転数レベルにより電磁接
触器CTT1〜CTT3を順次投入して起動抵抗R1,
R2短絡の電圧制御により進段加速し、且つ界磁制御域
は予かしめパターン化しておき、アクセル踏込量つまり
速度により界磁チョッパCHの導通角を低減して界磁電
流を低減して速度制御をし、また制動時には電磁接触器
CTTI〜CTT3をオフしダイオードD1により電力
回生を行ない、車両を減速停止させる。
In the circuit shown in Fig. 1, the rotation speed of the electric motor M is set by the amount of depression of the accelerator pedal, and the rotation speed of the electric motor M is switched in three stages, that is, the electromagnetic contactors CTT1 to CTT3 are sequentially turned on depending on the motor rotation speed level. starting resistance R1,
The gear progression is accelerated by voltage control of the R2 short circuit, and the field control area is set in a predetermined pattern, and the conduction angle of the field chopper CH is reduced depending on the amount of accelerator depression, that is, the speed, and the field current is reduced to control the speed. Also, during braking, the electromagnetic contactors CTTI to CTT3 are turned off, power is regenerated by the diode D1, and the vehicle is decelerated to a stop.

この際カ行時における進段の抵抗切換えを利用し、界磁
電流を電動機Mの回転数(こより段階的に切換えて回生
制動を行なう。
At this time, regenerative braking is performed by changing the field current in stages from the rotational speed of the electric motor M by utilizing the resistance switching of the advance gear during the car travel.

この従来方式では、界磁制御域が電動機M回転数により
設定されるので、加速パワーが抑制されると共に一定踏
込量で走行中界磁制御域変更Iこ伴ないトルク変動が生
じ、また回生時には界磁電流の設定値が数段階の切換え
のため制動力が段階的となり、走行フィーリングを悪化
させる欠点がある。
In this conventional method, the field control range is set by the motor M rotational speed, so the acceleration power is suppressed, and torque fluctuations occur without changing the field control range while driving with a constant pedal stroke amount, and the field current changes during regeneration. Since the setting value is changed over several stages, the braking force is applied in stages, which has the disadvantage of deteriorating the driving feeling.

しかも、界磁制御系はオープンループなので電源電圧E
の変動により界磁電流域が変動し、電動機の整流の不具
合及びトランジスタCHの破壊等の支障を招くおそれが
ある。
Moreover, since the field control system is open loop, the power supply voltage E
The field current range fluctuates due to fluctuations in the field current, which may cause problems such as rectification problems in the motor and destruction of the transistor CH.

尚、この界磁制御以外の方式としては、直巻式直流電動
機を用い、その電機子回路にチョッパを設ける電機子チ
ョッパ方式があるが、この方式は電機子電流をチョッパ
Oこより断続するため電源放出電流がパルス波状になる
ので、電波障害及びチョッパ動作における半導体素子の
騒音、電機子回路に設けら和る平滑リアクトル転流要素
の騒音が消えず走行中耳ざわりであり、また転流ミス及
び転流素子の破壊に伴なう安全装置の高速性が要求され
るので、価格的に高価(こなると共に転流損失及び素子
損失等の定常走行時の損失も大きい、等の欠点がある。
In addition, as a method other than this field control, there is an armature chopper method that uses a series-wound DC motor and has a chopper in its armature circuit, but in this method, the armature current is intermittent from the chopper O, so the power discharge current is Since the waveform is in the form of a pulse wave, radio wave interference, the noise of semiconductor elements during chopper operation, the noise of the smoothing reactor commutation element installed in the armature circuit remain and are audible while driving, and commutation errors and commutation elements Since the safety device is required to operate at high speed due to the destruction of the motor, there are disadvantages such as high cost (as well as large losses during steady running such as commutation loss and element loss).

本発明は分巻電動機を駆動電動機とする界磁制御形のも
のにおいて、アクセルペタル踏込量で駆動電動機の電機
子電流を設定し、この設定値に電機子電流帰還値をつき
合わせその結果により閉ループの界磁系を制御して速度
制御し、しかも起動抵抗の切換えを電動機回転数とアク
セル踏込量の和で制御することにより走行フィーリング
改善を意図した電気自動車制御装置を提供することを目
的とする。
The present invention is a field control type motor in which a shunt motor is used as a drive motor.The armature current of the drive motor is set by the accelerator pedal depression amount, and the armature current feedback value is matched against this set value. An object of the present invention is to provide an electric vehicle control device intended to improve the driving feeling by controlling the speed by controlling a magnetic system and controlling the switching of starting resistance by the sum of the motor rotation speed and the amount of accelerator depression.

以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図は第1図と同一部分には同一符号を付した本発明
の主回路構成を示し、Fは保護ヒユーズ、Isは分流器
、ホール素子等の電機子電流検出器、mはヒステリシス
特性を持つ界磁電流検出用マイクロリードリレー、fは
分流器、ホール素子等の界磁電流検出器である。
FIG. 2 shows the main circuit configuration of the present invention, with the same parts as in FIG. f is a field current detector such as a shunt or a Hall element.

この回路から明らかなように、従来装置には設けられて
いた電力回生用ダイオードD1を省略している。
As is clear from this circuit, the power regeneration diode D1 provided in the conventional device is omitted.

本発明では前記したようlこ、アクセルペタル踏込量で
駆動電動機Mの電機子電流を設定し、又起動抵抗短絡用
電磁接触器CTTI〜CTT3の制御は、電動機回転数
とアクセル踏込量の和で行なう。
In the present invention, as described above, the armature current of the drive motor M is set by the accelerator pedal depression amount, and the control of the electromagnetic contactors CTTI to CTT3 for shorting the starting resistor is determined by the sum of the motor rotation speed and the accelerator depression amount. Let's do it.

第3図は縦軸に電動機回転数(rpm)を、横軸にアク
セル踏込量、つまり電動機電機子電流をとった場合の電
動機Mの速度制御特性を示したものである。
FIG. 3 shows the speed control characteristics of the electric motor M when the vertical axis represents the motor rotation speed (rpm) and the horizontal axis represents the amount of accelerator pedal depression, that is, the motor armature current.

この特性図で、縦一点鎖線L1はアクセル踏込量が最大
時の電流設定値、縦2点鎖線L2は上り飯等走行の過負
荷時の電流値である。
In this characteristic diagram, the vertical one-dot chain line L1 is the current setting value when the accelerator depression amount is maximum, and the vertical two-dot chain line L2 is the current value at the time of overload such as when traveling uphill.

また、ライン11〜12間領域は起動抵抗がR1+R2
のときの速度制御域で、11は界磁最大強め時、12は
界磁最大弱め時である。
Also, in the area between lines 11 and 12, the starting resistance is R1+R2
In the speed control range when , 11 is when the field is maximum strengthened, and 12 is when the field is maximum weak.

ライン13〜14間の領域は起動抵抗がR2のときの速
度制御域で、13は界磁最大強め時、14は界磁最大弱
め時である。
The area between lines 13 and 14 is the speed control area when the starting resistance is R2, 13 is the maximum field strength and 14 is the field maximum weaken.

ライン15〜16間領域は起動抵抗が零のときの速度制
御域で、15は界磁最大強め時、16は界磁最大弱め時
である。
The area between lines 15 and 16 is the speed control area when the starting resistance is zero, 15 is the maximum field strength and 16 is the field maximum weaken.

本発明では図示ライン13(起動抵抗R2時の界磁最大
強め)を電磁接触器CTT2の切換えレベル、またライ
ン15(起動抵抗零時の界磁最大強め)を電磁接触器C
TT3の切換えレベルに設定する。
In the present invention, line 13 (maximum field strength when starting resistance R2) is the switching level of electromagnetic contactor CTT2, and line 15 (maximum field strength when starting resistance is zero) is the switching level of electromagnetic contactor C
Set to the switching level of TT3.

このレベル13.15のxty点を越える速度域は次段
の速度域と重複する域なのでそれらの速度域で切換えを
すれば起動抵抗の電圧降下の変動分をなくしショックレ
スに進段加速でき、X、y点で切換えれば更に起動抵抗
を挿入する制御域を最小(こできる。
The speed range that exceeds the xty point of level 13.15 overlaps with the speed range of the next gear, so if you switch in those speed ranges, you can eliminate the fluctuation of the voltage drop of the starting resistor and accelerate the gear progression without shock. By switching at the X and Y points, the control range for inserting a starting resistor can be minimized.

本発明ではアクセル踏込量と電動機M回転数の信号量の
和から前記x、y点を求め、それぞれ電磁接触器の切換
えを行なう。
In the present invention, the x and y points are determined from the sum of the accelerator depression amount and the signal amount of the motor M rotational speed, and the electromagnetic contactors are switched respectively.

次に制御系を説明する。Next, the control system will be explained.

第4図はカ行時制御回路で、aは可変抵抗器、磁気抵抗
素子等からなりアクセル踏込量の踏込量に応じた信号を
出力するアクセル踏込量検出器で、その信号は加算点す
FIG. 4 shows a control circuit for when the vehicle is moving.A is an accelerator depression amount detector which includes a variable resistor, a magnetic resistance element, etc. and outputs a signal corresponding to the amount of accelerator depression, and the signal is added.

jに与えられる。given to j.

Cは加算器すの出力に応じて界磁制御用信号を出力する
比較器、dは増幅器、CHとfは前記した第2図の界磁
電流制御用トランジスタと界磁電流検出器、gは前記ト
ランジスタCH又は界磁巻線MFの許容電流範囲を設定
するもので、前記界磁電流検出器fの検出値がその設定
値を越えると出力する界磁電流最大値リミッタ回路、h
は電動機Mの整流の不具合を除くため最小電流値を設定
するもので、界磁電流検出器fの検出値がその設定値以
下のとき出力する界磁電流最小値リミッタ回路、Isは
前記第2図の電機子電流検出器で、これら各要素は閉ル
ープの界磁電流検出器を構成している。
C is a comparator that outputs a field control signal according to the output of the adder S, d is an amplifier, CH and f are the field current control transistor and field current detector shown in FIG. 2, and g is the transistor. A field current maximum value limiter circuit that sets the allowable current range of CH or field winding MF, and outputs when the detected value of the field current detector f exceeds the set value, h
Is is a field current minimum value limiter circuit that sets a minimum current value in order to eliminate problems with rectification of the electric motor M, and outputs an output when the detected value of the field current detector f is below the set value, and Is is the second minimum value limiter circuit. In the armature current detector shown in the figure, each of these elements constitutes a closed-loop field current detector.

この制御系は、電機子電流設定値(アクセル踏込量)と
検出器Isからの電機子電流をつき合わせてその偏差に
よって界磁電流を制御し、これによって電機子電流を設
定値に一致する如く制御している。
This control system compares the armature current setting value (accelerator depression amount) with the armature current from the detector Is and controls the field current based on the deviation, thereby making the armature current match the setting value. It's in control.

つぎに、kは電動機Mの回転数に応じた直流アナログ量
を出力する電動機回転数検出器、lはアクセル踏込量に
より電磁接触器CTT1の動作点及び加算点jからのア
クセル踏込量と電動機回転数の和信号により電磁接触器
CTT2.CTT3の前述した第3図x、y点の切換動
作点を検出するレベル検出器、mは前記第2図の界磁電
流を検出して動作するマイクロリードリレー、pは電磁
接触器CTTI 、CTT2 、CTT3の励磁回路、
i′は車両が坂道等で過大な電流が流れた場合を検出し
電磁接触器CTT1 、CTT2 、CTT3をオフし
ギヤダウン後改めて走行するように指示させる過大電流
検出器、m′はアクセル踏込量を踏込んだときオンする
アクセルペタルスイッチオンを検出し出力を生じるカ行
指令スイッチ、nはアンド回路で、これら各要素は電磁
接触器CTTI。
Next, k is a motor rotation speed detector that outputs a DC analog value according to the rotation speed of the electric motor M, and l is the accelerator depression amount and motor rotation from the operating point of the electromagnetic contactor CTT1 and addition point j according to the accelerator depression amount. The electromagnetic contactor CTT2. A level detector detects the switching operation point of the above-mentioned points x and y in Fig. 3 of CTT3, m is a micro reed relay that operates by detecting the field current shown in Fig. 2, and p is an electromagnetic contactor CTTI, CTT2. , CTT3 excitation circuit,
i' is an excessive current detector that detects when an excessive current flows when the vehicle is on a slope, etc., turns off the electromagnetic contactors CTT1, CTT2, and CTT3, and instructs the vehicle to drive again after gearing down; m' indicates the amount of accelerator depression. A row command switch that detects the accelerator pedal switch that turns on when the pedal is depressed and generates an output, n is an AND circuit, and each of these elements is an electromagnetic contactor CTTI.

CTT2 、CTT3の制御系を構成する。Configures the control system of CTT2 and CTT3.

つぎGこ、この第4図回路に基いてカ行時の動作を説明
する。
Next, the operation at the time of G will be explained based on the circuit shown in FIG.

キースイッチオンにより制御回路に電源(直流12V程
度)が印加され、アクセル最大踏込時みによりアクセル
ペタルスイッチが作動すると、第4図のブロック図のカ
行回路が形成される。
When the key switch is turned on, a power supply (about 12 V DC) is applied to the control circuit, and when the accelerator pedal switch is operated by maximum depression of the accelerator, the circuit shown in the block diagram of FIG. 4 is formed.

しかし主回路では、電磁接触器CTT1は未だ閉成され
ず、電機子電流は流れない。
However, in the main circuit, the magnetic contactor CTT1 is not yet closed, and no armature current flows.

一方、このとき界磁電流検出器f出力は最小リミッタ回
路りの設定値より小さいので、このリミッタ回路りから
界磁電流増方向の出力が生じ、この出力は加算点すを通
して比較器Cに与えられ、この比較器Cが出力を生じ界
磁制御用トランジスタCHを導通させる。
On the other hand, at this time, the field current detector f output is smaller than the set value of the minimum limiter circuit, so an output in the direction of increasing the field current is generated from this limiter circuit, and this output is applied to the comparator C through the summing point. The comparator C generates an output and makes the field control transistor CH conductive.

これにより界磁巻線回路には最小リミッタ回路りで設定
される電流が流れる。
As a result, a current set by the minimum limiter circuit flows through the field winding circuit.

したがって第2図の界磁電流検出用マイクロリードリレ
ーmが作動し、第4図の回路mから出力が生じる。
Therefore, the field current detection micro reed relay m shown in FIG. 2 is activated, and an output is generated from the circuit m shown in FIG.

即ち、マイクロリードリレーmの動作点は最小リミッタ
回路りで設定される最小電流値に整定しておく。
That is, the operating point of the micro reed relay m is set to the minimum current value set by the minimum limiter circuit.

またマイクロリードリレーmにはヒステリシス特性を持
たせ、温度その他の条件で最小リミッタ値の多少の変動
でオフしないようにしておく。
Furthermore, the micro reed relay m is provided with a hysteresis characteristic so that it does not turn off due to slight variations in the minimum limiter value due to temperature or other conditions.

アクセル最大踏込時みが最大踏込量の%程度に達すると
、アクセル踏込量検出器aからの信号によりレベル検出
器lは電磁接触器CTT1閉成のためのレベル出力を生
じ、このときマイクロリードリレーm及びカ行指令スイ
ッチm′出力が共に生じていることから、アンド回路n
が成立し、電磁接触器励磁回路pのなかの電磁接触器C
TTIの励磁回路が作動し、第2図のCTTlが閉じ、
電動機電機子MA回路に起動抵抗R1とR2を挿入した
状態での電圧が印加され、電動機Mは始動する。
When the maximum accelerator depression reaches approximately % of the maximum depression amount, the level detector l generates a level output for closing the electromagnetic contactor CTT1 based on the signal from the accelerator depression amount detector a, and at this time, the micro reed relay Since the outputs of the m and row command switch m' are both generated, the AND circuit n
is established, and the electromagnetic contactor C in the electromagnetic contactor excitation circuit p
The excitation circuit of the TTI is activated, and the CTTl shown in Fig. 2 is closed.
A voltage is applied to the motor armature MA circuit with starting resistors R1 and R2 inserted, and the motor M is started.

このとき電機子MAには、電源電圧をEB、電源内部抵
抗及び配線抵抗の和r。
At this time, armature MA has a power supply voltage EB and a sum r of the power supply internal resistance and wiring resistance.

とじたときi=E /R1+R2+r。When closed, i=E/R1+R2+r.

なる電流が流れる。この電磁接触器CTTl閉による起
動電流は、第3図に示すようにアクセル最大踏込時の電
流設定値L1より大きく設定しであるので、界磁制御系
は、電機子電流検出器■8からの信号が増大することに
より加算点すの出力が増し界磁制御用トランジスタCH
の導通度が増大し、これにより界磁電流を増大させるが
、その値がリミッタ回路gの設定値を越えている間はこ
のリミッタ回路gから加算点すに界磁電流を減少するよ
う出力が帰還されるので、界磁電流はリミッタ回路gで
定められた設定値に抑えられ、これにより電機子電流も
制限される。
A current flows. The starting current due to the closing of the electromagnetic contactor CTT1 is set to be larger than the current setting value L1 when the accelerator is depressed to the maximum, as shown in Fig. 3, so the field control system detects the signal from the armature current detector By increasing the field control transistor CH, the output of the addition point increases.
The degree of conductivity increases, thereby increasing the field current, but while the value exceeds the set value of limiter circuit g, the limiter circuit g outputs an output to reduce the field current. Since it is fed back, the field current is suppressed to a set value determined by the limiter circuit g, thereby also limiting the armature current.

この後、電動機Mの回転数が上昇し逆起電圧上昇で電機
子電流iが減少すると、アクセル最大踏込時に応じた電
流設定値になる。
Thereafter, when the rotational speed of the electric motor M increases and the armature current i decreases due to an increase in the back electromotive voltage, the current setting value corresponds to the maximum accelerator pedal depression.

界磁制御系は、アクセル踏込量aと電機子電流iのつき
合わせであり、設定値aに対し電機子電流iが小さい場
合は比較器Cは界磁制御用トランジスタCHのオフ方向
出力を、また逆の場合はトランジスタCHのオン方向出
力を生じる。
The field control system matches the accelerator depression amount a and the armature current i, and when the armature current i is smaller than the set value a, the comparator C outputs the off direction output of the field control transistor CH, and vice versa. produces an on-direction output of transistor CH.

そこで、この後アクセルを更に踏込むことにより界磁電
流はリミッタ回路gとhで設定された範囲内で減少し、
これにより電動機M速度は第3図の速度域11〜12間
を次第に上昇制御される。
Therefore, by further depressing the accelerator, the field current is reduced within the range set by limiter circuits g and h.
As a result, the speed of the electric motor M is controlled to increase gradually between speed ranges 11 and 12 in FIG.

この加速制御で電動機Mの回転数が第3図の太線13レ
ベルのX点に達すると、レベル検出器lは電磁接触器C
TT2閉成のためのレベル出力を生じ、この出力に基き
電磁接触器励磁回路pのなかの接触器CTT2励磁回路
が作動して第2図の電磁接触器CTT2が閉じ、起動抵
抗R1を短絡し、電動機Mの速度域は第3図の13〜1
4間に移行する。
When the rotational speed of the electric motor M reaches the X point of the thick line 13 in FIG.
A level output for closing TT2 is generated, and based on this output, the contactor CTT2 excitation circuit in the electromagnetic contactor excitation circuit p is operated, and the electromagnetic contactor CTT2 shown in FIG. 2 is closed, shorting the starting resistor R1. , the speed range of electric motor M is 13 to 1 in Fig. 3.
Transition to between 4 and 4.

しかしX点はこの13〜14速度域と重複する点なので
、抵抗R1短絡による速度移行はショックレス昏こ行な
われる。
However, since point X overlaps with this 13-14 speed range, the speed shift due to the short circuit of resistor R1 is carried out without shock.

そして前記電磁接触器CTTI閉成時と同様の動作で、
抵抗切換えによる電機子電流の制限が行なわれ、またア
クセル踏込みにより界磁電流バリミッタ回路gとhの設
定範囲内を次第に減少し、これにより電動機M速度は前
記速度域13〜14間を次第に上昇制御される。
Then, with the same operation as when closing the electromagnetic contactor CTTI,
The armature current is limited by resistor switching, and by depressing the accelerator, the field current is gradually decreased within the setting range of the limiter circuits g and h, thereby controlling the motor M speed to gradually increase within the speed range 13 to 14. be done.

この制御で電動機Mの回転数が更(こ上昇し、第3図の
ライン15のy点に達すると、レベル検出器lは電磁接
触器CTT3を励磁するためのレベル出力を生じ、この
出力に基き電磁接触器励磁回路pの電磁接触器CTT3
励磁回路が励磁され、第2図のCTT3が閉じ抵抗R2
を短絡し、電動機Mの速度域は第3図の15〜16間に
ショックレスに移行する。
With this control, the rotational speed of the electric motor M further increases and when it reaches the y point of line 15 in Fig. 3, the level detector l generates a level output for exciting the electromagnetic contactor CTT3. Magnetic contactor CTT3 of base magnetic contactor excitation circuit p
The excitation circuit is excited and CTT3 in Fig. 2 is closed and resistor R2
is short-circuited, and the speed range of the electric motor M shifts to shockless between 15 and 16 in FIG.

そしてこの場合も、前記同様の電機子電流制御、界磁電
流制御に従って速度制御が行なわれ、自動車はカ行加速
される。
In this case as well, speed control is performed according to armature current control and field current control similar to those described above, and the automobile is accelerated forward.

向上記において、始動時には最小リミッタ回路りの設定
値を上げておく、つまり界磁弱めとせず、回転数上昇に
従い規定のリミット値に下げるようにすれば、起動時ト
ルク不足で始動しないという不都合が生じない。
In the improvement article, if you raise the setting value of the minimum limiter circuit when starting, that is, do not weaken the field, but lower it to the specified limit value as the rotation speed increases, the inconvenience of not starting due to insufficient torque at starting can be avoided. Does not occur.

また最大リミット回路gの設定値は、予かしめその設定
値を下げておき、前記リミッタ回路りから遅れて徐々に
規定のリミット値まで上げるようにすれば、ソフトスタ
ートさせることができる。
Further, the set value of the maximum limit circuit g can be soft-started by lowering the set value in advance and gradually increasing it to the specified limit value with a delay from the limiter circuit.

以上のカ行動作により高速走行中、車両が上り坂等にか
かるなどして電機子電流が増加し第3図のレベルL2の
値に達したりすると、過大電流検出器i′がこれを検出
しギヤーダウンをレベル検出器lに指示するので、この
レベル検出器lからの出力により電磁接触器励磁回路p
は各電磁接触器励磁回路を消勢し、従って第2図の電磁
接触器CTT1 、CTT2 、CTT3は開路され電
機子電流を零とする。
As a result of the above motor action, when the armature current increases and reaches the value of level L2 in Fig. 3 while the vehicle is traveling at high speed, such as when the vehicle runs uphill, the overcurrent detector i' detects this. Since gear down is instructed to the level detector l, the output from the level detector l causes the electromagnetic contactor excitation circuit p to
deenergizes each electromagnetic contactor excitation circuit, and thus the electromagnetic contactors CTT1, CTT2, and CTT3 in FIG. 2 are opened and the armature current becomes zero.

この場合は、一旦アクセルペダルを戻し、アクセルペダ
ルスイッチをオフした後、つまりギヤーダウンしたのち
、再度アクセル踏込走行することIこより電動機の過電
流を防止する。
In this case, once the accelerator pedal is released, the accelerator pedal switch is turned off, that is, the gear is down, and then the vehicle is driven again by pressing the accelerator pedal to prevent overcurrent in the electric motor.

この場合、図では示してないが、例えば過電流検出器i
′動作等の条件によりアクセルペダルスイッチをオフし
ても回生制動がかからないような構成としておく。
In this case, although not shown in the figure, for example, an overcurrent detector i
'Due to operating conditions, etc., the structure is such that regenerative braking will not be applied even if the accelerator pedal switch is turned off.

つぎに第5図で回生制動を説明する。Next, regenerative braking will be explained with reference to FIG.

この第5図で第4図と同一符号は同一部分なので異なる
部分のみを説明すると、■は制動時の回生電流設定値信
号を生じる設定器、Sは回生電流の最小値を検出し回生
を停止させる信号を生じる電機子電流レベル検出器、q
は電動機の回転数が回生可能域であることを検出するレ
ベル検出器、rは電磁接触器CTT1閉路を条件に動作
し回生回路に変更されたとき数百msの間第2図の電磁
接触器CTT1 、CTT2 、CTT3を閉路させ、
回生電流の上昇を待つための遅延回路、tはオア回路、
Uは電動機の回転数が回生不可能域であることを検出し
界磁電流を零とし不要電流を流さないようにするための
レベル検出器である。
In Fig. 5, the same symbols as in Fig. 4 are the same parts, so only the different parts will be explained. ■ is a setting device that generates a regenerative current setting value signal during braking, and S detects the minimum value of regenerative current and stops regeneration. armature current level detector, q
is a level detector that detects that the rotational speed of the motor is within the range where regeneration is possible; CTT1, CTT2, CTT3 are closed,
A delay circuit for waiting for the regenerative current to rise, t is an OR circuit,
U is a level detector that detects that the rotational speed of the motor is in the non-regenerative range and sets the field current to zero to prevent unnecessary current from flowing.

つぎに、回生動作を説明する。Next, the regeneration operation will be explained.

走行中アクセルペダルヲ戻しアクセルペダルスイッチが
オフすると、第5図のブロックで示す回生制御回路が閉
或する。
When the accelerator pedal is released while the vehicle is running and the accelerator pedal switch is turned off, the regeneration control circuit shown by the block in FIG. 5 is closed.

また第2図の主回路は、電磁接触&TT1゜CTT2
、CTT3が閉路し、電機子MA−電磁接触子CTT3
−CTT2−CTTl−保護ヒユーズF−電源E−電機
子電流検出器■8−電機子MAの経路が回生回路となる
In addition, the main circuit in Figure 2 is an electromagnetic contact & TT1゜CTT2
, CTT3 closes, and the armature MA-magnetic contactor CTT3
-CTT2-CTTl-Protection fuse F-Power supply E-Armature current detector ■8-The path of armature MA becomes a regeneration circuit.

第5図で、電動機回転数検出器にの出力が回生可能回転
数以上であれば、この出力によりレベル検出器qが動作
し、マイクロリードリレーmの出力有りを条件をこアン
ド回路nが成立するので、電磁接触器励磁回路pが動作
して第2図のCTTI。
In Fig. 5, if the output to the motor rotation speed detector is equal to or higher than the regenerative rotation speed, the level detector q is activated by this output, and the AND circuit n is established under the condition that there is an output from the micro reed relay m. Therefore, the electromagnetic contactor excitation circuit p operates and the CTTI shown in FIG. 2 occurs.

CTT2 、CTT3を閉或し、CTTlが閉路したと
き動作するその補助接点により遅延回路rを動作させ、
数百ms程度の聞出力を生じさせ、オア回路tの動作に
より電磁接触器CTTI 。
CTT2 and CTT3 are closed, or the delay circuit r is operated by its auxiliary contact which operates when CTT1 is closed;
A short output of about several hundred ms is generated, and the electromagnetic contactor CTTI is activated by the operation of the OR circuit.

CTT2 、CTT3の閉成を保持する。Maintain the closure of CTT2 and CTT3.

つまりその間に、回生電流設定値Vの出力に相当する回
生電流の上昇を待つわけである。
In other words, during this time, a rise in the regenerative current corresponding to the output of the regenerative current setting value V is waited for.

この回生電流を電機子電流検出器■8で検出し、レベル
検出器Sで設定する電流値以上に上昇すれば、この検出
器Sが動作しオア回路tにより第2図の電磁接触器CT
TI 、CTT2 、CTT3の閉路を保持し電力回生
を行なう。
This regenerative current is detected by the armature current detector 8, and if it rises above the current value set by the level detector S, this detector S operates and the OR circuit t causes the electromagnetic contactor CT in FIG.
TI, CTT2, and CTT3 are kept closed to perform power regeneration.

すなわち、このとき回転数が充分に高く電機子MAjこ
発生している電圧が電源Eの電圧より充分に大きければ
回生ができる訳であり、電磁接触器CTT1 、CTT
2 、CTT3を閉路させて電力損失なく回生を行なわ
せることができる。
That is, at this time, if the rotation speed is sufficiently high and the voltage generated by the armature MAj is sufficiently larger than the voltage of the power supply E, regeneration is possible, and the electromagnetic contactors CTT1 and CTT
2. It is possible to close the CTT 3 and perform regeneration without power loss.

このような回生を行なうことができるのは、電機子電流
を監視し該電機子電流を界磁制御系へフィードバックし
て界磁強め制御を行なっているため電機子電流が急上昇
することがないからである。
This type of regeneration is possible because the armature current is monitored and fed back to the field control system to perform field strengthening control, so the armature current does not rise suddenly. .

もし遅延回路rで定められた時間内に電機子電流が上昇
しない場合は第2図の電磁接触器CTTI 、CTT2
、CTT3を遅延回路rで定められた時間だけ閉路し
た後に開路する。
If the armature current does not rise within the time determined by the delay circuit r, the electromagnetic contactors CTTI and CTT2 in Fig. 2
, CTT3 is closed for a time determined by the delay circuit r, and then opened.

これは手動ギヤ(通常この種の電気自動車においては電
気的な制御系の他に機械的なギヤによる手動ギヤを備え
ている)Iこよるギヤシフト等が生じた場合、例えば回
生中に手動ギヤをギヤアップしたときに一旦回生が停止
してもアクセル踏込、カ行状態を経ずとも回生が行なわ
れるようにするとともに、手動ギヤシフト時のアクセル
ペダルスイッチのオフ動作により一旦回生状態となって
もカ行運転が継続されていれば直ちに(上記定められた
時間後に)カ行状態に戻るようにするためである。
This means that when a gear shift occurs due to a manual gear (generally, this type of electric vehicle is equipped with a manual gear using a mechanical gear in addition to an electrical control system), for example, the manual gear is shifted during regeneration. Even if regeneration stops when a gear is shifted up, regeneration is performed without the need to press the accelerator or go into gear, and even if regeneration is stopped once in the regeneration state by turning off the accelerator pedal switch during manual gear shifting. This is to ensure that if the operation continues, the vehicle returns to the running state immediately (after the above-determined time).

回生回路が構成されると、回生電流設定値■により加算
点すで電機子電流検出器■8からの回生電流iとつき合
わされる。
When the regenerative circuit is configured, the addition point is already matched with the regenerative current i from the armature current detector 8 using the regenerative current setting value .

そして回生電流iが回生電流設定器■の設定値に比して
大きい場合は、比較器Cは界磁制御用トランジスタCH
をオフさせるような出力を生じ、また逆の場合は界磁電
流制御用トランジスタCHをオンさせるような出力を生
じる。
If the regenerative current i is larger than the setting value of the regenerative current setting device ■, the comparator C is connected to the field control transistor CH.
In the opposite case, an output is generated that turns on the field current control transistor CH.

即ち、最大、最小リミッタ回路g、hの動作はカ行時と
同様で、比較器Cのヒステリシスが回生電流のリップル
値となり、カ行時と逆の制御が行なわれる。
That is, the operations of the maximum and minimum limiter circuits g and h are the same as in the case of row 1, and the hysteresis of comparator C becomes the ripple value of the regenerative current, and control is performed in the opposite manner to that in row 2.

即ち、車両速度が低下するに従い電磁接触器CTT3
、CTT2 、CTTIの順次開路で起動抵抗R2、R
1を順次投入し、それらの速度域において界磁電流を増
大方向(こ制御し所定のトルクを発生させ制動する。
That is, as the vehicle speed decreases, the electromagnetic contactor CTT3
, CTT2, and CTTI are sequentially opened to open the starting resistors R2 and R.
1 in sequence, and the field current is controlled in the increasing direction (in this speed range) to generate a predetermined torque and perform braking.

電動機回転数が低下し、最大リミッタ回路gで整定した
励磁電流を流しても回生電流が減少し、回生電流検出器
Sの設定値以下となると、オア回路tの出力が消滅し電
磁接触器励磁回路pへの保持信号がなくなり、電磁接触
器励磁回路pが消勢されて第2図でCTTl 、CTT
2.CTT3が開路され、電力回生動作が停止し、以後
は機械制動により車両は停止に至る。
When the motor rotation speed decreases and the regenerative current decreases even if the excitation current set by the maximum limiter circuit g is applied, and it becomes below the set value of the regenerative current detector S, the output of the OR circuit t disappears and the magnetic contactor is excited. The holding signal to circuit p disappears, the magnetic contactor excitation circuit p is deenergized, and CTTl, CTT in Fig. 2
2. CTT3 is opened, power regeneration operation is stopped, and the vehicle is subsequently brought to a stop by mechanical braking.

電動機回転数検出器にの出力をレベル検出器Uにより検
出し、回生可能域よりも低い回転数となるとレベル検出
器Uが動作し、加算点すに帰還し界磁電流を零とする。
The output to the motor rotational speed detector is detected by a level detector U, and when the rotational speed becomes lower than the regeneration possible range, the level detector U is activated and returns to the summing point to make the field current zero.

これにより回生できないときの界磁電流損失を防止する
This prevents field current loss when regeneration is not possible.

この回生動作において、回生電流設定値Vはエンジンブ
レーキ相当の場合、固定バイアスとして与え定電流制御
を行なうが、踏力比例制御またはプレーキペタル位置制
御等をエンジンブレーキ相当に付加する場合は回生電流
設定値Vを、踏力検出器又はブレーキペタル位置検出器
等の出力により回生電流設定値■を可変し、制動力を可
変制御する。
In this regenerative operation, when the regenerative current setting value V is equivalent to engine braking, it is applied as a fixed bias to perform constant current control, but when adding pedal force proportional control or brake pedal position control to equivalent to engine braking, the regenerative current setting value The regenerative current setting value (2) is varied by the output of a pedal force detector or a brake pedal position detector, etc., and the braking force is variably controlled.

第6図は他実施例の主回路を示し、この例は起動抵抗R
1,R2の切換えをサイリスタ5CR1。
FIG. 6 shows the main circuit of another embodiment, and this example shows the starting resistance R
1 and R2 are switched by thyristor 5CR1.

5CR2で行なうようにしたものである。This is done in 5CR2.

即ち、この回路では、サイリスタ5CRI 、5CR2
の転流による切換えは回生電流で行ない、また回転数が
回生できる程上昇していない場合は電磁接触器CTTI
で開路する。
That is, in this circuit, thyristors 5CRI and 5CR2
Switching by commutation is performed using regenerative current, and if the rotation speed has not increased enough to enable regeneration, the electromagnetic contactor CTTI
Open the circuit.

また第7図の例は起動抵抗R2と電機子MAに並列に電
磁接触器CTT4を設け、この電磁接触器CTT4閉で
抵抗R2挿入し発電制動ができるようにしたものである
In the example shown in FIG. 7, an electromagnetic contactor CTT4 is provided in parallel with the starting resistor R2 and the armature MA, and when the electromagnetic contactor CTT4 is closed, the resistor R2 is inserted to perform dynamic braking.

即ち、電動機回転数が高い場合は各電磁接触器CTT3
、CTT2 。
In other words, when the motor rotation speed is high, each electromagnetic contactor CTT3
, CTT2.

CTTlを介して電力回生を行ない、回生が不充分にな
ると各電磁接触器を開放し、電磁接触器CTT4を閉成
して発電制動を行なう。
Electric power is regenerated via CTTl, and when regeneration becomes insufficient, each electromagnetic contactor is opened and electromagnetic contactor CTT4 is closed to perform dynamic braking.

上記本発明によればつぎのような効果が得られる。According to the present invention, the following effects can be obtained.

本発明では界磁電流で電機子電流の瞬時値制御を行なう
ので、従来のパターン制御に比し、切換えが起動抵抗の
みでありながらリニア可変域を広くとるばかりでなく、
制動力が段階的でなくリニアに得られるので走行フィー
リングが良好となる。
In the present invention, since the instantaneous value control of the armature current is performed using the field current, compared to conventional pattern control, the linear variable range is not only widened even though only the starting resistance is switched.
Since the braking force is obtained linearly rather than in stages, the driving feeling is good.

また起動抵抗の切換えをアクセル踏込量と回転数の和で
制御するので、抵抗切換え時のパワー変動による走行シ
ョックを可及的に低減できる。
Furthermore, since the switching of the starting resistance is controlled by the sum of the amount of accelerator depression and the rotation speed, it is possible to reduce as much as possible the driving shock caused by power fluctuations when switching the resistance.

また制動用ダイオードを必要としないので、放熱板等の
設備も不用となることから小形、軽量で経済的となる。
Furthermore, since a braking diode is not required, equipment such as a heat sink is also not required, making it compact, lightweight, and economical.

また本発明では界磁電流制御用としてトランジスタ等の
小容量半導体スイッチング素子を用いるが、電機子チョ
ッパ方式のように電機子電流を断絶する大電流チョッパ
を必要としないので、この点でも小形、軽量化が可能で
あり、しかも磁気騒音、電波障害等のおそれがない。
Furthermore, in the present invention, a small-capacity semiconductor switching element such as a transistor is used for field current control, but unlike the armature chopper method, a large current chopper that cuts off the armature current is not required. It is possible to reduce the amount of noise caused by magnetic noise, and there is no risk of electromagnetic interference.

しかも回生は直流電流で行なうため回生効率が高く、従
って1チヤ一ジ走行距離を長くとれる利点がある。
Moreover, since the regeneration is performed using direct current, the regeneration efficiency is high, and the advantage is that the distance traveled per charge can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来電気自動車の主回路図、第2図は本発明の
一実施例の主回路図、第3図は本発明における駆動電動
−の速度特性曲線図、第4図は同実施例のカ行制御回路
のブロック図、第5図は同実施例の回生制御回路のブロ
ック図、第6図及び第7図は他実施例の夫々主回路図で
ある。 E・・・直流電源、MA、MF・・・直流分巻電動機の
電機子と界磁巻線、R1,R2・・・起動抵抗、CTT
l、CTT2 、CTT3 、CTT4・・・電磁接触
器、CH・・・界磁電流制御用トランジスタ、■8・・
・電機子電流検出器、5CR1,5CR2・・・サイリ
スタ。
Fig. 1 is a main circuit diagram of a conventional electric vehicle, Fig. 2 is a main circuit diagram of an embodiment of the present invention, Fig. 3 is a speed characteristic curve diagram of the electric drive according to the present invention, and Fig. 4 is a diagram of the same embodiment. FIG. 5 is a block diagram of the regeneration control circuit of the same embodiment, and FIGS. 6 and 7 are main circuit diagrams of other embodiments. E... DC power supply, MA, MF... Armature and field winding of DC shunt motor, R1, R2... Starting resistance, CTT
l, CTT2, CTT3, CTT4...Magnetic contactor, CH...Transistor for field current control, ■8...
・Armature current detector, 5CR1, 5CR2...thyristor.

Claims (1)

【特許請求の範囲】[Claims] 1 電機子回路に直列の数段の起動抵抗、これらの起動
抵抗をそれぞれ短絡または挿入する短絡要素、閉ループ
の界磁電流制御系をもった分巻または複巻電動機を駆動
電動機とし、カ行時はアクセル踏込量でカ行用電機子電
流を設定し、界磁電流制御系を通して電機子電流制御を
行なうとともに、アクセル踏込量と電動機回転数の信号
を用いて前記短絡要素を動作させ、制動時はアクセル戻
しによって制動用電機子電流を設定し、界磁電流制御系
を通して電機子電流制御を行なうとともに、電機子電流
と電動機回転数の信号を用いて前記短絡要素を開放する
電気自動車制御装置。
1 The driving motor is a shunt-wound or compound-wound motor that has several stages of starting resistors in series with the armature circuit, short-circuiting elements that short-circuit or insert these starting resistors, and a closed-loop field current control system. In this case, the armature current for vehicle travel is set by the amount of accelerator depression, and the armature current is controlled through the field current control system, and the short-circuiting element is operated using the signal of the amount of accelerator depression and the motor rotation speed, and when braking An electric vehicle control device that sets a braking armature current by releasing the accelerator, controls the armature current through a field current control system, and opens the short circuit element using signals of the armature current and motor rotation speed.
JP50023676A 1975-02-26 1975-02-26 Denkijidoushi Yaseigiyosouchi Expired JPS5846923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50023676A JPS5846923B2 (en) 1975-02-26 1975-02-26 Denkijidoushi Yaseigiyosouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50023676A JPS5846923B2 (en) 1975-02-26 1975-02-26 Denkijidoushi Yaseigiyosouchi

Publications (2)

Publication Number Publication Date
JPS5198824A JPS5198824A (en) 1976-08-31
JPS5846923B2 true JPS5846923B2 (en) 1983-10-19

Family

ID=12117072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50023676A Expired JPS5846923B2 (en) 1975-02-26 1975-02-26 Denkijidoushi Yaseigiyosouchi

Country Status (1)

Country Link
JP (1) JPS5846923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867649B2 (en) 2011-07-20 2018-01-16 Olympus Winter & Ibe Gmbh Electrosurgical gripping instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867649B2 (en) 2011-07-20 2018-01-16 Olympus Winter & Ibe Gmbh Electrosurgical gripping instrument

Also Published As

Publication number Publication date
JPS5198824A (en) 1976-08-31

Similar Documents

Publication Publication Date Title
US4479080A (en) Electrical braking control for DC motors
US4423363A (en) Electrical braking transitioning control
US4124812A (en) Braking control apparatus for an electric motor operated vehicle
US3845368A (en) Electric vehicle having programmed field control of separately excited dc drive motors
US3728599A (en) Control system for an electric automotive vehicle
JPS5926722Y2 (en) Sideway switch actuator
US3764870A (en) Control systems for battery operated vehicles
CA1152193A (en) Solid state motor control apparatus and method
US4114076A (en) Control system for a motor having a shunt field winding
US5789896A (en) Apparatus and method for controlling an electric motor having an armature and a series-wound, series-connected field coil that can be separately controlled during regenerative braking
US4375603A (en) Shunt-wound control for on-road vehicle
RU2146074C1 (en) Electric drive system for lifting carriages
US3938013A (en) D. C. Motor control system effecting changes in the connections of the armature and variations in current flow through the field
US3959701A (en) Drive system for electrically driven vehicles
CA1183200A (en) Vehicle propulsion motor control apparatus
JPS5846923B2 (en) Denkijidoushi Yaseigiyosouchi
JP3063787B2 (en) Electric vehicle control device
JP2724565B2 (en) Motor control device for electric vehicles
US3983462A (en) Field shunting control for a DC series motor
US3133237A (en) Rotary converter fed motor control for a vehicle
US4063136A (en) Method and control device for the series and parallel coupling of elements of an electrochemical generator supplying a motor
JPS5812830B2 (en) Control method of thyristor stopper circuit
JP3482965B2 (en) Drive control device for permanent magnet type synchronous motor
JPH0223045Y2 (en)
JPS6211123Y2 (en)