JPS59398A - Freeze-thawing type dehydrator for sludge - Google Patents

Freeze-thawing type dehydrator for sludge

Info

Publication number
JPS59398A
JPS59398A JP11013282A JP11013282A JPS59398A JP S59398 A JPS59398 A JP S59398A JP 11013282 A JP11013282 A JP 11013282A JP 11013282 A JP11013282 A JP 11013282A JP S59398 A JPS59398 A JP S59398A
Authority
JP
Japan
Prior art keywords
sludge
freeze
thawing
heat
thaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11013282A
Other languages
Japanese (ja)
Inventor
Norihiko Inuzuka
犬塚 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11013282A priority Critical patent/JPS59398A/en
Publication of JPS59398A publication Critical patent/JPS59398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To obtain the titled dehydrator which can perform the efficient dehydration of sludge, while contriving to shorten a time required for the freeze-thawing of sludge by rapidly thawing frozen sludge, by adopting the constitution that the thawing of frozen sludge in a freeze-thawing tank is performed with heat formed by an applied electric current. CONSTITUTION:When conc. sludge in a tank 1 for freeze-thawing sludge is freezed, an electric current is applied from an AC power source 14 to each heat-transmitting plate 2. An electric current is then applied between the heat-transmitting plates 2b and 2a, 2c, 2d and 2c, 2c, etc. through the sludge containing large amounts of electrolytes such as Cl<-> and SO4<2-> in its components. Hence, the thawing of the freezed sludge is performed with heat formed by the applied electric currents. By this freeze-thawing sludge dehydrator, the thawing speed of the freezed sludge can be desirably adjusted by controlling the applied electric currents. In addition, the surfaces of the heat-transmitting plates 2 can be held at a low temp. by holding cold brine standing in the heat-transmitting plates 2 during the application of an electric current, so that the corrosion of the heat-transmitting plates 2 caused by the applied electric current can be inhibited. In the drawing, numerals 7, 9, 10 and 11 represent a cooler, an automatic change-over valve, a tank for reserving conc. sludge and a pump for applying an electric current, respectively.

Description

【発明の詳細な説明】 この発明は、下水処理、し尿処理などにおいて発生する
注水率の筒い有機性汚泥の凍結融解式汚泥脱水処理装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a freeze-thaw type sludge dewatering treatment apparatus for cylindrical organic sludge with a water injection rate generated in sewage treatment, human waste treatment, etc.

上記の有機性汚泥は親水性が強く、コロイド状をなして
いるため、そのままでは脱水処理が極めて難しい。しか
し、このような汚泥に対して凍結融解処理を行うと、コ
ロイドの凝集が促進され、汚泥の脱水性が改善されるこ
とが知られている。
The above-mentioned organic sludge is highly hydrophilic and colloidal, so it is extremely difficult to dehydrate it as it is. However, it is known that when such sludge is subjected to freeze-thaw treatment, aggregation of colloids is promoted and dewaterability of the sludge is improved.

第1図及び第2図は凍結融解式汚泥脱水処理装置におけ
る凍結融解槽の縦断面図及び平面図を示したもので、汚
泥を収容する凍結融解槽lの内部には、汚泥を冷却また
は加温するための熱交換器を構成する複数の伝熱板コが
組込まれている。前記凍結融解槽/は、通常、鋼鉄製の
タンクであり、汚泥と接する内面には、汚泥による腐食
からタンクを防食するため、ゴムやエポキシ系塗料によ
る防食ライニング加工3が施されている。また前記伝熱
板λは、凍結融解槽/の内壁に取付けられた絶縁ゴム製
のストッパー亭によって凍結融解槽中に、それぞれの伝
熱板が電気的に独立した状態に保持されている。伝熱板
コは、通常、板厚の薄い金属板を重ね合せて、シーム溶
接などを行って、内部にプラインの通路を形成させたも
のであり、耐圧ゴムホース5によってプラインヘッダー
6と連結されている。
Figures 1 and 2 show a vertical cross-sectional view and a plan view of a freeze-thaw tank in a freeze-thaw sludge dewatering equipment. A plurality of heat transfer plates forming a heat exchanger for heating are incorporated. The freeze-thaw tank is usually a steel tank, and the inner surface in contact with the sludge is coated with an anti-corrosion lining 3 made of rubber or epoxy paint to protect the tank from corrosion caused by the sludge. Further, each of the heat exchanger plates λ is held in an electrically independent state in the freeze-thaw tank by a stopper made of insulating rubber attached to the inner wall of the freeze-thaw tank. A heat transfer plate is usually made by stacking thin metal plates and performing seam welding to form a pline passage inside, and is connected to a pline header 6 by a pressure-resistant rubber hose 5. There is.

第3図は、前記凍結融解槽を有する従来の凍結融解式汚
泥脱水処理装置の凍結融解部の構成な示すフローシート
図である。図において、lおよび6は第1図および第2
図におけるものと同一の融解槽およびプラインヘッダー
である。7およびgはプライン冷却器およびプライン加
熱器であって、これらのプラインは、プライン自動切換
弁9を介してプラインヘッダー6と連結されている。I
Oは濃縮汚泥貯槽、//は給泥ポンプ、/2は給泥を調
節パルプ、/3は凍結融解汚泥槽である。
FIG. 3 is a flow sheet diagram showing the structure of a freeze-thaw section of a conventional freeze-thaw type sludge dewatering treatment apparatus having the freeze-thaw tank. In the figure, l and 6 are
The melter and pline header are the same as in the figure. 7 and g are a pline cooler and a pline heater, and these plines are connected to the pline header 6 via an automatic pline switching valve 9. I
O is a thickened sludge storage tank, // is a sludge feed pump, /2 is a pulp that adjusts the sludge feed, and /3 is a freeze-thaw sludge tank.

上記の凍結融解式汚泥処理装置においては、凍結処理に
先だって濃縮処理を行った汚泥を貯えである濃縮汚泥貯
槽10から給泥ポンプ/lによって、濃縮された汚泥が
凍結融解槽/に充填され、次にプライン冷却器7から冷
ブラインがプラインヘッダー6を通じて伝熱板/2に供
給されて汚泥の凍結が行われ、汚泥の凍結が終了すると
、プライン自動切換弁りが作動し、今度は、ブライン加
熱器gから温ブラインが伝熱板−へ供給されて凍結汚泥
の融解が行われる。
In the freeze-thaw type sludge treatment apparatus described above, the freeze-thaw tank is filled with concentrated sludge from the thickened sludge storage tank 10, which stores sludge that has been subjected to concentration treatment prior to freezing treatment, by the sludge supply pump/l, Next, cold brine is supplied from the pline cooler 7 to the heat exchanger plate/2 through the pline header 6 to freeze the sludge. When the freezing of the sludge is completed, the pline automatic switching valve operates, and this time, the brine is Warm brine is supplied from the heater g to the heat exchanger plate to melt the frozen sludge.

上記の汚泥凍結融解処理は90〜/20分周期で行われ
、凍結融解槽lで凍結融解された汚泥は、凍結融解汚泥
槽/3へ排出され、この凍結融解処理サイクルが繰り返
して行われる。従って、処理汚泥量は凍結融解槽におけ
る汚泥の凍結および融解に要する時間によって決まるの
で、単位時間当りの汚泥処理量を増加させるためには、
汚泥の凍結融解時間を短縮する必要があるが、汚泥の凝
集性を向上させ、汚泥粒子の粗大化を行わせるには適正
な凍結時間が存在するため、単にプライン冷却器の性能
を上げて凍結時間をいたづらに短縮させることはできな
い。
The above-mentioned sludge freeze-thaw treatment is performed at a cycle of 90 to 20 minutes, and the sludge frozen and thawed in freeze-thaw tank 1 is discharged to freeze-thaw sludge tank /3, and this freeze-thaw treatment cycle is repeated. Therefore, the amount of sludge treated is determined by the time required for freezing and thawing the sludge in the freeze-thaw tank, so in order to increase the amount of sludge treated per unit time,
It is necessary to shorten the freezing and thawing time of sludge, but since there is an appropriate freezing time to improve the flocculation of sludge and coarsen the sludge particles, it is necessary to simply increase the performance of the line cooler and freeze the sludge. Time cannot be shortened arbitrarily.

このため従来の凍結融解式汚泥脱水処理装置では、第3
図に示すように、コ台の凍結融解槽を並列に設け、凍結
と融解が交互に繰り返されるように構成されているが、
この方式では凍結時間と融解時間を等しくしなければな
らす、汚泥の凍結融解時間は凍結時間によって律速され
てしまうので、汚泥の単位時間当りの処理量を増大させ
るには、凍結融解槽の増設に頼らなければならないが、
凍結融解槽の増設においては、増設コストや増設スペー
スの問題が生じるという欠点がある。また、凍結融解槽
の伝熱板の腐食反応速度は温度による影響が大きく、冷
ブラインに対しては、殆んど無視できるが、温ブライン
の場合には、無視できないという問題も未解決とされて
いる。この発明は、とくに凍結汚泥の迅速融解によって
凍結融解処理めることによって温ブラインによる伝熱板
の腐食の問題を解消した凍結融解式汚泥脱水処理装置を
提供することを主たる目的としているものである。
For this reason, in conventional freeze-thaw sludge dewatering equipment, the third
As shown in the figure, several freezing and thawing tanks are installed in parallel, and the structure is such that freezing and thawing are repeated alternately.
In this method, the freezing time and thawing time must be equal.The freezing and thawing time of sludge is determined by the freezing time, so in order to increase the amount of sludge processed per unit time, it is necessary to add a freeze-thaw tank. I have to rely on it, but
When adding a freeze-thaw tank, there are drawbacks such as the cost and space needed for the addition. In addition, the corrosion reaction rate of the heat exchanger plate in a freeze-thaw tank is greatly affected by temperature, and while it can be ignored for cold brine, it cannot be ignored for hot brine, an unresolved problem. ing. The main object of the present invention is to provide a freeze-thaw sludge dewatering device that solves the problem of corrosion of heat exchanger plates caused by hot brine by performing a freeze-thaw treatment by rapidly thawing frozen sludge. .

すなわち、この発明は、個々に独立した複数個の伝熱板
によって構成された熱交換器が組込まれた汚泥凍結融解
槽において、前記伝熱板の互いに対向する面が異る電極
となるように、伝熱板が2群以上に分けられ、電極間に
交流電流を通電することによって、凍結融解槽中の凍結
汚泥が通電加熱によって融解されるようにした構成に特
徴を有するものである。
That is, the present invention provides a sludge freeze-thaw tank incorporating a heat exchanger constituted by a plurality of individually independent heat exchanger plates, in which mutually opposing surfaces of the heat exchanger plates serve as different electrodes. This system is characterized by a structure in which the heat transfer plates are divided into two or more groups, and by passing an alternating current between the electrodes, the frozen sludge in the freeze-thaw tank is melted by electrical heating.

以下、この発明をその実施例を示した図面にもとすいて
詳しく説明する。第弘図は、この発明の凍結融解式汚泥
脱水処理装置の凍結融解部の構成を牟すフローシート図
、第S図はこの発明の一実施例における凍結融解槽中の
伝熱板と交流電源との接続手段を示す概略図である。
Hereinafter, the present invention will be explained in detail with reference to drawings showing embodiments thereof. Figure 1 is a flow sheet diagram illustrating the structure of the freeze-thaw section of the freeze-thaw sludge dewatering equipment of the present invention, and Figure S is a diagram showing the heat transfer plate in the freeze-thaw tank and the AC power source in an embodiment of the present invention. FIG.

図において、/、2.t〜/3は、第1図ないし第3図
におけるものと同一のものである。/弘は、伝熱板−へ
給電するための交流電源である。
In the figure, /,2. t~/3 is the same as in FIGS. 1 to 3. /Hiro is an AC power supply for supplying power to the heat exchanger plate.

第S図に示した結線状態においては、伝熱板2a。In the connection state shown in FIG. S, the heat exchanger plate 2a.

2 c 、 2.e・・・で一方の電極が形成され、2
k)、2d。
2 c, 2. One electrode is formed at e..., and 2
k), 2d.

2f・・・でもう一方の電極が形成されている。この発
明においては、凍結融解槽に充填された汚泥が凍結処理
されるまでの工程は、前述した従来の装置と同じである
。この発明の装置では、凍結融解槽中の汚泥が凍結する
と、第S図に示すように、交流電源/lから各々の伝熱
板に給電が行われる。
The other electrode is formed at 2f... In this invention, the steps up to the freezing treatment of the sludge filled in the freeze-thaw tank are the same as those of the conventional apparatus described above. In the apparatus of this invention, when the sludge in the freeze-thaw tank freezes, power is supplied to each heat exchanger plate from the AC power source /l, as shown in FIG. S.

汚泥は、その成分中に塩素イオンや硫酸イオン、ナトリ
ウムイオンなどの電解質を多量に含有しているので、伝
熱板2bと伝熱板、2a、20間、伝熱板2dと伝熱板
2c、20間等に汚泥を介して電流が流れ、その通電電
流による発熱によって凍結汚泥の融解が行われる。
Sludge contains a large amount of electrolytes such as chloride ions, sulfate ions, and sodium ions in its components, so between the heat exchanger plates 2b and 2a and 20, and between the heat exchanger plates 2d and 2c. , 20, etc., through the sludge, and the frozen sludge is thawed by the heat generated by the current.

しかして、上記の如く構成された凍結融解式汚泥脱水処
理装置によれば、凍結汚泥の融解速度は、通t″Nt流
を制御することによって任意に調整できる。また通電中
は、伝熱板内に冷プラインを滞留保持させることによっ
て、伝熱板の表面は低温に維持されるので、通電による
伝熱板の腐食を防止することができる。通電電源として
は、直流電源または交流電源を共に使用することが可能
であるが、電極となる伝熱板の通電による腐食を考慮す
ると、直流電源の場合、陽極となる電極が腐食しやすい
ので、直流電源は不適当であり、流電腐食の影響の少な
い交流電源が適している。特に/K)1z以上の高周波
電流の場合には、15tE電腐食の問題が殆んどない。
According to the freeze-thaw sludge dewatering apparatus configured as described above, the melting rate of frozen sludge can be arbitrarily adjusted by controlling the flow t″Nt. By retaining and retaining the cold prine inside, the surface of the heat exchanger plate is maintained at a low temperature, which prevents corrosion of the heat exchanger plate due to energization.As the energizing power source, either a DC power source or an AC power source can be used. However, considering the corrosion of the heat exchanger plates that serve as electrodes due to electricity, DC power supplies are unsuitable because the electrodes that serve as anodes are likely to corrode, and they are not suitable for use due to galvanic corrosion. An AC power supply with little influence is suitable.In particular, in the case of a high frequency current of /K)1z or more, there is almost no problem of 15tE galvanic corrosion.

第6図は、この発明の他の実施例における凍結融解槽中
の伝熱板と交流電源との接続手段を示した概略図であっ
て図において、/、2a〜2f。
FIG. 6 is a schematic diagram showing connection means between a heat exchanger plate in a freeze-thaw tank and an AC power source in another embodiment of the present invention, and in the figure, /, 2a to 2f.

/ダは第S図におけるものと同一のものである。/da is the same as in FIG.

以上に述べたように、この発明によれは、凍結融解式汚
泥脱水処理装置において、凍結融解槽中の凍結汚泥の融
解を通電加熱によって行う構成とされているので、凍結
汚泥の迅速融解による汚泥の凍結融解処理時間の短縮に
よる効率化を有効に行うことができ、しかも凍結汚泥の
融解に高温のブラインを使用しなくてよいから、温プラ
インによる腐食の問題も生じないなど、従来の凍結融解
槽における欠点をすべて解消することができる。
As described above, in the freeze-thaw type sludge dewatering treatment apparatus, the frozen sludge in the freeze-thaw tank is melted by electrical heating, so that the sludge is sludged by rapid melting of the frozen sludge. It is possible to effectively improve efficiency by shortening the freeze-thaw processing time, and since there is no need to use high-temperature brine to thaw frozen sludge, there is no problem of corrosion due to warm prine, compared to conventional freeze-thaw. All defects in tanks can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の凍結融解式汚泥脱水処理装置における
凍結融解槽の縦断面図、第2図は横断面図、第3図は従
来の凍結融解式汚泥脱水処理装置の凍結融解部の構成を
示すフローシート図、第ダ図はこの発明による凍結融解
部の構成を示すフローシート図、第5図はこの発明の実
施例における凍結融解槽中の伝熱板と交流電源との接続
手段を示す平面図、第6図は他の実施例における凍結融
解槽中の伝熱板と交流電源との接続手段を示す平面図で
ある。 /・・凍結融解槽、コ・・伝熱板、3・・防食加工ライ
ナー、ダ・・ストッパー、S・・ゴムホース、6・・プ
ラインヘッダー、?・・冷却器、g・・加熱器、?・・
自動切換弁、10・・濃縮汚泥貯槽、l/・・給泥ポン
プ、/2・・給泥量調節パルプ、/3・・凍結融解汚泥
槽、/l・・交流電源、2a−λf・・伝熱板。 なお、図中、同一符号は、同一または相当部分を示す。 代理人  葛  野  信  −
Figure 1 is a vertical cross-sectional view of a freeze-thaw tank in a conventional freeze-thaw sludge dewatering equipment, Figure 2 is a cross-sectional view, and Figure 3 is the configuration of the freeze-thaw section of a conventional freeze-thaw sludge dewatering equipment. FIG. 5 is a flow sheet diagram showing the configuration of the freeze-thaw section according to the present invention, and FIG. 5 is a flow sheet diagram showing the configuration of the freeze-thaw section according to the present invention. FIG. 6 is a plan view showing a connection means between a heat exchanger plate in a freeze-thaw tank and an AC power source in another embodiment. /・・Freeze-thaw tank, ・・Heat exchange plate, 3.・Anti-corrosion treated liner, ・・Stopper, S.・Rubber hose, 6.・・Pline header, ? ...cooler, g...heater,?・・・
Automatic switching valve, 10... Thickened sludge storage tank, l/... Sludge supply pump, /2... Sludge supply amount adjustment pulp, /3... Freeze-thaw sludge tank, /l... AC power supply, 2a-λf... heat transfer plate. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 個々に独立した複数個の伝熱板によって構成された熱交
換器が組込まれた汚泥凍結融解槽において、前記伝熱板
の互いに対向する面が異なる電極となるように前記伝熱
板が少なくとも2群に分は火 られ、前記電極間に廓流電流を通電することによって、
前記汚泥凍結融解槽中の凍結汚泥が通電加熱によって融
解されるように構成されていることを特徴とする凍結融
解式汚泥脱水処理装置。
[Scope of Claims] In a sludge freeze-thaw tank incorporating a heat exchanger constituted by a plurality of individually independent heat exchanger plates, the mutually opposing surfaces of the heat exchanger plates serve as different electrodes. By heating at least two groups of heat transfer plates and passing a cross current between the electrodes,
A freeze-thaw type sludge dewatering device, characterized in that the frozen sludge in the sludge freeze-thaw tank is thawed by electrical heating.
JP11013282A 1982-06-25 1982-06-25 Freeze-thawing type dehydrator for sludge Pending JPS59398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11013282A JPS59398A (en) 1982-06-25 1982-06-25 Freeze-thawing type dehydrator for sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11013282A JPS59398A (en) 1982-06-25 1982-06-25 Freeze-thawing type dehydrator for sludge

Publications (1)

Publication Number Publication Date
JPS59398A true JPS59398A (en) 1984-01-05

Family

ID=14527831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11013282A Pending JPS59398A (en) 1982-06-25 1982-06-25 Freeze-thawing type dehydrator for sludge

Country Status (1)

Country Link
JP (1) JPS59398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108996878A (en) * 2018-10-15 2018-12-14 哈尔滨商业大学 Sludge freeze thawing dewatering system and method based on solar semiconductor refrigeration heating technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108996878A (en) * 2018-10-15 2018-12-14 哈尔滨商业大学 Sludge freeze thawing dewatering system and method based on solar semiconductor refrigeration heating technology

Similar Documents

Publication Publication Date Title
JP4976544B2 (en) Electroosmosis dehydrator
JPS59398A (en) Freeze-thawing type dehydrator for sludge
JPH0335384B2 (en)
US20220258213A1 (en) Dissolving silicate scale
EP0231178A1 (en) Corrosion protection for heat exchangers.
DE717389C (en) Increased performance of electrical collectors through the supply of heat
CN111947120A (en) Apparatus and method for heating molten salts
KR19990054160A (en) Fluid heating electric boiler using ion kinetic energy
CN111947118A (en) Device for heating molten salt
JP2012232264A (en) Electrode structure of scale removing apparatus
JP2010071557A (en) Heat exchanger for fuel cell and method for manufacturing the same
JPH0883991A (en) Cooling device of electric apparatus
JP2569824B2 (en) Cooling method of battery group for electrolyte circulation type zinc monobromide laminated secondary battery
JPS5931891A (en) Method for electrolyzing inside of aluminum vessel
JPS6320499A (en) Plating device for pipe inside
CN212339187U (en) Device for heating molten salt
CN217628643U (en) Electrolyte circulation system and water electrolysis hydrogen production system
JPH037392Y2 (en)
JPS6063399A (en) Method for cooling liquid of electrolytic cell for anodic oxidation
JPS6260890A (en) Device for plating inner wall of heat-transfer pipe
JPS62247098A (en) Method for plating inside of tube
JPH0351672Y2 (en)
CN205954122U (en) Magnesium electrolysis groove heat sink
CN118062976A (en) Corrosion control method for Fe-Al bimetallic system of SCAL indirect air-cooling circulating water system
JPH0782870B2 (en) Fuel cell cooling water system