JP2012232264A - Electrode structure of scale removing apparatus - Google Patents

Electrode structure of scale removing apparatus Download PDF

Info

Publication number
JP2012232264A
JP2012232264A JP2011103278A JP2011103278A JP2012232264A JP 2012232264 A JP2012232264 A JP 2012232264A JP 2011103278 A JP2011103278 A JP 2011103278A JP 2011103278 A JP2011103278 A JP 2011103278A JP 2012232264 A JP2012232264 A JP 2012232264A
Authority
JP
Japan
Prior art keywords
electrode
electrode plate
cooling water
wiring terminal
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011103278A
Other languages
Japanese (ja)
Other versions
JP4999022B1 (en
Inventor
Hiroshi Tanaka
博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative Design & Tech Inc
Innovative Design and Technology Inc
Original Assignee
Innovative Design & Tech Inc
Innovative Design and Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Design & Tech Inc, Innovative Design and Technology Inc filed Critical Innovative Design & Tech Inc
Priority to JP2011103278A priority Critical patent/JP4999022B1/en
Application granted granted Critical
Publication of JP4999022B1 publication Critical patent/JP4999022B1/en
Publication of JP2012232264A publication Critical patent/JP2012232264A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode structure of a scale removing apparatus for removing a scale component, the electrode structure improving efficiency of electrolytic treatment and having improved maintainability by avoiding local concentration of current density caused by arrangement constitution of a wiring terminal connected with an electrode plate.SOLUTION: The scale removing apparatus 10 includes an electrolytic cell 12 which carries out electrolytic treatment of cooling water that is circulated and supplied to a heat exchanger 11. The electrode structure of the scale removing apparatus 10 is constituted so as to include: a plurality of electrode plates 13a to 13d which are arranged in parallel to each other in the electrolytic cell 12 with a predetermined electrode space and which have alternately exchanged polarity; wiring terminals 14a to 14d each of which is provided at an upper end of the electrode plate immersed in the cooling water and is thicker than thickness 2t of the electrode plate where voltage is applied from a power source part 15b; and a notch part 22 which is formed at an upper end of the electrode plate facing the wiring terminal of adjacent electrode plate.

Description

本発明は、配管内などへのスケール付着が問題となる熱交換設備において、その冷却水中に含まれるスケール成分を析出除去するためのスケール除去装置の電極構造に関する。   The present invention relates to an electrode structure of a scale removing device for depositing and removing scale components contained in cooling water in a heat exchange facility in which scale adhesion in a pipe or the like becomes a problem.

クーリングタワーなどの熱交換器などに冷却水を循環させる冷却水循環装置は、熱交換器によって温められた冷却水を冷却塔から散布して冷却し、再び熱交換器に循環させるものである。このような冷却水循環装置においては、その配管の内壁に不溶性のカルシウム塩などがスケールとして付着して、配管の詰まりや冷却効率の低下が生じる。このため、冷却水に殺菌剤やスケール防止剤等の薬剤を添加することが一般的である。
また、水の蒸発によるスケールの付着を防止するために冷却水の硬度を常時モニタして、規定値以上の硬度になるとクーリングタワー内の冷却水を入れ換えるといったことも行われている。
A cooling water circulation device that circulates cooling water to a heat exchanger such as a cooling tower scatters the cooling water heated by the heat exchanger from the cooling tower, cools it, and circulates it again to the heat exchanger. In such a cooling water circulation device, insoluble calcium salt or the like adheres to the inner wall of the pipe as a scale, resulting in clogging of the pipe or a decrease in cooling efficiency. For this reason, it is common to add chemical | medical agents, such as a disinfectant and a scale inhibitor, to cooling water.
In addition, in order to prevent the scale from adhering due to water evaporation, the hardness of the cooling water is constantly monitored, and when the hardness exceeds a specified value, the cooling water in the cooling tower is replaced.

しかし、近年では環境汚染防止という観点から薬剤の使用が自粛されるようになり、電解処理を利用したスケール付着防止方法が開発されている。例えば、特許文献1(再公表特許WO2006/027825号公報)には、冷却水循環経路に設けられた冷却水を貯留する電解槽と、前記電解槽内に設置された一対の電極と、前記一対の電極板間に電圧を印加する電圧源と、前記一対の電極板間に電圧を印加することにより前記電解槽内に貯留された前記冷却水の電解処理を行う電解装置とを備えた冷却水循環装置が記載されている。   However, in recent years, the use of chemicals has been restrained from the viewpoint of environmental pollution prevention, and a scale adhesion prevention method utilizing electrolytic treatment has been developed. For example, Patent Document 1 (Republished Patent WO 2006/027825) discloses an electrolytic cell for storing cooling water provided in a cooling water circulation path, a pair of electrodes installed in the electrolytic cell, and the pair of electrodes. A cooling water circulation device comprising: a voltage source that applies a voltage between the electrode plates; and an electrolysis device that performs electrolysis of the cooling water stored in the electrolytic cell by applying a voltage between the pair of electrode plates Is described.

また、特許文献2(特開2010−69366号公報)には、電解槽を備えたスケール除去装置において、複数の電極板間に定電流を供給して電解処理する際に、電源部の電源電圧の変化に基づいて電極板により形成される接続回路構成を切り換えて制御することによって、電極構造などにおける耐用性とメンテナンス性を高めるようにした技術が記載されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2010-69366) describes a power supply voltage of a power supply unit when performing electrolysis by supplying a constant current between a plurality of electrode plates in a scale removing device provided with an electrolytic cell. A technique is described that improves the durability and maintainability of the electrode structure and the like by switching and controlling the connection circuit configuration formed by the electrode plate based on the change of the above.

再公表特許WO2006/027825号公報Republished patent WO2006 / 027825 特開2010−69366号公報JP 2010-69366 A

しかしながら、スケール除去装置における従来の電極構造では、スケール除去装置の大規模化や処理量の増大に伴って電極板を流れる電流量が大きくなるため、電極板に接続する配線端子を太くする必要がある。これによって、これらの配線端子に対向する隣接した電極板の特定箇所に電流が集中して、均一で安定したスケールの析出が妨げられ、処理効率が悪化したり電極板にかかるメンテナンスが増加したりするという課題があった。
本発明は前記従来の課題を解決するためになされたもので、冷却水中のスケール成分を電解析出させてスケールを除去するスケール除去装置の電極構造において、電極板に接続される配線端子の配置構成に伴う局部的な電流密度の集中を回避して、電解処理の効率化と電極構造におけるメンテンナンス性の向上を図ることのできるスケール除去装置の電極構造を提供することを目的とする。
However, in the conventional electrode structure in the scale removing device, the amount of current flowing through the electrode plate increases as the scale removing device becomes larger and the amount of processing increases, so it is necessary to make the wiring terminals connected to the electrode plate thicker. is there. As a result, current concentrates on specific locations on the adjacent electrode plates facing these wiring terminals, preventing uniform and stable scale deposition, resulting in poor processing efficiency and increased maintenance on the electrode plates. There was a problem to do.
The present invention has been made to solve the above-described conventional problems, and in the electrode structure of the scale removing device for removing the scale by electrolytically depositing the scale component in the cooling water, the arrangement of the wiring terminals connected to the electrode plate An object of the present invention is to provide an electrode structure of a scale removing device that can avoid the concentration of local current density due to the configuration and improve the efficiency of electrolytic treatment and the maintenance of the electrode structure.

(1)前記従来の課題を解決するため、本発明のスケール除去装置の電極構造は、
熱交換設備に循環供給される冷却水を電解処理する電解槽を備えたスケール除去装置の電極構造であって、
前記電解槽内に互いに所定の電極間隔を有しその極性を交互に切り替えて並列配置される複数の電極板と、前記冷却水中に浸漬される前記電極板の上端に設けられて電源部からの電圧が印加される電極板肉厚より厚肉の配線端子と、隣接する電極板の配線端子に対向する電極板の上端に形成される切欠部とを、有することを特徴とする。
(1) In order to solve the conventional problem, the electrode structure of the scale removing device of the present invention is:
An electrode structure of a scale removing device including an electrolytic cell for electrolytically processing cooling water circulated and supplied to a heat exchange facility,
A plurality of electrode plates arranged in parallel with each other having a predetermined electrode interval in the electrolytic cell and alternately switching their polarities, and provided at the upper end of the electrode plate immersed in the cooling water from the power supply unit It has a wiring terminal thicker than the thickness of the electrode plate to which a voltage is applied, and a notch formed at the upper end of the electrode plate facing the wiring terminal of the adjacent electrode plate.

(2)本発明は前記(1)のスケール除去装置の電極構造において、
前記切欠部の幅方向の長さ2hが、
電極板の厚み:2t、配線端子の半径:r、電極板の間隔:dとすると、
2h≧2((2d+r+t)(r−t))1/2、であることを特徴とする。
(2) The present invention relates to the electrode structure of the scale removing device of (1),
The length 2h in the width direction of the notch is
When the thickness of the electrode plate is 2t, the radius of the wiring terminal is r, and the distance between the electrode plates is d,
2h ≧ 2 ((2d + r + t) (r−t)) 1/2 .

本発明によれば、前記電解槽内に互いに所定の電極間隔を有し並列配置される複数の電極板と、前記冷却水中に浸漬される前記電極板の上端に設けられて電源部からの電圧が印加される電極板肉厚より厚肉の配線端子と、隣接する電極板の配線端子に対向する電極板の上端に形成される切欠部とを、有するので、電極板に接続される配線端子の配置構成に伴う局部的な電流密度の集中を回避できる。したがって、電解処理の効率化と電極構造におけるメンテンナンス性の向上を図ることができる。   According to the present invention, a plurality of electrode plates arranged in parallel with each other at a predetermined electrode interval in the electrolytic cell, and a voltage from a power supply unit provided at an upper end of the electrode plate immersed in the cooling water. The wiring terminal connected to the electrode plate has a wiring terminal thicker than the electrode plate thickness to which is applied and a notch formed on the upper end of the electrode plate facing the wiring terminal of the adjacent electrode plate It is possible to avoid local current density concentration due to the arrangement configuration. Therefore, it is possible to improve the efficiency of electrolytic treatment and improve the maintainability of the electrode structure.

実施例に係るスケール除去装置の概略図である。It is the schematic of the scale removal apparatus which concerns on an Example. 実施例に係るスケール除去装置の電解槽における各電極板の使用状態を示す説明図である。It is explanatory drawing which shows the use condition of each electrode plate in the electrolytic cell of the scale removal apparatus which concerns on an Example. (a)は実施例に係る電極板の構成を示す平面図であり、(b)は正面図である。(A) is a top view which shows the structure of the electrode plate which concerns on an Example, (b) is a front view. (a)は実施例に係る電極板における切欠部幅の決定方法を示す平面図であり、(b)はその詳細図であり、(c)は部分拡大説明図である。(A) is a top view which shows the determination method of the notch part width | variety in the electrode plate which concerns on an Example, (b) is the detailed drawing, (c) is a partial expansion explanatory drawing.

本実施形態に係るスケール除去装置の電極構造は、熱交換設備に循環供給される冷却水を電解処理する電解槽を備えたスケール除去装置の電極構造であって、前記電解槽内に互いに所定の電極間隔を有し並列配置される複数の電極板と、前記冷却水中に浸漬される前記電極板の上端に設けられて電源部からの電圧が印加される電極板肉厚より厚肉の配線端子と、隣接する電極板の配線端子に対向する電極板の上端に略矩形状に形成される切欠部とを、有する。   The electrode structure of the scale removing apparatus according to the present embodiment is an electrode structure of a scale removing apparatus provided with an electrolytic cell that electrolyzes cooling water that is circulated and supplied to a heat exchange facility. A plurality of electrode plates arranged in parallel with an electrode interval, and a wiring terminal thicker than the electrode plate thickness provided at the upper end of the electrode plate immersed in the cooling water and applied with a voltage from the power supply unit And a notch formed in a substantially rectangular shape at the upper end of the electrode plate facing the wiring terminal of the adjacent electrode plate.

このような切欠部を電極板に設けることによって、冷却水中のスケール成分を電解析出してスケールを除去するスケール除去装置の電極構造において、電極板に接続される配線端子の配置構成に伴って発生する局部的な電流密度の集中や変動の要因を回避して、電解処理の効率化と電極構造におけるメンテンナンス性の向上を図ることができる。   In the electrode structure of a scale removal device that removes scale by electrolytically depositing scale components in cooling water by providing such a notch in the electrode plate, this occurs with the arrangement of wiring terminals connected to the electrode plate. Therefore, it is possible to avoid the factor of local concentration and fluctuation of the current density, and to improve the efficiency of the electrolytic treatment and the maintenance of the electrode structure.

冷却水を処理するスケール除去装置は、例えばエアコンやボイラー、冷凍機、冷却加熱器、クーリングタワーなどの熱交換設備に付設され、循環供給される冷却水中に含まれるカルシウムイオンなどのスケール成分を電解処理により析出させて、冷却水中のスケール成分を除去するための装置である。   The scale removal device that processes cooling water is attached to heat exchange equipment such as air conditioners, boilers, refrigerators, cooling heaters, and cooling towers, and electrolyzes scale components such as calcium ions contained in circulating cooling water. Is an apparatus for removing scale components in cooling water.

電解槽は、例えば、熱交換設備から冷却水が供給される供給口と、電解処理された冷却水の排出口とを備え、熱交換設備に供給される冷却水を電解処理する容器体である。このような電解槽には、複数枚の電極板が互いに並行配置されているとともに、必要に応じて隔膜板を電極板間に配置して電解セル状に形成させることができる。   The electrolytic cell is a container body that includes, for example, a supply port to which cooling water is supplied from a heat exchange facility and a discharge port for electrolyzed cooling water, and electrolyzes the cooling water supplied to the heat exchange facility. . In such an electrolytic cell, a plurality of electrode plates are arranged in parallel to each other, and a diaphragm plate can be arranged between the electrode plates as necessary to form an electrolytic cell.

電極板は、略矩形板状に形成された金属薄肉導電体であって、その電極材質に関して特に制限はないが、例えば、チタンや銅などの基材表面にプラチナめっき層を形成したものや、プラチナとイリジュームの複合めっき層を設けたものなどを適用することもできる。プラチナの表面をイリジューム等の貴金属で被うことにより、その触媒作用により電気化学反応を促進させると共に陽極酸化による電極の溶出を少なくし電極の消耗を抑えることができる。
また、カーボン等の冷却水への電極板の成分の溶出が起こらないものが使用できる。
The electrode plate is a thin metal conductor formed in a substantially rectangular plate shape, and there is no particular limitation on the electrode material, for example, a platinum plating layer formed on the substrate surface such as titanium or copper, Those having a composite plating layer of platinum and iridium can also be applied. By covering the surface of platinum with a noble metal such as iridium, the catalytic reaction is promoted, and the electrode elution due to anodization is reduced, so that consumption of the electrode can be suppressed.
Moreover, what does not elute the component of the electrode plate to cooling water, such as carbon, can be used.

配線端子は、前記冷却水中に浸漬される略矩形板状に形成された電極板上端の所定位置に溶接または機械的に圧着して固定される金属リード線などを含む電極板との接合構成部材であり、電極板の肉厚よりも厚肉となっており、電源部からの電圧が金属リード線などを介して印加されるようになっている。このような配線端子を電極板に接続する方法としては、例えば、ろう付けや溶接などの手段がある。
配線端子は電極板(厚み2t)よりも大きい厚み(半径r)で電極板上に突出して取り付けられている。
これによって、配線端子に隣接する電極板の電場構成が変化して、特定位置における電極板の電流密度が不均一化、偏在化することによって、電極板が局所的に消耗したり、複数の電極板間に定電流を供給して電解処理する制御性が困難となったりするが、後述する切欠部を設けることによって、上記問題を解決することができる。
The wiring terminal is a joining component member with an electrode plate including a metal lead wire or the like that is fixed by welding or mechanical pressure bonding to a predetermined position of the upper end of the electrode plate formed in a substantially rectangular plate shape immersed in the cooling water. The thickness of the electrode plate is greater than that of the electrode plate, and the voltage from the power source is applied via a metal lead wire or the like. As a method for connecting such a wiring terminal to the electrode plate, for example, there are means such as brazing and welding.
The wiring terminal has a thickness (radius r) larger than the electrode plate (thickness 2t) and is mounted on the electrode plate so as to protrude.
As a result, the electric field configuration of the electrode plate adjacent to the wiring terminal changes, and the current density of the electrode plate at a specific position becomes non-uniform and unevenly distributed. Although it is difficult to control the electrolytic treatment by supplying a constant current between the plates, the above problem can be solved by providing a notch portion described later.

なお、本実施形態におけるスケール除去装置にリレーボックス部を設けることができる。これによって、冷却水を電解処理して熱交換設備に循環供給する電解槽内に設置された複数の電極板と、これらの電極板間に電圧を印加する電源部とにより形成される接続回路構成を適宜切り換えることができる。こうして、電極板間に定電流を供給する定電流制御における前記電源部の電源電圧の変化に基づいて前記リレーボックス部をコンピュータなどの電解制御部を介して制御することができる。
すなわち、冷却水中のスケール成分を電解析出してスケール成分を除去する定電流制御において、電極の電源部に過大な電圧変化負荷によるストレスを生じさせることがなく、耐用性とメンテナンス性に優れた冷却水のスケール除去装置を提供できる。
また、被処理水を電解装置に通水して電解処理することにより、スケール成分を電極表面に析出させて水中から除去する際の制御操作性や耐用性に優れているとともに、スケールの析出除去を安定して行うことが可能となる。
In addition, a relay box part can be provided in the scale removal apparatus in this embodiment. As a result, a connection circuit configuration formed by a plurality of electrode plates installed in an electrolytic bath that electrolyzes cooling water and circulates and supplies it to a heat exchange facility, and a power supply unit that applies a voltage between these electrode plates Can be switched as appropriate. Thus, the relay box unit can be controlled via the electrolysis control unit such as a computer based on the change in the power supply voltage of the power supply unit in the constant current control for supplying a constant current between the electrode plates.
In other words, in constant current control in which the scale components in the cooling water are electrolytically deposited to remove the scale components, the power supply part of the electrode does not cause stress due to an excessive voltage change load, and has excellent durability and maintainability. A water descaling device can be provided.
In addition, by passing the water to be treated through an electrolyzer and carrying out electrolytic treatment, it is excellent in control operability and durability when the scale components are deposited on the electrode surface and removed from the water, and the scale is removed by precipitation. Can be performed stably.

回路構成を切り変えるためのリレーボックス部は、例えば、サイリスタなどの半導体素子を用いて小電力の入力で大きな出力電圧をオンオフするソリッドステートリレーや、複数の継電器を組み合わせてパッケージにしたプログラムリレーなどを内蔵した継電装置であって、電解槽中の各電極板と、これら各電極板に電力を供給するための電源部とにそれぞれ接続されている。
これによって、操作ボタンやパソコン等を介して継電器の機能や組み合わせを変更して内部リレーを駆動制御することで、電源部と各電極板間に設定される接続回路構成を所定のパターン(例えば、電極板の直列回路構成、並列回路構成)に切り換える機能を有している。
The relay box section for switching the circuit configuration is, for example, a solid state relay that turns on and off a large output voltage with a small power input using a semiconductor element such as a thyristor, a program relay that is packaged by combining multiple relays, etc. Is connected to each electrode plate in the electrolytic cell and a power supply unit for supplying power to each electrode plate.
Thus, the connection circuit configuration set between the power supply unit and each electrode plate is changed to a predetermined pattern (for example, A function of switching to a series circuit configuration and a parallel circuit configuration of electrode plates).

電源部は、前記リレーボックス部により選択設定された電極板間に電圧を印加するための装置である。例えば、スイッチング前の直流電圧が60Vとして、0N時間が50%、OFF時間が50%としたとき、その後、矩形波に対して整流(積分処理)を行うことで出力は30Vとなり、同じようにON時間10%、OFF時間90%の場合、出力電圧を6Vにする機能を有している。このように半導体のON、OFFの時間比率を変えることで出力電圧の制御を行うことができる。   The power supply unit is a device for applying a voltage between the electrode plates selected and set by the relay box unit. For example, if the DC voltage before switching is 60V, the 0N time is 50%, and the OFF time is 50%, then the output is 30V by performing rectification (integration processing) on the rectangular wave, and so on. When the ON time is 10% and the OFF time is 90%, the output voltage is set to 6V. Thus, the output voltage can be controlled by changing the ON / OFF time ratio of the semiconductor.

電解制御部は、例えば、CPUを備えた制御基盤などであり、前記電源部の電源電圧の変化を検知するためのセンサがそのインターフェースボードなどを介して接続されており、前記電極板間に定電流を供給する定電流制御における前記電源部の電源電圧の変化に基づいて、前記リレーボックス部を制御する。これによって、電圧が負荷される複数の電極板による回路構成を選択して、定電流制御における電源部の負荷を軽減する機能を有している。   The electrolysis control unit is, for example, a control board equipped with a CPU, and a sensor for detecting a change in power supply voltage of the power supply unit is connected via an interface board or the like, and is fixed between the electrode plates. The relay box unit is controlled based on a change in power supply voltage of the power supply unit in constant current control for supplying current. This has a function of reducing the load of the power supply unit in constant current control by selecting a circuit configuration with a plurality of electrode plates loaded with voltage.

切欠部は、隣接する電極板の配線端子に対向する電極板の上端に、切欠幅2h、深さeの略矩形状に開口して形成される電極板開口部分であり、本実施形態のスケール除去装置の電極構造においては、前記切欠部の幅方向の長さ2hが、
電極板の厚み:2t、配線端子の半径:r、電極板の間隔:dとすると、
2h≧2((2d+r+t)(r−t))1/2、とすることが好ましい。
これによって、配線端子が電極板の厚みより大きい場合において、この配線端子に近接して対向する電極板の部分に電流が集中して流れることによる特定箇所の電極消耗を確実に回避することができる。
すなわち、電流の集中のない均一な電流密度分布を電極板表面に発現させることができる。
The notch is an electrode plate opening formed by opening a substantially rectangular shape with a notch width of 2h and a depth of e at the upper end of the electrode plate facing the wiring terminal of the adjacent electrode plate. In the electrode structure of the removing device, the length 2h in the width direction of the notch is
When the thickness of the electrode plate is 2t, the radius of the wiring terminal is r, and the distance between the electrode plates is d,
2h ≧ 2 ((2d + r + t) (r−t)) 1/2 is preferable.
Thus, when the wiring terminal is larger than the thickness of the electrode plate, it is possible to reliably avoid electrode consumption at a specific location due to current flowing in a concentrated manner in the portion of the electrode plate that is close to and opposed to the wiring terminal. .
That is, a uniform current density distribution without current concentration can be expressed on the electrode plate surface.

さらに、本実施形態のスケール除去装置の電極構造は、前記電極板が全面プラチナメッキされたチタン合金により略矩形状に形成され、この電極板上端に接続される前記配線端子が、前記電極板の厚みよりも太い径のものを接続した構成とすることができる。これによって、電極板に供給する電流量を増加させることができ、配線端子との結合強度を必要レベルに維持するとともに、電解処理の効率性やメンテナンス性を確保することができる。   Furthermore, the electrode structure of the scale removing device of the present embodiment is such that the electrode plate is formed in a substantially rectangular shape by a titanium alloy that is platinum-plated on the entire surface, and the wiring terminal connected to the upper end of the electrode plate is connected to the electrode plate. It can be set as the structure which connected the thing of a diameter larger than thickness. As a result, the amount of current supplied to the electrode plate can be increased, the coupling strength with the wiring terminals can be maintained at a necessary level, and the efficiency and maintainability of the electrolytic treatment can be ensured.

なお、電極板に配線端子を介して電力を供給するに際して、電解析出などの電気化学反応を一定にするための定電流制御を確実かつ安定的に行うことができる。すなわち、この種のスケール除去装置の電源部では出力電圧を可変するために交流を一度直流に整流し、FETやIGBTなど半導体を用いて一定周期でスイッチング(オンオフ処理)を行って、半導体のON、OFFの時間比率を変えることで矩形波を発生させる出力電圧の制御を行なうが、冷却水のイオン濃度が高い状態では電圧を低く、逆にイオン濃度が低い状態では電圧を高くするようにして定電流制御を行うように電源内部での自動制御における制御性を良好に維持することができる。   In addition, when supplying electric power to an electrode plate via a wiring terminal, constant current control for making an electrochemical reaction such as electrolytic deposition constant can be reliably and stably performed. That is, the power supply unit of this type of scale remover rectifies alternating current to direct current in order to change the output voltage, and performs switching (on / off processing) at a constant cycle using a semiconductor such as FET or IGBT, thereby turning on the semiconductor. The output voltage for generating a rectangular wave is controlled by changing the OFF time ratio, but the voltage is lowered when the ion concentration of the cooling water is high, and conversely the voltage is increased when the ion concentration is low. It is possible to maintain good controllability in automatic control inside the power supply so as to perform constant current control.

(実施例1)
以下、本発明を具体化した実施例について図面を参照しつつ詳細に説明する。図1に示すように、本実施例の冷却水のスケール除去装置10は、空調装置や冷蔵装置等に備えられる熱交換設備11などに循環される冷却水を電解処理するためのものである。
冷却水を電解処理して熱交換設備11に循環供給するための電解槽12と、電解槽12内に設置された4枚の電極板13(13a〜13d)と、電極板13a〜13dに接続してその接続回路構成を切り換えるためのリレーボックス部15aと、リレーボックス部15aにより設定された電極板13a〜13dに電圧を印加するための電源部15bと、電極板13a〜13d間に規定の定電流を供給する定電流制御において電源部15bの電源電圧の変化に基づいてリレーボックス部15aの動作を制御するための電解制御部16と、を有する。
Example 1
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described in detail below with reference to the drawings. As shown in FIG. 1, the cooling water scale removing device 10 of the present embodiment is for electrolytically treating cooling water circulated to a heat exchange facility 11 provided in an air conditioner, a refrigerator, or the like.
Electrolytic bath 12 for electrolytically treating the cooling water and circulatingly supplying it to the heat exchange equipment 11, connected to four electrode plates 13 (13a to 13d) installed in the electrolytic bath 12, and electrode plates 13a to 13d The relay box portion 15a for switching the connection circuit configuration, the power source portion 15b for applying a voltage to the electrode plates 13a to 13d set by the relay box portion 15a, and the electrode plates 13a to 13d And an electrolysis control unit 16 for controlling the operation of the relay box unit 15a based on a change in the power supply voltage of the power supply unit 15b in the constant current control for supplying a constant current.

なお、図2、図3に示すように、電極板13a〜13dの上端には、リレーボックス部15aに接続される電極板より厚肉である配線端子14(14a〜14d)がそれぞれ取り付けられているとともに、隣接する電極板13a〜13dの各配線端子に対向する位置には、電流集中を緩和するための切欠部22を略矩形状に開口するように設けている。
すなわち、配線端子が電極板の厚み2tより大きいと、対向する電極板の最も近接する部分に電流が集中し特定箇所の電極板部位が消耗するため、配線端子に近い部位に電流が集中しないように、電極板13a〜13dの組合せにおいて、隣接する電極板の電源配線端子に対向する位置に切欠部22を設けている。ここで、対向する位置とは、電極板13を向かい合わせたときに、隣接する電極板の配線端子の位置と同じ位置をいう。
As shown in FIGS. 2 and 3, wiring terminals 14 (14 a to 14 d) that are thicker than the electrode plates connected to the relay box portion 15 a are attached to the upper ends of the electrode plates 13 a to 13 d, respectively. In addition, a notch portion 22 for relaxing current concentration is provided at a position facing each wiring terminal of the adjacent electrode plates 13a to 13d so as to open in a substantially rectangular shape.
That is, if the wiring terminal is larger than the thickness 2t of the electrode plate, the current concentrates on the closest part of the opposing electrode plate and the electrode plate part at a specific place is consumed, so that the current does not concentrate on the part near the wiring terminal. Further, in the combination of the electrode plates 13a to 13d, the notch 22 is provided at a position facing the power supply wiring terminal of the adjacent electrode plate. Here, the facing position means the same position as the position of the wiring terminal of the adjacent electrode plate when the electrode plates 13 face each other.

ここで、最適な切欠部の形状は、図4(a)に示すように、半径rの配線端子の表面とこの配線端子に対向する電極板との最短距離が、電極板の間隔:d以下になる部分(配線端子を中心として描く円の半径Rが(d+r)である点線円内の矩形状の範囲)を、対向する電極板上から切除することで得られる。
すなわち、図4(b)に詳細を示すように、
切除半径R(図4(c)の部分拡大説明図を参照)は、
切欠部の幅の最適値を2hとし、
電極板の厚み:2t、配線端子の半径:r、電極板の間隔:dとすると、
以下の関係式が成立する。
(d+r)=(h)+(d+t)
この関係式をhについてまとめると、
(h) =(2d+r+t)(r−t)、
h=((2d+r+t)(r−t))1/2、となり、
切欠部の幅の最適値を2hは、この値の2倍となる。
したがって、切欠部の幅は、2h以上にする。
本実施例では、配線端子の半径:r=1.5mm、電極板の厚み:2t=1mm、電極板の間隔:d=8mm、とした。
上記の関係式から、
切欠部の幅:2h=約8.5mmが最適値として得られ、切欠部の幅は8.5mm以上にする。
以上のようにして、切欠部の幅や形状を決定することによって、電極板における電流密度集中を効果的に回避できる。
Here, as shown in FIG. 4A, the optimum shape of the notch is such that the shortest distance between the surface of the wiring terminal having the radius r and the electrode plate facing the wiring terminal is the distance between the electrode plates: d or less. This is obtained by cutting out a portion (a rectangular range within a dotted circle whose radius R of the circle drawn around the wiring terminal is (d + r)) from the opposing electrode plate.
That is, as shown in detail in FIG.
The resection radius R (see the partially enlarged explanatory view of FIG. 4C) is
The optimal value of the width of the notch is 2h,
When the thickness of the electrode plate is 2t, the radius of the wiring terminal is r, and the distance between the electrode plates is d,
The following relational expression holds.
(D + r) 2 = (h) 2 + (d + t) 2 ,
Summarizing this relation for h,
(H) 2 = (2d + r + t) (rt),
h = ((2d + r + t) (rt)) 1/2 ,
The optimum value of the width of the notch 2h is twice this value.
Therefore, the width of the notch is 2 h or more.
In this example, the radius of the wiring terminal: r = 1.5 mm, the thickness of the electrode plate: 2t = 1 mm, and the distance between the electrode plates: d = 8 mm.
From the above relation,
The width of the notch: 2h = about 8.5 mm is obtained as the optimum value, and the width of the notch is 8.5 mm or more.
By determining the width and shape of the notch portion as described above, current density concentration in the electrode plate can be effectively avoided.

なお、電極板13及び配線端子14の表面は、チタン生地の表面にプラチナメッキを施したものであり、これによって、耐食性と耐久性が付加されるようにしている。   In addition, the surface of the electrode plate 13 and the wiring terminal 14 is obtained by applying platinum plating to the surface of the titanium cloth, thereby adding corrosion resistance and durability.

熱交換設備11は、所定量の冷却水を保留するための冷却水タンク11aを有する。
また、適切量の冷却水を熱交換設備11に供給するために循環ポンプ21や、スケール除去装置10に冷却水を循環供給するためのスケール除去装置用循環ポンプ11bが設けられている。
なお、スケール除去装置10の電解槽12を通過し冷却タンク11aに戻る水路や、電解槽12に供給する供給水路や、電解槽12の底部に貯留した冷却水を排出する排出流路には、それぞれ流量制御弁17、18などの制御系が設けられており、循環ポンプ11bや流量制御弁17、18が、電解制御部16を介してそれぞれ駆動制御されるようになっている。
The heat exchange facility 11 has a cooling water tank 11a for holding a predetermined amount of cooling water.
Further, a circulation pump 21 for supplying an appropriate amount of cooling water to the heat exchange facility 11 and a circulation pump 11b for scale removal device for circulatingly supplying cooling water to the scale removal device 10 are provided.
In addition, in the water channel that passes through the electrolytic cell 12 of the scale removing device 10 and returns to the cooling tank 11a, the supply water channel that is supplied to the electrolytic cell 12, and the discharge channel that discharges the cooling water stored in the bottom of the electrolytic cell 12, Control systems such as flow control valves 17 and 18 are provided, respectively, and the circulation pump 11b and the flow control valves 17 and 18 are driven and controlled via the electrolysis control unit 16, respectively.

このように、クーリングタワーなどの熱交換設備11に冷却水を循環させる冷却水循環流路が接続されて、全体としてループ状に構成されている。クーリングタワーは、空気との接触によって水を冷却する公知の構成のものである。往路側の流水管には、図示しない循環ポンプを装備して、クーリングタワーによって冷やされた冷却水を圧送できるようになっている。
また、循環流路を流れる冷却水は、経時的な蒸発やメンテナンス等によって失われていくため、クーリングタワーには、冷却水を外部から補給するための補給管などが設けられている。
In this way, the cooling water circulation passage for circulating the cooling water is connected to the heat exchange facility 11 such as a cooling tower, and the whole is configured in a loop shape. A cooling tower is a well-known structure which cools water by contact with air. The outgoing water pipe is equipped with a circulation pump (not shown) so that the cooling water cooled by the cooling tower can be pumped.
In addition, since the cooling water flowing through the circulation channel is lost due to evaporation or maintenance over time, the cooling tower is provided with a supply pipe for supplying the cooling water from the outside.

冷却水のスケール除去装置10には、冷却水を電解処理するための電解槽12の内部に、第1〜第4の電極板13a〜13dが設けられている。これらの電極板13a〜13dは、電源部15bにリレーボックス部15aを介して接続されている。
電極板13a〜13dとしては、電解装置に通常に使用されるものであれば特に制限はなく、例えば、チタンや銅にプラチナをめっきしたものや、カーボン電極などを好ましく使用することができる。
直流を発生する電源部15bには、コントローラとして機能する電解制御部16が接続されて、電極板13a〜13dへそれぞれ印加する電圧の制御を行うとともに、両電極板間の電流・電圧の監視等を行うこともできるようになっている。
The scale removal apparatus 10 for cooling water is provided with first to fourth electrode plates 13a to 13d inside an electrolytic bath 12 for electrolytically treating the cooling water. These electrode plates 13a to 13d are connected to the power supply unit 15b via the relay box unit 15a.
The electrode plates 13a to 13d are not particularly limited as long as they are normally used in an electrolysis apparatus. For example, a plate obtained by plating platinum on titanium or copper, or a carbon electrode can be preferably used.
An electrolysis control unit 16 that functions as a controller is connected to the power supply unit 15b that generates direct current to control the voltage applied to the electrode plates 13a to 13d, and to monitor the current and voltage between the electrode plates. Can also be done.

電解槽12には、冷却水タンク11aから循環水を供給するための給水管12aと、冷却水タンク11aに戻すための流出管12bとが接続されており、電解処理を行うための冷却水循環流路が構成される。給水管12a側には除去装置用循環ポンプ11bが設けられていて、冷却水タンク11a内の冷却水を電解槽12に圧送されるようになっている。
電解槽12から流れ出る冷却水は、流出管12bを介して冷却水タンク11aに戻るようになっている。また、電解槽12の底部には排出管12cが設けられ、流量制御弁18を介して、電解槽の内部に滞留したスケール成分を含む冷却水を、冷却循環水路外へ排水する処理がなされるようになっている。
A water supply pipe 12a for supplying circulating water from the cooling water tank 11a and an outflow pipe 12b for returning to the cooling water tank 11a are connected to the electrolytic tank 12, and a cooling water circulation flow for performing electrolytic treatment A road is constructed. A circulating pump 11b for removing device is provided on the side of the water supply pipe 12a so that the cooling water in the cooling water tank 11a is pumped to the electrolytic cell 12.
The cooling water flowing out from the electrolytic cell 12 returns to the cooling water tank 11a through the outflow pipe 12b. In addition, a discharge pipe 12c is provided at the bottom of the electrolytic cell 12, and a process of draining the cooling water containing the scale component staying inside the electrolytic cell to the outside of the cooling circulation channel through the flow control valve 18 is performed. It is like that.

給水管12a側の冷却水循環流路における所定箇所には、フローメータ19や温度計センサ20が取付けられている。
このように、電解槽12に供給される冷却水の流量や温度データが電解制御部16に取り込まれ、電解槽12における電解電圧や電解電流などの電解データとともに、スケール除去装置10通電状態を判定して、この判定結果に応じて電極板の接続構成を所定のパターンに設定したり、電解電圧などの電解条件を変更したりすることを可能にしている。
A flow meter 19 and a thermometer sensor 20 are attached to predetermined locations in the cooling water circulation passage on the water supply pipe 12a side.
As described above, the flow rate and temperature data of the cooling water supplied to the electrolytic cell 12 are taken into the electrolysis control unit 16, and the scale removal device 10 energization state is determined together with the electrolysis data such as the electrolytic voltage and the electrolytic current in the electrolytic cell 12. Thus, the electrode plate connection configuration can be set to a predetermined pattern or the electrolysis conditions such as the electrolysis voltage can be changed according to the determination result.

次に、以上のように構成された実施例1の冷却水のスケール除去装置10に適用される冷却水のスケール除去方法について説明する。
直流電源を各電極板13a〜13dに供給するための電源部15bは、例えば、その定電流仕様の電解直流電源として最大60V/定電流10Aのものを用いる。
現在一般的に市販されているこの種の電源は、出力電圧を可変するために入力の交流を一度直流に整流し、FETやIGBTなど半導体を用いて一定周期でスイッチング(ON/OFF処理)を行い矩形波を発生させる。例えば、スイッチング前の直流電圧を60Vとして、0N時間が50%、OFF時間が50%としたとき、その後、矩形波を整流(積分処理)を行うことで、出力を約30Vとすることができる。
Next, a cooling water scale removing method applied to the cooling water scale removing apparatus 10 according to the first embodiment configured as described above will be described.
For example, a power supply unit 15b for supplying DC power to the electrode plates 13a to 13d uses a constant current specification electrolytic DC power supply having a maximum of 60V / constant current of 10A.
This type of power supply, which is currently commercially available, rectifies the input AC once to change the output voltage, and performs switching (ON / OFF processing) at regular intervals using semiconductors such as FETs and IGBTs. To generate a square wave. For example, when the DC voltage before switching is 60 V, the 0N time is 50%, and the OFF time is 50%, the output can be set to about 30 V by performing rectification (integration processing) on the rectangular wave thereafter. .

同じように、ON時間10%、OFF時間90%とすれば、その出力電圧は6Vに設定される。このように、半導体のON、OFFの時間比率を変えることで出力電圧の制御を行うことができる。
こうした電源を用いて定電流制御を行うと、循環水のイオン濃度が高くなると電流が流れやすい状態となり、電圧を低くするように電源内部で自動制御が行なわれる。例えば、10Aで制御する様に設定されていると、ON時間10%、OFF時間90%になった場合、半導体がONする時に流れる電流は100A以上になる。ONした瞬間には更にこの何倍かの電流が流れる。
このように電源出力60V最大で10Aの電源でも負荷抵抗が小さくなると、大きな電流が電極に流れるようになり、電極板の消耗につながることになる。
なお、60Vは電源でのスイッチング素子の制御電圧の最大値であり、各電極へ流れる電流は10Aをリミットとしている。
Similarly, if the ON time is 10% and the OFF time is 90%, the output voltage is set to 6V. In this way, the output voltage can be controlled by changing the ON / OFF time ratio of the semiconductor.
When constant current control is performed using such a power supply, the current easily flows when the ion concentration of the circulating water increases, and automatic control is performed inside the power supply to reduce the voltage. For example, if the control is set to 10 A, when the ON time is 10% and the OFF time is 90%, the current that flows when the semiconductor is turned on is 100 A or more. Several times more current flows at the moment of turning on.
As described above, when the load resistance is reduced even with a power supply output of 60 V maximum and a power supply of 10 A, a large current flows through the electrode, leading to consumption of the electrode plate.
60V is the maximum value of the control voltage of the switching element in the power supply, and the current flowing to each electrode is limited to 10A.

なお、スケール除去装置10は、電解制御部16を介してリレーボックス部15aを駆動させて、各電極板13a〜13dの配列状態を、直列、並列などに切り換えることができる。
これによって、冷却水循環流路を流れる冷却水の導電率は同じでも、2枚の電極板13aと電極板13d間に電圧を印加する直列接続から、4枚の電極板13a〜13dにそれぞれ電圧を印加する並列接続に切り換えることで、電源からみた電気抵抗を約9倍もしくは1/9にすることができ、導電率のより大きな変化に対応することができる。
In addition, the scale removal apparatus 10 can drive the relay box part 15a via the electrolysis control part 16, and can switch the arrangement | sequence state of each electrode plate 13a-13d in series, parallel, etc.
Thus, even if the conductivity of the cooling water flowing through the cooling water circulation channel is the same, the voltage is applied to the four electrode plates 13a to 13d from the series connection in which a voltage is applied between the two electrode plates 13a and the electrode plate 13d. By switching to the parallel connection to be applied, the electric resistance viewed from the power source can be about 9 times or 1/9, and a larger change in conductivity can be dealt with.

こうして、本実施例のスケール除去装置では、複数の電極板間に定電流を供給する定電流制御において、電極板13a〜13dの所定位置に切欠部22を設けているので、電極の局所的な消耗を防止して、熱交換設備11に供給される冷却水中のスケール成分を電解処理により安定的に析出させて除去することができ、耐用性と電解析出処理における制御操作性とに優れたスケール除去装置の電極構造を提供することができる。   Thus, in the scale removing device of the present embodiment, in the constant current control for supplying a constant current between the plurality of electrode plates, the notch 22 is provided at a predetermined position of the electrode plates 13a to 13d. The scale component in the cooling water supplied to the heat exchange equipment 11 can be stably deposited and removed by electrolytic treatment while preventing wear and has excellent durability and control operability in the electrolytic deposition treatment. An electrode structure of a scale removing device can be provided.

以上説明したように、本発明は、並列配置される複数の電極板の上端に設けられる電極板肉厚より厚肉の配線端子に対向する位置の隣接する電極板の上端に切欠部を設けることによって、電極板における電流密度集中の弊害を回避することを要旨としたものであり、これに該当するものは本発明の権利範囲に属する。
例えば、本実施例では、スケール除去装置として、リレーボックス部15aを介してそれぞれの電極板の極性を切り替えて電解処理を行う例について詳述したが、電極板構成を固定して処理を行う場合にも本発明の電極構造を適用することができる。
さらに、電解槽12内に並行配置される電極板の枚数が4枚の場合について詳述したが、電解槽内に2枚のあるいは6枚以上の、複数枚の電極板を互いに並行配列して、これらをリレーボックス部に接続して、その電解槽において測定される電解電圧や電解電流、槽内を流れる冷却水の導電率や温度、流量などに基づいて、電解槽内で有効化させる電極板の回路パターンや印加電圧などの電解条件を設定することも可能である。
As described above, according to the present invention, a notch is provided at the upper end of an adjacent electrode plate at a position facing a wiring terminal thicker than the electrode plate thickness provided at the upper ends of a plurality of electrode plates arranged in parallel. Therefore, the gist of the present invention is to avoid the adverse effects of current density concentration in the electrode plate, and the corresponding ones belong to the scope of the right of the present invention.
For example, in the present embodiment, as an example of the scale removing device, an example in which the electrolytic treatment is performed by switching the polarity of each electrode plate via the relay box portion 15a has been described in detail. Also, the electrode structure of the present invention can be applied.
Further, the case where the number of electrode plates arranged in parallel in the electrolytic cell 12 is four has been described in detail, but two or six or more electrode plates are arranged in parallel in the electrolytic cell. , Electrodes connected to the relay box and activated in the electrolytic cell based on the electrolysis voltage and current measured in the electrolytic cell, the conductivity, temperature, flow rate, etc. of the cooling water flowing in the cell It is also possible to set electrolysis conditions such as the circuit pattern of the plate and the applied voltage.

本発明のスケール除去装置の電極構造は、冷却水中のスケール成分を電解析出させてスケールを除去するスケール除去装置において、電極板に接続される配線端子の配置構成に伴う局部的な電流密度の集中を回避して、電解処理の効率化と電極構造におけるメンテンナンス性の向上を図ることのでき、産業上の利用可能性が極めて高い。   The electrode structure of the scale removing apparatus of the present invention is a scale removing apparatus that removes scale by electrolytically depositing scale components in cooling water, and has a local current density associated with the arrangement of wiring terminals connected to the electrode plate. The concentration can be avoided, the efficiency of the electrolytic treatment can be improved, and the maintainability of the electrode structure can be improved, and the industrial applicability is extremely high.

10・・・冷却水のスケール除去装置
11・・・熱交換設備
11a・・・冷却水タンク
11b・・・除去装置用循環ポンプ
12・・・電解槽
12a・・・給水管
12b・・・流出管
12c・・・排出管
13(13a〜13d)・・・電極板
14(14a〜14d)・・・配線端子
15a・・・リレーボックス部
15b・・・電源部
16・・・電解制御部
17、18・・・流量制御弁
19・・・流量計
20・・・水温計
21・・・循環水ポンプ
22・・・切欠部
DESCRIPTION OF SYMBOLS 10 ... Cooling water scale removal apparatus 11 ... Heat exchange equipment 11a ... Cooling water tank 11b ... Circulation pump for removal apparatus 12 ... Electrolyzer 12a ... Water supply pipe 12b ... Outflow Pipe 12c ... Drain pipe 13 (13a-13d) ... Electrode plate 14 (14a-14d) ... Wiring terminal 15a ... Relay box part 15b ... Power supply part 16 ... Electrolytic control part 17 , 18 ... Flow control valve 19 ... Flow meter 20 ... Water temperature meter 21 ... Circulating water pump 22 ... Notch

(1)前記従来の課題を解決するため、本発明のスケール除去装置の電極構造は、
熱交換設備に循環供給される冷却水を電解処理する電解槽を備えたスケール除去装置の電極構造であって、
前記電解槽内に互いに所定の電極間隔を有しその極性を交互に切り替えて並列配置される複数の電極板と、
前記冷却水中に浸漬される前記電極板の上端に設けられて電源部からの電圧が印加される電極板肉厚より厚肉の配線端子と、
隣接する電極板の配線端子に対向する電極板の上端に形成される切欠部とを、
有し、
前記電極板の上端に設けられる配線端子の位置は、
各電極板ごとに水平方向にずらして設けられ、
電解槽に電極板が並列配置されたときに電極板の配線端子の位置が並列方向で重ならないようにしたことを特徴とする。
(1) In order to solve the conventional problem, the electrode structure of the scale removing device of the present invention is:
An electrode structure of a scale removing device including an electrolytic cell for electrolytically processing cooling water circulated and supplied to a heat exchange facility,
A plurality of electrode plates arranged in parallel with each other having a predetermined electrode interval in the electrolytic cell and alternately switching the polarity;
A wiring terminal thicker than the electrode plate thickness to which the voltage from the power supply unit is applied at the upper end of the electrode plate immersed in the cooling water,
A notch formed at the upper end of the electrode plate facing the wiring terminal of the adjacent electrode plate,
Have
The position of the wiring terminal provided at the upper end of the electrode plate is
Each electrode plate is provided by shifting in the horizontal direction,
When the electrode plates are arranged in parallel in the electrolytic cell, the positions of the wiring terminals of the electrode plates do not overlap in the parallel direction .

(2)本発明は前記(1)のスケール除去装置の電極構造において、
前記電極板厚みより配線端子の厚みが大きい場合において、
該配線端子に近接して対向する電極板の切欠部は、
該電極板に取り付けた配線端子の中心から描く円で切り欠いて開口させたものであることを特徴とする。
(2) The present invention relates to the electrode structure of the scale removing device of (1),
When the thickness of the wiring terminal is larger than the electrode plate thickness,
The notch portion of the electrode plate facing and proximate to the wiring terminal is
It is characterized by being cut and opened by a circle drawn from the center of the wiring terminal attached to the electrode plate .

(1)前記従来の課題を解決するため、本発明のスケール除去装置の電極構造は、
熱交換設備に循環供給される冷却水を電解処理する電解槽を備えたスケール除去装置の電極構造であって、
前記電解槽内に互いに所定の電極間隔を有しその極性を交互に切り替えて並列配置される複数の電極板と、
前記冷却水中に浸漬される前記電極板の上端に設けられて電源部からの電圧が印加される電極板肉厚より厚肉の配線端子と、
隣接する電極板の配線端子に対向する電極板の上端に形成される切欠部とを、
有し、
前記電極板の上端に設けられる配線端子及び切欠部の位置は、
各電極板ごとに水平方向に順次ずらして設けられ、
電解槽に電極板が並列配置されたときに電極板の配線端子及び切欠部の位置が並列方向で重ならないようにしたことを特徴とする。
(1) In order to solve the conventional problem, the electrode structure of the scale removing device of the present invention is:
An electrode structure of a scale removing device including an electrolytic cell for electrolytically processing cooling water circulated and supplied to a heat exchange facility,
A plurality of electrode plates arranged in parallel with each other having a predetermined electrode interval in the electrolytic cell and alternately switching the polarity;
A wiring terminal thicker than the electrode plate thickness to which the voltage from the power supply unit is applied at the upper end of the electrode plate immersed in the cooling water,
A notch formed at the upper end of the electrode plate facing the wiring terminal of the adjacent electrode plate,
Have
The positions of the wiring terminal and the notch provided at the upper end of the electrode plate are as follows:
Each electrode plate is provided by sequentially shifting in the horizontal direction,
When the electrode plates are arranged in parallel in the electrolytic cell, the positions of the wiring terminals and the cutout portions of the electrode plates do not overlap in the parallel direction.

(2)本発明は前記(1)のスケール除去装置の電極構造において、
前記電極板厚みより配線端子の厚みを大きくし
該配線端子に近接して対向する電極板の切欠部は、
該電極板に取り付けた配線端子の中心から描く円で切り欠いて開口させたものであることを特徴とする。
(2) The present invention relates to the electrode structure of the scale removing device of (1),
Increasing the thickness of the wiring terminals from the electrode plate thickness,
The notch portion of the electrode plate facing and proximate to the wiring terminal is
It is characterized by being cut and opened by a circle drawn from the center of the wiring terminal attached to the electrode plate.

Claims (2)

熱交換設備に循環供給される冷却水を電解処理する電解槽を備えたスケール除去装置の電極構造であって、
前記電解槽内に互いに所定の電極間隔を有しその極性を交互に切り替えて並列配置される複数の電極板と、前記冷却水中に浸漬される前記電極板の上端に設けられて電源部からの電圧が印加される電極板肉厚より厚肉の配線端子と、隣接する電極板の配線端子に対向する電極板の上端に形成される切欠部とを、有することを特徴とするスケール除去装置の電極構造。
An electrode structure of a scale removing device including an electrolytic cell for electrolytically processing cooling water circulated and supplied to a heat exchange facility,
A plurality of electrode plates arranged in parallel with each other having a predetermined electrode interval in the electrolytic cell and alternately switching their polarities, and provided at the upper end of the electrode plate immersed in the cooling water from the power supply unit A scale removing device comprising: a wiring terminal thicker than an electrode plate thickness to which a voltage is applied; and a notch formed at an upper end of an electrode plate facing the wiring terminal of an adjacent electrode plate. Electrode structure.
前記切欠部の幅方向の長さ2hが、
電極板の厚み:2t、配線端子の半径:r、電極板の間隔:dとすると、
2h≧2((2d+r+t)(r−t))1/2、であることを特徴とする請求項1記載のスケール除去装置の電極構造。
The length 2h in the width direction of the notch is
When the thickness of the electrode plate is 2t, the radius of the wiring terminal is r, and the distance between the electrode plates is d,
2. The electrode structure of the scale removing device according to claim 1, wherein 2h ≧ 2 ((2d + r + t) (rt)) 1/2 .
JP2011103278A 2011-05-02 2011-05-02 Scale removal device electrode structure Active JP4999022B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103278A JP4999022B1 (en) 2011-05-02 2011-05-02 Scale removal device electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103278A JP4999022B1 (en) 2011-05-02 2011-05-02 Scale removal device electrode structure

Publications (2)

Publication Number Publication Date
JP4999022B1 JP4999022B1 (en) 2012-08-15
JP2012232264A true JP2012232264A (en) 2012-11-29

Family

ID=46793933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103278A Active JP4999022B1 (en) 2011-05-02 2011-05-02 Scale removal device electrode structure

Country Status (1)

Country Link
JP (1) JP4999022B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065530A1 (en) * 2013-10-29 2015-05-07 Westinghouse Electric Company Llc Targeted heat exchanger deposit removal by combined dissolution and mechanical removal
KR101869088B1 (en) * 2017-04-18 2018-06-20 터보솔루션 주식회사 Apparatus for treating cooling water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ30040U1 (en) * 2014-02-13 2016-11-22 Bluestar (Beijing) Chemical Machinery Co. Ltd. Apparatus for micro-electrolysis and integrated water treatment plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165957A (en) * 1996-12-04 1998-06-23 Maeda Corp Electrolytic apparatus for water treatment
JP4126307B2 (en) * 2005-03-16 2008-07-30 株式会社コガネイ Circulating water purification method and apparatus
JP4790778B2 (en) * 2008-09-16 2011-10-12 イノベーティブ・デザイン&テクノロジー株式会社 Cooling water scale removing device and scale removing method using the scale removing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065530A1 (en) * 2013-10-29 2015-05-07 Westinghouse Electric Company Llc Targeted heat exchanger deposit removal by combined dissolution and mechanical removal
US9334579B2 (en) 2013-10-29 2016-05-10 Westinghouse Electric Company Llc Targeted heat exchanger deposit removal by combined dissolution and mechanical removal
CN105684091A (en) * 2013-10-29 2016-06-15 西屋电气有限责任公司 Targeted heat exchanger deposit removal by combined dissolution and mechanical removal
US10309032B2 (en) 2013-10-29 2019-06-04 Westinghouse Electric Company Llc Targeted heat exchanger deposit removal by combined dissolution and mechanical removal
KR101869088B1 (en) * 2017-04-18 2018-06-20 터보솔루션 주식회사 Apparatus for treating cooling water

Also Published As

Publication number Publication date
JP4999022B1 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4790778B2 (en) Cooling water scale removing device and scale removing method using the scale removing device
EP1860071B1 (en) Method for cleaning circulation water
JP4644677B2 (en) Cooling water circulation device
TWI700396B (en) Inert anode electroplating processor and replenisher
JP4999022B1 (en) Scale removal device electrode structure
JP5295753B2 (en) Ozone water generator
JP2015054996A (en) Ozone water generator
JP2010125353A (en) Water softening method and water softener
JP4999030B1 (en) Scale removal device electrode structure
JP2010194402A (en) Water treatment system and treatment method of cooling system circulating water
JP3177645U (en) Special water generator
JP4214139B2 (en) Cooling water circulation device
KR101430380B1 (en) Cooling water circulation device
KR101397606B1 (en) Method of purifying water and apparatus therefor
JP3187690U (en) Electrolyte generator
JP4924999B2 (en) Method for preventing scale adhesion of electrolytic cell, and electrolyzed water generating apparatus using the same
JP2016168534A (en) Electrolytic water generation device, and driving method thereof
US9352985B2 (en) Electolytic apparatus, ice making apparatus, and ice making method
JP4875467B2 (en) Sterilization structure of heat exchanger
JP2013126645A (en) Electrolytic apparatus and heat pump hot-water supply machine equipped with the same
JP3029159U (en) Ionic liquid generator for sterilizing coolant
JP3370897B2 (en) Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath
JP2014092340A (en) Temperature-adjusted water supply machine
JP2013119993A (en) Heat pump water heater
JP2013184097A (en) Electrolytic apparatus, and heat pump hot-water supply machine equipped therewith

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

R150 Certificate of patent or registration of utility model

Ref document number: 4999022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250