JPS5939768A - Abrasion resistant silicon nitride base sintered body - Google Patents
Abrasion resistant silicon nitride base sintered bodyInfo
- Publication number
- JPS5939768A JPS5939768A JP57146582A JP14658282A JPS5939768A JP S5939768 A JPS5939768 A JP S5939768A JP 57146582 A JP57146582 A JP 57146582A JP 14658282 A JP14658282 A JP 14658282A JP S5939768 A JPS5939768 A JP S5939768A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- silicon nitride
- binder phase
- cutting
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、伎械工1′「用セラミックス特に切削工具、
■摩耗材料及び耐貢性材料に適する削摩耗性窒化硅素基
焼結体に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides ceramics for machining, especially cutting tools.
■Regarding abrasive silicon nitride-based sintered bodies suitable for wear materials and load-bearing materials.
窒化硅素は、耐熱性、耐熱衝撃性、高温での機械的鍮ヲ
強度、耐酸化性、化学薬品に対する耐食性及び溶融金属
に対する耐食性が優れていると共に硬さも高いことから
高温電気絶縁材料、電子部品材料、理化学製品、金属工
業用耐火物、原子炉用材料、M、 J−I D発電用相
料及びジェットエンジン、ロケットノズル、タービン翼
等の高温Ml 遺体部品にと広い用途で応用されている
。Silicon nitride has excellent heat resistance, thermal shock resistance, mechanical strength at high temperatures, oxidation resistance, corrosion resistance to chemicals, and corrosion resistance to molten metals, as well as high hardness, so it is used as a high-temperature electrical insulation material and electronic components. It is widely used in materials, physical and chemical products, metal industry refractories, nuclear reactor materials, phase materials for M, J-ID power generation, and high-temperature Ml mortuary parts such as jet engines, rocket nozzles, and turbine blades. .
Si3N4は、共有結合性の強い物質であるためにイオ
ン結合性の強いAt203やZ ro 2等の酸化・物
に比較して高密度焼結体金得ることが困難である。この
ためにSi3N4の焼結方法は、主として反応焼結法又
はホットプレス法が行なわれている。このほかにS i
3N<の高密j更焼結体ケ得る方法は、Si3N4に
kt203、AIN 、 MgO、Y2O3等の焼結助
剤乞添加して4113圧焼結する方法が一般にイテなわ
れている。Since Si3N4 is a substance with strong covalent bonding properties, it is difficult to obtain a high-density sintered gold compared to oxides and substances such as At203 and Z ro 2 which have strong ionic bonding properties. For this reason, the reaction sintering method or the hot pressing method is mainly used as the sintering method for Si3N4. In addition to this, S i
A method of obtaining a high-density pre-sintered body of <3N is generally carried out by adding a sintering aid such as kt203, AIN, MgO, Y2O3, etc. to Si3N4 and sintering at 4113 pressure.
5L3N4に焼結助剤としてMgU 2添加した焼結体
は、焼結過程でMg(JがS i 3N4と反応して低
融点液相全生成し焼結性金促遣芒せる反面、焼結後は粒
界に残存するMg0、含有の低級硅酸塩が焼結体の高温
特性を劣化させると云う欠点がある。又、Si3N4に
焼結助剤としてY2O3=2添加した焼結体は、焼結体
としての高温特性が優れている反面、焼結過程での焼結
性促進効果が弱く緻密な焼結体が得られないために強度
が低いと云う欠点がある。A sintered body in which MgU 2 is added as a sintering aid to 5L3N4 is produced by the reaction of Mg (J) with Si 3N4 during the sintering process, which generates a low melting point liquid phase and promotes sinterability. After that, there is a drawback that Mg0 remaining in the grain boundaries and lower silicates contained deteriorate the high temperature characteristics of the sintered body.In addition, the sintered body in which Y2O3 = 2 is added as a sintering aid to Si3N4, Although it has excellent high-temperature properties as a sintered body, it has a drawback that its strength is low because its sinterability promotion effect during the sintering process is weak and a dense sintered body cannot be obtained.
このような欠点全改良する方向で、ジェットエンジン、
ロケットノズル及びタービン翼等の高温構造用部品を主
体に提案されて来た窒化硅素系焼結体にサイアロン系焼
結体がある。サイアロン系焼結体は、S i 3N4に
焼結助剤としてAt 203又はktN金添加固溶した
焼結体及びS i 3N4に焼結助剤としてAt203
又はktNとY2O3等の他糸加物を添加したAt固溶
のSi3N4系焼結体として総称されている。こ7tら
のサイアロン系焼結体は、5ixN4格子中にイオン結
合性の強いAz+Os父はktNが固溶しているために
S i 3N4本来の共有結合性が低下して焼結体の特
性を劣化させると共に焼結過程においてAt元素が関与
した低数酸化物が焼結性を向上させる反面、焼祐後At
元素が関与した脆弱なガラス相がサイアロン(5iAt
ON )粒子の粒界に残存して焼結体の高温特性を激減
させると云う欠点がある。切削工具の刃先先端は、切削
中に高温圧縮、熱衝撃、酸化、腐食、すきとり摩耗、凝
着摩耗及び引っかき摩耗のような複雑な形態が複合して
生じる。このような切削工具材料にサイアロン系焼結体
を使用すると乾式切削条件ではサイアロン系焼結体の粒
界に残存しているガラス相のためAt20s系セラミツ
クスに比較して高温における耐摩耗性が劣る傾向に有り
水溶性切削油を用いた湿式切削条件ではザイアロン全構
成しでいる元素からAtN成分が加水分解して分解蒸発
し著しい]−具損傷全誘発するために耐摩耗性が劣ると
云う欠点がある。サイアロン系焼結体とは別の研究開発
として、山3工〜4月料全切削工具に応用しようと云う
試みが特開昭49−113803で行なわれている。In the direction of improving all these drawbacks, jet engines,
Sialon-based sintered bodies are silicon nitride-based sintered bodies that have been proposed mainly for high-temperature structural parts such as rocket nozzles and turbine blades. The sialon-based sintered body is a sintered body in which At 203 or ktN gold is added as a solid solution to S i 3N4 as a sintering aid, and a sintered body in which At 203 or ktN gold is added as a sintering aid to S i 3N4.
Alternatively, it is collectively referred to as a Si3N4-based sintered body containing ktN and other additives such as Y2O3 and At solid solution. The sialon-based sintered body of these 7t et al. has Az + Os, which has a strong ionic bonding property, in the 5ixN4 lattice, and ktN is dissolved in solid solution, so the original covalent bonding property of Si3N4 decreases and the characteristics of the sintered body are affected. At the same time, low number oxides in which At elements participate in the sintering process improve sinterability, but on the other hand, after sintering, At
The brittle glass phase involving elements is Sialon (5iAt
ON) has the disadvantage that it remains at the grain boundaries of the particles and drastically reduces the high-temperature properties of the sintered body. During cutting, the tip of a cutting tool's cutting tool undergoes a combination of complex forms such as high-temperature compression, thermal shock, oxidation, corrosion, skid wear, adhesive wear, and scratch wear. When a sialon-based sintered body is used as such a cutting tool material, under dry cutting conditions, the wear resistance at high temperatures is inferior to that of At20s-based ceramics due to the glass phase remaining in the grain boundaries of the sialon-based sintered body. Under wet cutting conditions using water-soluble cutting oil, the AtN component of the elements that make up all of Xialon undergoes hydrolysis and decomposition and evaporation, which is significant] - The disadvantage is that wear resistance is poor because tool damage is induced. There is. As research and development other than the sialon-based sintered body, an attempt has been made in Japanese Patent Application Laid-Open No. 113803/1983 to apply it to Yamasan-April cutting tools.
この特開昭49−113803は、S+aN4に焼結助
剤としてMgOとY2O3全使用し、MgOとY2O3
のスピネル化合物2SjaW4甲に固溶することを特徴
とした焼結体である。し〃・しなからR4gOとY2O
3は単純2元共晶型の相状態図金示し、MgO・Y2O
3のスピネル型化合物は存在しないことをTresvy
atski i等(1zr、 Akad、 Nauk
88SR。This Japanese Patent Application Publication No. 49-113803 uses MgO and Y2O3 as sintering aids in S+aN4, and uses MgO and Y2O3 as sintering aids.
This is a sintered body characterized by solid solution in the spinel compound 2SjaW4A. Shi/Shinakara R4gO and Y2O
3 shows a simple binary eutectic phase diagram, MgO・Y2O
Tresvy shows that the spinel type compound of 3 does not exist.
atski i et al. (1zr, Akad, Nauk
88SR.
Neorg ;Mater、 7 (11) 2020
(1971) )が報告している。仮りに、イオン
結合性の強いMgO・Y2O3なるスピネル化合物が5
IsNa中に固溶したとしても8i3N4本来の共有結
合性は劣化し、鋳鋼全切削するときのように苛酷な切削
条件では従来のAt20s系セラミツクスより優れた性
能を得ることが不5丁能である。事実、特開昭49−1
13803では、軽切削に属するAt−8i合金ケ切削
速度300m/min、切り込み1.5闘、送り速度0
.3朋/revなる切削条件で2分間切削した場合、横
逃げ面摩耗量が0.1〆5〜0.2朋と極めて大きい傾
向にあり、高速切削工具用セラミックスとしては実用的
に問題がある。Neorg; Mater, 7 (11) 2020
(1971)) reported. Suppose that a spinel compound called MgO・Y2O3 with strong ionic bonding is 5
Even if it is dissolved in IsNa, the original covalent bonding property of 8i3N4 deteriorates, and under severe cutting conditions such as when completely cutting cast steel, it is impossible to obtain performance superior to conventional At20s ceramics. . In fact, JP-A-49-1
For 13803, the At-8i alloy, which belongs to light cutting, has a cutting speed of 300 m/min, a depth of cut of 1.5 mm, and a feed rate of 0.
.. When cutting for 2 minutes under cutting conditions of 3mm/rev, side flank wear tends to be extremely large at 0.1〆5~0.2mm, which is a practical problem for ceramics for high-speed cutting tools. .
本発明は、上neのような欠点及び問題点ヲ麻決し、従
来の切削工具用材料で使用さnている切削速度領域から
更に従来の切削工具用材料でti天川不可能な高速切!
−11J領域1でも使用可能な工具材料重量−の酸化マ
グネシウムと0.5〜10重量−の酸化イツトリウムと
0.1〜5重幇饅の4a、53゜6a族遷移金属の炭化
物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭室酸化
物の単−金属化合物及び複合金属化合物の中から選ばれ
た少なくとも1種以上の結合相強化剤と残り窒化硅素と
不可避不純物と葡混合、焼結して得られる焼結体である
。The present invention solves the above-mentioned drawbacks and problems, and achieves high-speed cutting that is impossible with conventional cutting tool materials, beyond the cutting speed range used with conventional cutting tool materials.
Tool materials that can be used even in the 11J region 1 - magnesium oxide, 0.5 to 10 weight of yttrium oxide, 0.1 to 5 weight of carbides and nitrides of group 4a, 53゜6a transition metals, A mixture of at least one binder phase reinforcing agent selected from mono-metal compounds and composite metal compounds of carbonitrides, carbonates, nitrides, carbonaceous oxides, residual silicon nitride, unavoidable impurities, and grapes; It is a sintered body obtained by sintering.
本発明は、5iaN4とS i 3N4 の焼結助剤で
ある結合相に高温強度を高める効果は弱いが焼結性促進
に寄与するMgUと焼結性促進効果は弱いが、1温強度
を高めるY2O32添加することにより緻密な焼結体が
得られることを確認し、この8 i 3N4−MgO−
Y203系qX8結坏の緻密性を低下させずにS i
3N4−MgO−Y203系焼結体の欠点である施高温
における耐摩耗性を向上させる方法全独々研究した結果
炭素および/または窒素を含有した4a、5a、6a族
逓移金楓化合物カ8 i 3N4−Mg o −Y20
3系焼結体の高温における耐摩耗性全向上させること全
見出し本発明を児成したものである。The present invention uses MgU, which has a weak effect of increasing high-temperature strength but contributes to promoting sinterability, in the binder phase, which is a sintering aid of 5iaN4 and Si3N4, and MgU, which has a weak effect of promoting sinterability but increases one-temperature strength. It was confirmed that a dense sintered body could be obtained by adding Y2O32, and this 8 i 3N4-MgO-
S i without reducing the compactness of Y203-based qX8 glue
A method for improving the wear resistance at high temperatures, which is a drawback of 3N4-MgO-Y203-based sintered bodies.As a result of independent research, we found that a 4a, 5a, 6a group migration gold maple compound containing carbon and/or nitrogen was used. i3N4-Mgo-Y20
The present invention has been made based on the objective of completely improving the wear resistance of 3-series sintered bodies at high temperatures.
即ち本発明の耐摩耗性窒化砒素基焼結体は、S i 3
N42緻密な焼結体にするために焼結助剤である結合相
にMgOとY2O32添加し、この結合相中に結合相強
化剤として高温における耐摩耗性を向LJ1J−zAす
C,−ICつm:Ij4なA−1pd77N尺4/し+
jAn窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸
化物の単−金属化合物及び複合金属化合物の中から選ば
れた少なくとも1種以上を分散させたものである。この
ようにSi3N4と結合相と結合相強化剤と全焼結する
と結合相であるMgOとY2O3がS i 3N4の焼
結性を促進して緻密な焼結体にすると共に結合相である
MgOとY2O3が結合相強化剤の1部表向を酸化し、
しかもS i 3N4が結合相強化剤の1部と反応する
ことから一層焼結体の緻密化全促進させる。又結合相強
化剤が結合相であるMgOとY2O3に1部酸化されな
がら結合相中に分散することによって高温における耐摩
耗性を増大させら
ているものと考えJ6几る。こ\で使用する結合相強化
剤は、炭素および/または窒素を含有した4a、5a、
6a族遷移金属化合物であるがSi3N4との反応性か
ら特に窒素金言有した4a。That is, the wear-resistant arsenic nitride-based sintered body of the present invention has S i 3
MgO and Y2O32 are added to the binder phase, which is a sintering aid, to make the N42 dense sintered body, and this binder phase is used as a binder phase strengthening agent to improve wear resistance at high temperatures. Tsum: Ij4 A-1pd77N shaku4/shi+
jAn At least one selected from monometallic compounds and composite metal compounds of nitrides, carbonitrides, carbonates, nitrides, carbonitrides, and composite metal compounds are dispersed therein. In this way, when Si3N4, the binder phase, and the binder phase reinforcing agent are completely sintered, the binder phases MgO and Y2O3 promote the sinterability of Si3N4 and make a dense sintered body, and the binder phases MgO and Y2O3 oxidizes a portion of the surface of the binder phase strengthener,
Moreover, since S i 3N4 reacts with a part of the binder phase reinforcing agent, the densification of the sintered body is further promoted. It is also believed that the binder phase reinforcing agent increases wear resistance at high temperatures by being partially oxidized and dispersed in the binder phase MgO and Y2O3. The binder phase strengthening agent used here is carbon and/or nitrogen containing 4a, 5a,
4a, which is a Group 6a transition metal compound, has a nitrogen compound in particular because of its reactivity with Si3N4.
5a、6a族遷移金属化合物が望ましい。Group 5a and 6a transition metal compounds are preferred.
本発明の耐摩耗性窒化珪素基焼結体は、出発原料として
出来るだけe 組で(平均粒径で5μ以下が望ましい)
酸素含有量の少ないS i 3N4粉末を使用すること
が望ましく、結合相であるM g OとY2O3と結合
相強化剤である4a、5a、6a族遷移金属の炭化物、
窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物の
単一金属化@物及び複合金属化合物の中から選ばれた少
なくとも1種以上をそれぞれ単独に添加、混合してもよ
いが焼結体の組織における5r3N<粒子の粗大化、棒
状化全抑制するために結合相と結合相強化剤との複合化
合物にしたもの?出発原料として5iaNiに添加、混
合する方法が遇ましい。The wear-resistant silicon nitride-based sintered body of the present invention has as many e groups as possible as a starting material (preferably an average grain size of 5μ or less).
It is desirable to use S i 3N4 powder with a low oxygen content, and the binder phase is M g O and Y2O3, and the binder phase reinforcement is a carbide of group 4a, 5a, 6a transition metal,
At least one selected from nitrides, carbonitrides, carbonates, nitrides, single metal compounds of carbonitrides, and composite metal compounds may be added or mixed individually. In order to completely suppress the coarsening and rod-like formation of 5r3N< particles in the structure of the sintered body, is it made into a composite compound of a binder phase and a binder phase reinforcing agent? A method in which it is added to and mixed with 5iaNi as a starting material is preferable.
本発明の耐摩耗性窒化珪素基焼結体は、ktが含有する
とSi3N4の粒界相にカラス質相が残存し、切削工具
として必要な′jA粕体の特性全低下させるために出発
原料粉末に含有する不純物としてもAt含有量金極力少
なくする必要が有り、製造過程中においてもAtの混入
を避ける必要がある。In the wear-resistant silicon nitride-based sintered body of the present invention, when kt is contained, a glassy phase remains in the grain boundary phase of Si3N4, and the starting material powder is used to completely reduce the characteristics of the 'jA lees necessary for cutting tools. As an impurity contained in gold, it is necessary to reduce the At content as much as possible, and it is also necessary to avoid contamination of At during the manufacturing process.
例えば、原料を混合、粉砕するときに使用する容器及び
ボール等の材質は、Atの含有した相打を使用しない方
が望ましい。S i 3N4は、α−8i3Naとβ−
8isN4が確認されているが不発明の耐摩耗性窒化珪
素基焼結体は主としてα−8i 3N4を出発原料とし
て使用してもよく、又はα−8i3N4とβ−8i3N
4の混合したものを出発原料として使用してもよく、或
いは主としてβ−8isN4f出発原料として使用して
もよく、更にはα−8i 3N4および/またはβ−8
isN4と非晶質窒化硅素の混合したものを出発原料と
して使用してもよい。焼結方法は、真空又は非酸化性雰
囲気において普通焼結(無加圧焼結)、辿嵐加圧焼結、
ホットプレス等の方法が有り、これらの焼結方法と静水
圧加圧法(HIP) を組合せて焼結体の緻密化全促進
することもできる。For example, it is preferable not to use At-containing materials for containers, balls, etc. used when mixing and pulverizing raw materials. S i 3N4 is α-8i3Na and β-
The uninvented wear-resistant silicon nitride-based sintered body in which 8isN4 has been confirmed may mainly use α-8i3N4 as a starting material, or α-8i3N4 and β-8i3N.
4 may be used as the starting material, or may be used primarily as the starting material β-8i 3N4 and/or β-8
A mixture of isN4 and amorphous silicon nitride may be used as the starting material. Sintering methods include normal sintering (pressureless sintering), sintering under pressure in a vacuum or non-oxidizing atmosphere,
There are methods such as hot pressing, and these sintering methods can be combined with hydrostatic pressing (HIP) to fully promote the densification of the sintered body.
こ\で数値限定した理由について説明する。Here I will explain the reason for limiting the numerical values.
結合相であるMgOは、O,S用量−未満では焼結性促
進効果が弱く、】0重量%全越えて多くなると焼結後M
g含有低級硅酸塩が多くなって焼結体の高温強度が低下
するためにMgO含有量は0.5〜】O重世襲と決めた
。MgO, which is a binder phase, has a weak effect of promoting sintering when the O, S content is less than -, and when the amount exceeds 0% by weight, the MgO after sintering becomes
Since the high-temperature strength of the sintered body decreases due to an increase in g-containing lower silicates, it was decided that the MgO content should be 0.5~]O heavy hereditary.
結合相であるY2O3は、0,5重量−未満では焼結体
の高温強度向」二に効果弱く、10重量%金合えて多く
なるとへ4gOとY2Chを合唱゛した結合相1■が多
くなり高温における耐摩耗性低下となるためにY2O3
含有量は05〜10重量係と決めた。If Y2O3, which is a binder phase, is less than 0.5% by weight, it has little effect on the high-temperature strength of the sintered body, and if it increases by 10% by weight, the binder phase 1, which is a combination of 4gO and Y2Ch, increases. Y2O3 decreases wear resistance at high temperatures.
The content was determined to be 05 to 10 weight percent.
結合相強化剤である4a、5 a% & a族遠移〈
り属の炭化物、歳化物、灰窒化を吻、炭酸化物、窒酸化
物、炭窒酸化物の単−金属化合物及び複合金属化合物の
中から選ばれた少なくとも1稠以上6よ、0.1重量裂
未満では結合相中に分散し−CI+力温における+l+
+t Jl 24;性?旨める効果が弱く、5屯1iチ
ゲ越えて多くなると5i3Nv本来の茜温特性特に耐熱
側撃性が低下するので結合相強化剤は0.1〜5重量%
と決めた。4a, 5a% & a group far transfer which is a binder phase strengthening agent
At least one metal compound selected from mono-metallic compounds and composite metal compounds of carbides, carbonitrides, carbonitrides, carbonates, nitrides, and carbonitrides of the genus 6,0.1% by weight Below the crack, it is dispersed in the binder phase and -CI++l+ at the force temperature.
+t Jl 24; Gender? The flavoring effect is weak, and if the amount exceeds 5ton 1i, the inherent madder temperature properties of 5i3Nv, especially the heat resistance side impact properties, will decrease, so the binder phase strengthening agent should be 0.1 to 5% by weight.
I decided.
次に、実施例に矢って+:発明の配摩耗性窒化硅素基焼
結体を兵庫的に説明する。Next, referring to Examples, the wear-distributing silicon nitride-based sintered body of the invention will be explained in detail.
実施例J
化合物の粉末を使用して第1表に示した割合に各試料を
・配合し、配合したそれぞれの試料金へWサン溶媒中v
VC基超硬合金製ボールと共にステンレス容器にて混合
粉砕した。得られた混合粉末から溶媒全蒸発除去後、B
N粉末で被覆したカーボンモールド中に充填し、N2
ガスで炉内を置換後15()〜400%の成形圧力、
1700〜1900℃の温度、60〜120分の時間で
加圧焼結した。各試料の製造条件を第1表に示し、得ら
れた焼結体の諸性性全第2表に示した。第2表の結果、
本発明の耐摩耗性屋化硅素基焼結体は、高密度化、高硬
度化が達成されたと共に耐熱爾撃性に優れていることが
確認できた。こ\で行なった熱衝撃試験は、試料を各温
度で20分保持後約20℃(常温)の水中に試料全浸漬
して試料にクラックが発生しているか否か確認し、各試
料にクラックが発生しないで耐え得る最高の温V+示し
た。Example J Using the compound powder, each sample was blended in the proportions shown in Table 1, and added to each blended sample in W Sun solvent.
The mixture was mixed and ground in a stainless steel container together with VC-based cemented carbide balls. After removing all the solvent from the obtained mixed powder by evaporation, B
Filled in a carbon mold coated with N powder and filled with N2
After replacing the inside of the furnace with gas, molding pressure of 15 () ~ 400%,
Pressure sintering was performed at a temperature of 1700 to 1900°C for a time of 60 to 120 minutes. The manufacturing conditions for each sample are shown in Table 1, and the properties of the obtained sintered bodies are shown in Table 2. The results of Table 2,
It was confirmed that the wear-resistant silicon-based sintered body of the present invention achieved high density and high hardness, and also had excellent heat attack resistance. In the thermal shock test conducted here, the sample was held at each temperature for 20 minutes and then completely immersed in water at approximately 20°C (room temperature) to check whether any cracks had occurred in the sample. It showed the highest temperature V+ that could be tolerated without occurrence of.
第2表
実施例2
結合相であるMgOとY2O3及び結合相強化剤でに)
ある4a、5a、6a族遷移金属の単)釡属化合物と複
合金属化合物の各粉末を使用して所定の割合に配合し、
真空中1400〜1600℃1時間加熱後粉砕混合して
結合相と結合相強化剤とからなる複合化合物粉末を作っ
た。この複合化合物粉末と平均粒径1μのS i 3N
4粉末を使用して第3表に示した割合に各試料ケ配合し
、実施例1と同様な方法で混合粉砕した後焼結した。各
試料の製造条件全第3表に示し、得られた焼結体の緒特
性を第4表に示した。焼結体の緒特性は実施例1と同様
にして求めた。Table 2 Example 2 Using powders of MgO and Y2O3 as the binder phase and a binder phase reinforcing agent, a metal compound of a group 4a, 5a, or 6a transition metal and a composite metal compound at a predetermined ratio. Combined with
After heating in vacuum at 1400 to 1600° C. for 1 hour, the mixture was ground and mixed to produce a composite compound powder consisting of a binder phase and a binder phase reinforcing agent. This composite compound powder and S i 3N with an average particle size of 1μ
Each sample was mixed in the proportions shown in Table 3 using four powders, mixed and ground in the same manner as in Example 1, and then sintered. The manufacturing conditions for each sample are shown in Table 3, and the properties of the obtained sintered bodies are shown in Table 4. The properties of the sintered body were determined in the same manner as in Example 1.
実施例3
実施例1の内、第1衣で示した試料番号2.5.8.9
の焼結体と実施νす2の内、第3表で示した試料番号1
2.15の焼結体音それぞれCl5Jル準SNP 43
2形状に成形した本発明の耐摩耗性窒化珪素基焼結体と
市販のAzz03系セラミックス及びサイアロン系セラ
ミックス全同一形状に成形して比較用に加えて次の(ト
)及び(13)条件にて切削試験を行なった。Example 3 Sample number 2.5.8.9 shown in the first garment in Example 1
Among the sintered bodies and sample number 2 shown in Table 3, sample number 1 was used.
2.15 sintered body sounds each Cl5Jle semi-SNP 43
The wear-resistant silicon nitride-based sintered body of the present invention molded into two shapes and commercially available Azz03 ceramics and Sialon ceramics were molded into the same shape and used for comparison, and also under the following conditions (g) and (13). A cutting test was conducted.
(5)旋削試験条件
被削材 Fe12
チップ形状 5NP432 ホーニング 0.1×−3
0’切削速度 600 rn / m i n切込み
1.5 mm
送り速度 0,7朋/rev
切削時間 3Qmin
(19ノライス削り試験巣作
被削材 J=’CD55
チップ膨大 5NP432 ホーニング 0IX−3
0’切削速度 140 m / m i n切込み
1.5朋
送り速度 0.18門、/ t 00 t h(5)
及び(13)条件による切削試験結果を第5表に示した
。第5表の結果、本発明の耐摩耗性窒化珪素基焼結体は
、従来のAz*03系セラミックス及びサイアロン系セ
ラミックスに比較して耐ノf耗性及び面]欠損性共に著
しく優れていることが確認できた。(5) Turning test conditions Work material Fe12 Chip shape 5NP432 Honing 0.1×-3
0' Cutting speed 600 rn/min Depth of cut 1.5 mm Feed rate 0.7 m/rev Cutting time 3Qmin (19 Norais cutting test nested workpiece material J='CD55 Chip enlargement 5NP432 Honing 0IX-3
0' cutting speed 140 m/min depth of cut
1.5 mm feed speed 0.18 gates, / t 00 t h (5)
Table 5 shows the cutting test results under conditions (13) and (13). As shown in Table 5, the wear-resistant silicon nitride-based sintered body of the present invention is significantly superior to conventional Az*03 ceramics and sialon ceramics in both wear resistance and surface chipping resistance. This was confirmed.
又、本発明の耐摩耗性窒化珪素基焼結体は、従来の切削
工具材料では一般に無理と考えられていた高速、高送り
の苛酷な切削条件でも充分に使用出来、新しい9ノ削加
工領域への道を拓くことが期待できる。In addition, the wear-resistant silicon nitride-based sintered body of the present invention can be used satisfactorily even under severe cutting conditions such as high speed and high feed, which was generally considered impossible with conventional cutting tool materials, and it can be used in a new 9-cut machining area. It is hoped that this will pave the way for
第 5 表
以−トの実施例1.2.3から本発明の自I′、’I:
耗性窒化硅素基1暁結体は、切削工具、附1ちりL用拐
刺及びSi3N+本来がもっている耐食四に応用した耐
食め
性材料更には構造用月相を3洸た従来のセラミックスの
用途にと1史用出米るiif能注が・Dす、工業的゛酌
価値が非常に高いものと判断出来る。From Example 1.2.3 in Table 5 onwards, the present invention I', 'I:
The abrasive silicon nitride base 1 Akatsuki body can be used for cutting tools, Attachment 1 for dust L, corrosion resistant material applied to Si3N + inherent corrosion resistance 4, and conventional ceramics for structural use. It can be judged that the industrial value of the IIF Noh notes, which have been used for a long time, is extremely high.
Claims (1)
ら土チの酸化イツトリウムと0.1〜5重量%の4;]
、5a、6a族遷移金属の炭化物、窒化物、炭窒化物、
炭酸化物、窒酸化物、炭窒酸化物の単−金属化合物及び
複合金属化合物の中から選ばれた少なくとも1種以上の
結合相強化剤と残り窒化硅素と不可避不純物と金含有す
る組成であることを特徴とする耐摩耗性望化硅素基焼結
体。0.5 to 10% by weight of magnesium oxide, 0.5 to 10% of yttrium oxide, and 0.1 to 5% by weight of 4;]
, carbides, nitrides, carbonitrides of group 5a and 6a transition metals,
The composition must include at least one binder phase strengthener selected from mono-metal compounds and composite metal compounds of carbonates, nitrides, and carbonitrides, remaining silicon nitride, unavoidable impurities, and gold. A wear-resistant silicon-based sintered body characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57146582A JPS5939768A (en) | 1982-08-24 | 1982-08-24 | Abrasion resistant silicon nitride base sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57146582A JPS5939768A (en) | 1982-08-24 | 1982-08-24 | Abrasion resistant silicon nitride base sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5939768A true JPS5939768A (en) | 1984-03-05 |
JPH0470270B2 JPH0470270B2 (en) | 1992-11-10 |
Family
ID=15410954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57146582A Granted JPS5939768A (en) | 1982-08-24 | 1982-08-24 | Abrasion resistant silicon nitride base sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939768A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5187127A (en) * | 1987-09-18 | 1993-02-16 | Kabushiki Kaisha Toshiba | Fiber-reinforced silicon nitride ceramic |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS523650A (en) * | 1975-06-26 | 1977-01-12 | Kuniharu Usui | Apparatus for stereoscopic copying press |
JPS5632377A (en) * | 1979-08-20 | 1981-04-01 | Mitsubishi Metal Corp | Silicon nitride base sintered material for cutting tool |
-
1982
- 1982-08-24 JP JP57146582A patent/JPS5939768A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS523650A (en) * | 1975-06-26 | 1977-01-12 | Kuniharu Usui | Apparatus for stereoscopic copying press |
JPS5632377A (en) * | 1979-08-20 | 1981-04-01 | Mitsubishi Metal Corp | Silicon nitride base sintered material for cutting tool |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5187127A (en) * | 1987-09-18 | 1993-02-16 | Kabushiki Kaisha Toshiba | Fiber-reinforced silicon nitride ceramic |
Also Published As
Publication number | Publication date |
---|---|
JPH0470270B2 (en) | 1992-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6011288A (en) | Surface coated sialon-base ceramic tool member | |
JP3476507B2 (en) | Method for producing cubic boron nitride-containing sintered body | |
JPS59199581A (en) | Abrasion resistant sialon base ceramics | |
JPS60246268A (en) | Sialon base ceramic | |
JPH0777986B2 (en) | Manufacturing method of silicon carbide sintered body | |
JPS6330366A (en) | Manufacture of silicon nitride-silicon carbide base composite material | |
JP3588162B2 (en) | Silicon nitride cutting tool and method of manufacturing the same | |
JPS5939768A (en) | Abrasion resistant silicon nitride base sintered body | |
US6534428B2 (en) | Titanium diboride sintered body with silicon nitride as a sintering aid | |
JPS63185869A (en) | Whisker-reinforced composite sintered body | |
JPS598670A (en) | High tenacity silicon nitride base sintered body | |
JPS5941446A (en) | High strength and anti-wear silicon nitride base sintered body | |
JP2690571B2 (en) | Zirconia cutting tool and its manufacturing method | |
JPH0832584B2 (en) | Alumina-based ceramic cutting tool with high toughness | |
JPS593073A (en) | Sialon base sintered material for cutting tool and antiabrasive tool | |
EP1931606A1 (en) | Ceramic matrix composite cutting blade for wood machining and the method of manufacturing the cutting blade | |
JPH059386B2 (en) | ||
JPH03126659A (en) | Superhard ceramics | |
JPS6360164A (en) | Silicon nitride sintered body for cutting tool and manufacture | |
JPS62235260A (en) | Si3n4 base composite material | |
JPS6090873A (en) | Silicon nitride sintered body for tool part | |
JP3007731B2 (en) | Silicon carbide-mixed oxide sintered body and method for producing the same | |
JPS6389460A (en) | Silicon nitirde sintered body for cutting tool and manufacture | |
JPS59213676A (en) | High strength silicon nitride sintered body and manufacture | |
JPH0379308B2 (en) |