JPS593975A - Structure of high withstand voltage transistor for write of nonvolatile memory element - Google Patents

Structure of high withstand voltage transistor for write of nonvolatile memory element

Info

Publication number
JPS593975A
JPS593975A JP57110831A JP11083182A JPS593975A JP S593975 A JPS593975 A JP S593975A JP 57110831 A JP57110831 A JP 57110831A JP 11083182 A JP11083182 A JP 11083182A JP S593975 A JPS593975 A JP S593975A
Authority
JP
Japan
Prior art keywords
voltage transistor
memory element
write
withstand voltage
nonvolatile memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57110831A
Other languages
Japanese (ja)
Other versions
JPH0316792B2 (en
Inventor
Kazunari Hayafuchi
早渕 一成
Toshiaki Tanaka
利明 田中
Shigeru Komine
小峯 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP57110831A priority Critical patent/JPS593975A/en
Publication of JPS593975A publication Critical patent/JPS593975A/en
Publication of JPH0316792B2 publication Critical patent/JPH0316792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable the design of withstand voltage, further simplify the constitution of write cells of a nonvolatile memory element, and enable the same treatment for write and erase lines by using high withstand voltage transistors having the same channel structure for impressing high voltages of both polarities positive and negative. CONSTITUTION:An element is formed in a structure wherein stacked gate high withstand voltage transistors A and B are arranged in series. In the case of generating the high potential of positive polarity at a write (erase) terminal 50, when the bias wherewith the high withstand voltage transistor B is conducted is impressed on the control gate terminal 46 of the high withstand voltage transistor B, the source terminal 43 of the high withstand voltage transistor A is kept at an earth potential. When the bias wherewith the high withstand voltage transistor A is cut off is impressed on the control gate terminal 42, the high withstand voltage transistor A maintains a cut-off state, the high potential of positive polarity is impressed on the gate part 49 of the nonvolatile memory element, and accordingly write is enabled, because the design of withstand voltage for the high potential of positive polarity is performed on the drain side.

Description

【発明の詳細な説明】 性記憶素子の書込み(消去)用高耐圧トランジスタ構造
に関するものである。一般に電気的に書込み、消去が可
能な不揮発性記憶素子であるE E P ROM (又
EA ROM )は二層絶縁膜であるS i 02−S
i3N4界面に自然発生的に存在するトラノブセンター
(捕獲中心)でのキャリアの充・放電をトンネル又はア
バランシェ現象を起こ揮発性記憶素子や、多結晶Si粒
やMetalを完全に絶縁膜で分離して、強制的にポテ
ンシャルの井戸を、ゲート上に構成してフローティング
型にし、同様にアバランシェ及びFowler−Nor
dheim)ンネリング現象等を起こさせて、書込み、
消去を行なうコントロールゲート付FAMO5型不揮発
性記憶素子が一般に知られている。この様な電気的にプ
ログラム可能なEA ROMは前述の如く物理的現象で
あるトンネリングやアバランシェ降伏現象を用いるため
、現在ではかなり低電圧でこの現象を誘起して、書込み
(又消去)が可能な域には達しているが、しかしながら
不揮発性記憶素子の書込み(消゛去)と駆動電圧とは必
然的に電位差(電界差)を設ける必要があるため、PN
接合基板分離等の手段を用いて、書込み(消去)電圧が
オンチップ化された周辺トランジスタに影響を受けない
メモリーセルの構成が余儀なくされる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-voltage transistor structure for writing (erasing) a digital memory element. Generally, EEPROM (also EA ROM), which is a non-volatile memory element that can be electrically written and erased, is made of S i 02-S, which is a two-layer insulating film.
The charging and discharging of carriers at the trap center (capture center) that naturally occurs at the i3N4 interface causes a tunnel or avalanche phenomenon, and volatile memory elements, polycrystalline Si grains, and metal are completely separated with an insulating film. Then, a potential well is forcibly formed on the gate to make it a floating type, and similarly avalanche and Fowler-Nor
writing by causing tunneling phenomenon etc.
A FAMO5 type nonvolatile memory element with a control gate that performs erasing is generally known. Since such electrically programmable EA ROM uses physical phenomena such as tunneling and avalanche breakdown as described above, it is currently possible to write (or erase) data by inducing this phenomenon with a fairly low voltage. However, since it is necessary to provide a potential difference (electric field difference) between writing (erasing) and driving voltage of nonvolatile memory elements, PN
By using means such as bonded substrate isolation, it is necessary to configure a memory cell in which the write (erase) voltage is not affected by on-chip peripheral transistors.

例えばMNO8記憶素子を用いて、書込み(消去)を行
なう場合、例えばN型基板を用いてPN接合耐圧での高
耐圧設計を考えるとNチャネル高耐圧トランジスタを用
いると、正の極性の高電圧に対しては耐圧設計が可能で
あるが、負の極性に対しては順方向印加のため、耐圧設
計は難がしく、特殊な基板分離法を考えなければならな
く、書込線、消去線の分離も余儀なくされる。
For example, when writing (erasing) using an MNO8 memory element, if we consider a high voltage design with a PN junction voltage using an N-type substrate, if we use an N-channel high voltage transistor, it will be possible to write to a positive polarity high voltage. For negative polarity, voltage resistance design is possible, but voltage resistance design is difficult because the voltage is applied in the forward direction for negative polarity, and a special board separation method must be considered, and writing and erasing lines must be Separation will also be forced.

本発明はかかる欠点を除去し、正負両械件の高電圧印加
に対して同一チャネル構造を有する高制圧トランジスタ
を用いて、耐圧設計が可能で、更に不揮発性記憶素子の
書込みセル構成も著しく簡略化され、又書込、消去線も
同一線処理も可能で効果が著しく大きい。
The present invention eliminates such drawbacks and enables a voltage-resistant design using high voltage suppression transistors having the same channel structure for both positive and negative high voltage applications, and also significantly simplifies the write cell configuration of nonvolatile memory elements. Furthermore, writing and erasing lines can be processed on the same line, which is extremely effective.

以下図面に従って説明する。第1図は公知であるNチャ
ネルスタックドゲート型高耐圧トランジスタ構造を示す
。ここで1はN型基、板、2はP−アラインド、6はフ
ィールド酸化膜、4はドレインN十領域、5はソースN
+領域、6はN−領域、7はP+ガードリング領域、8
はゲートa化膜、9はポリシリコン、10はコントロー
ルゲート電極、11はオフセットゲート電極、12はソ
ース電極、16はドレイン電極、14はP−基板電極を
示す。一般にスタックドゲート型高劇圧トランジスタは
コントロールゲート電極10及びドレイン4近傍の電界
集中の緩和のためのオフセットゲート電極11がら構成
されており、更にはチャネル内のドレイン近傍の酸化膜
3を厚くして、該厚い酸化膜6下のP−領域にN−I域
を設けることで一同様にドレイン降伏電圧を上げている
This will be explained below according to the drawings. FIG. 1 shows a well-known N-channel stacked gate type high breakdown voltage transistor structure. Here, 1 is an N-type substrate, a plate, 2 is a P-aligned layer, 6 is a field oxide film, 4 is a drain N+ region, and 5 is a source N
+ area, 6 is N- area, 7 is P+ guard ring area, 8
1 is a gate a film, 9 is polysilicon, 10 is a control gate electrode, 11 is an offset gate electrode, 12 is a source electrode, 16 is a drain electrode, and 14 is a P-substrate electrode. In general, a stacked gate type high voltage transistor is composed of a control gate electrode 10 and an offset gate electrode 11 for relieving electric field concentration near the drain 4, and also has a thick oxide film 3 near the drain in the channel. Similarly, by providing an N-I region in the P- region under the thick oxide film 6, the drain breakdown voltage is increased.

本発明は、かかる構造を有する高耐圧トランジスタを、
2ヶ以上直列に結続することで、正負の両極性の高電圧
に耐えうる不揮発性記憶素子の書込み(消去)用高耐圧
トランジスタを提供するものである。
The present invention provides a high voltage transistor having such a structure,
By connecting two or more transistors in series, there is provided a high voltage transistor for writing (erasing) a nonvolatile memory element that can withstand high voltages of both positive and negative polarities.

第2図は該スタックドゲート高耐圧トランジスタを用い
ての不揮発性記憶素子の書込み手段の例を示す。該チャ
ネル内の厚い酸化膜に近い不純物拡散領域端子(ここで
ドレインと称す)11を不揮発性記憶素子のゲート端子
12に短絡し、書込み用電源に結続する方法が一般に行
なわれる。
FIG. 2 shows an example of a writing means for a nonvolatile memory element using the stacked gate high voltage transistor. A method is generally used in which an impurity diffusion region terminal (herein referred to as a drain) 11 near the thick oxide film in the channel is short-circuited to a gate terminal 12 of a nonvolatile memory element and connected to a write power supply.

ここでオフセットゲート端子15に例えば正の極性の電
圧を印加しつつ、ソース端子17と基板端子16を短絡
し接地し、コントロールゲート端子14に該スタックド
ゲート高耐圧トランジスタが、カッ十オフ状態になる様
に、例えはコントロールゲート端子14を接地した状態
で、ドレイン端子11と該不揮発性記憶素子ゲート端子
12を短絡し、書込み電圧源16に接続する。この様な
バイアス化で正の極性の高電圧を発生させると、前述の
様に厚い酸化膜及びオフセットゲートバイアスによる空
乏層領域の電界集中緩和効果によりドレイン領域近傍の
耐圧は向上し、例えは40V以上の耐圧を得ることが可
能で、例えば+30Vの高電圧を不揮発性記憶素子のゲ
ート端子12に印加することが可能で、情報の書込みが
可能゛になる。しかしこの様な回路に於いて、は負の極
性の高電圧に対しては、ドレイン側のバイアスが順方向
特性を糸すため、耐圧設計は困難であった。
Here, while applying, for example, a positive polarity voltage to the offset gate terminal 15, the source terminal 17 and the substrate terminal 16 are short-circuited and grounded, and the stacked gate high voltage transistor is connected to the control gate terminal 14 until it is turned off. For example, while the control gate terminal 14 is grounded, the drain terminal 11 and the nonvolatile memory element gate terminal 12 are short-circuited and connected to the write voltage source 16. When a high voltage of positive polarity is generated with such biasing, the withstand voltage near the drain region improves due to the effect of relaxing the electric field concentration in the depletion layer region due to the thick oxide film and offset gate bias as described above. It is possible to obtain a breakdown voltage higher than that, and it is possible to apply a high voltage of, for example, +30V to the gate terminal 12 of the nonvolatile memory element, thereby making it possible to write information. However, in such a circuit, it has been difficult to design a withstand voltage because the bias on the drain side exhibits forward characteristics in response to a high voltage of negative polarity.

第3図は本発明の実施例を示す。FIG. 3 shows an embodiment of the invention.

本発明はスタックドゲート高耐圧トランジスタA、Bを
直列に配属した構成になっており、該高耐圧トランジス
タAのドレイン端子41を不揮発性記憶素子のゲート部
49に接続し高抵抗負荷56を介して書込(消去)端子
50に接続する。
The present invention has a configuration in which stacked gate high voltage transistors A and B are arranged in series, and the drain terminal 41 of the high voltage transistor A is connected to the gate portion 49 of the nonvolatile memory element through a high resistance load 56. and connect to the write (erase) terminal 50.

更に該高耐圧トランジスタAのソース端子46と基板端
子44を短絡し、該高耐圧トランジスタBのP−基板端
子48に短絡されたドレイン端子45に接続する。更に
該高耐圧トランジスタBのブース端子47を接地する構
成で、でき上がっている。
Furthermore, the source terminal 46 and substrate terminal 44 of the high voltage transistor A are short-circuited, and connected to the drain terminal 45 of the high voltage transistor B, which is short-circuited to the P-substrate terminal 48 . Further, the configuration is such that the booth terminal 47 of the high voltage transistor B is grounded.

そこで例えば書込(消去)端子50に正の極性の高電位
を発生する場合、該高耐圧トランジスタBのコントロー
ルゲート端子46に該高耐圧トランジスタBが導通する
様なノ(イアス例えば+1.5■を印加すると、該高耐
圧トランジスタAのソース端子46は接地電位に保たれ
、更に該高耐圧トランジスタAをカットオフする)(イ
アス例えば接地電位O■をコントロールゲート端子42
に印加すると、前述の如く正の極性の高電位に対して耐
圧設計がドレイン側はされているため、該高耐圧トラン
ジスタAはカットオフ状態を維持し、不揮発性記憶素子
のゲート部49は正の高電位、例えは、+30■が印加
され、書込みが可能になる一方負の極性の高電位を発生
させた場合を考えると、該スタックドゲート高耐圧トラ
ンジスタAのドレインN+領域64とP−基板61接合
が順方向バイアスされているため、該高耐圧トランジス
タAのソース端子46を介して、該高耐圧トランジスタ
Bの基板端子48と短絡されたドレイン端子45に負の
極性の高電位がかかる。一方該高耐圧トランジスタBの
コントロールゲート端子46を接地し、カットオフ状態
に保った場合のドレインN十領域66とP−基板60は
同様に順方向バイアスのためP−基板62には負の高電
位が印加された状態になる。
Therefore, for example, when generating a high potential of positive polarity at the write (erase) terminal 50, there is a voltage such as +1.5 is applied, the source terminal 46 of the high voltage transistor A is maintained at the ground potential, and the high voltage transistor A is further cut off.
Since the drain side is designed to withstand a high potential of positive polarity as described above, the high voltage transistor A maintains a cut-off state, and the gate portion 49 of the nonvolatile memory element maintains a positive polarity. Considering the case where a high potential of, for example, +30μ is applied to enable writing while generating a high potential of negative polarity, the drain N+ region 64 and P- Since the substrate 61 junction is forward biased, a negative high potential is applied to the drain terminal 45 of the high voltage transistor B, which is short-circuited to the substrate terminal 48 of the high voltage transistor B, via the source terminal 46 of the high voltage transistor A. . On the other hand, when the control gate terminal 46 of the high voltage transistor B is grounded and maintained in a cut-off state, the drain N+ region 66 and the P-substrate 60 are similarly forward biased, so the P-substrate 62 has a negative high voltage. A potential is applied.

しかしながら前述の如く、スタックドゲート高耐圧トラ
ンジスタBのソース側はフィールド酸化膜33の電界集
中緩和効果及びオフセットゲート端子52によるソース
表面付近の電界集中緩、相等の結果で耐圧設計が可能な
ため、該高耐圧トランジスタBはカットオフ状態を維持
し、該不揮発性記憶素子のゲート端子49には負の高電
位を提供でき、消去可能となる。
However, as mentioned above, the source side of the stacked gate high voltage transistor B can be designed with voltage resistance due to the field oxide film 33's electric field concentration relaxation effect and the offset gate terminal 52's electric field concentration relaxation effect near the source surface. The high voltage transistor B maintains a cut-off state, and a negative high potential can be provided to the gate terminal 49 of the nonvolatile memory element, making it possible to erase the data.

又、高耐圧トランジスタA、Bのオフセットゲート端子
51.52を各々ドレイン端子41、及びソース端子4
7に短絡した状態に於いても同様の効果が得られる。
In addition, the offset gate terminals 51 and 52 of the high voltage transistors A and B are connected to the drain terminal 41 and the source terminal 4, respectively.
A similar effect can be obtained even in a short-circuited state to 7.

従って本発明によれば、不揮発性記憶素子の書迭、消去
に伴なう両極性の高電圧は、従来PN接合分離等の基板
分離を用いて発生させる場合同一チャネル構造の高耐圧
トランジスタを介しての設計は非常に困難で、又構造も
複雑になる欠点が有った。
Therefore, according to the present invention, bipolar high voltages associated with writing and erasing of a nonvolatile memory element are generated through high voltage transistors with the same channel structure, when conventionally generated using substrate isolation such as PN junction isolation. It was very difficult to design, and the structure also had the disadvantage of being complicated.

本発明は既知の構造が簡単な倒起ばNチャネルスタック
ドゲート構造を直列に二個以上結続することで、書込み
セルが簡略化され、更には同一線処理での両極性高電圧
発生も可能で効果が著しく太きい。
The present invention simplifies the write cell by connecting two or more inverted N-channel stacked gate structures in series, which have a simple known structure, and furthermore, it is possible to generate bipolar high voltages in the same line processing. It is possible and the effect is extremely strong.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高耐圧Nチャネルスタソクドゲ−1・型トラン
ジスタの構造を示す断面図。 第2図は高耐圧Nチャネルスタックドゲート型トランジ
スタを用いて不揮発性記憶素子の書込接続を示す断面図
。 第3図は本発明のスタックドゲート型トランジスタを2
段従続接続し不揮発性記憶素子の書込接続を示す断面図
。 1.60・・・・・・N基板、 2.61.62・・・・・・P−アラインド、3.66
・・・・・・フィールド酸化膜、10.14.42・・
・・・・コントロールケート、11.15.51.52
・・・・・・オフセットゲート、50・・・・・・書込
(消去)端子。
FIG. 1 is a cross-sectional view showing the structure of a high-voltage N-channel star-type transistor. FIG. 2 is a cross-sectional view showing a write connection of a nonvolatile memory element using a high voltage N-channel stacked gate transistor. Figure 3 shows two stacked gate transistors of the present invention.
FIG. 3 is a cross-sectional view showing a write connection of a nonvolatile memory element connected in series. 1.60...N substrate, 2.61.62...P-aligned, 3.66
...field oxide film, 10.14.42...
...Control Kate, 11.15.51.52
...Offset gate, 50...Write (erase) terminal.

Claims (2)

【特許請求の範囲】[Claims] (1)  同一基板−ヒに集積された計時回路を含む論
理回路と該論理回路の計時内容を表示する表示装置と該
論理回路にデータを与える電気的に書込み可能な不揮発
性記憶素子と、該不揮発性記憶素子への書込み回路を有
する集積回路に於いて、前記書込み回路に前記不揮発性
記憶素子及び論理回路と基板分離された高耐圧l・ラン
ジスタを設けたことを特徴とする不揮発性記憶素子の書
込み用高耐圧l・ランジスタ構造。
(1) A logic circuit including a clock circuit integrated on the same substrate, a display device that displays the time measurement contents of the logic circuit, an electrically writable nonvolatile memory element that provides data to the logic circuit, and An integrated circuit having a write circuit for a non-volatile memory element, characterized in that the write circuit is provided with a high-voltage transistor separated from the non-volatile memory element and the logic circuit by a substrate. High-voltage transistor structure for writing.
(2)  同一基板上に集積された計時回路を含む論理
回路と該論理回路の計時内容を表示する表示装置と該論
理回路にデータを与える電気的に書込み可能な不揮発性
記憶素子と、該不揮発性記憶素子への書込み回路を有す
る集積回路に於いて、前記書込み回路に前記不揮発性記
憶素子及び論理回路と基板分離された高耐圧l・ランジ
スタを設けた第1と第2の不揮発性記憶素子の書込み円
高耐圧トランジスタを少な(とも2個直列に接続し、前
記第1の高耐圧トランジスタのドレイン電極の負荷を介
して、書込み電源端子に接続し、さらに該第1の高耐圧
トランジスタの基板電体と短絡されたソース電極を、第
2の高耐圧トランジスタの基板電極と短絡され、さらに
該第2の高耐圧トランジスタのドレイン電極に接続し、
さらに該第2の高耐圧トランジスタのソース電極を接地
した構成を有することを特徴とする不揮発性記憶素子の
書込み用高耐圧トランジスタ構造。
(2) A logic circuit including a clock circuit integrated on the same substrate, a display device that displays the time measurement contents of the logic circuit, an electrically writable nonvolatile memory element that provides data to the logic circuit, and the nonvolatile In the integrated circuit having a write circuit for a static memory element, the write circuit is provided with a high-voltage transistor separated from the non-volatile memory element and the logic circuit by a substrate, the first and second non-volatile memory elements. A small number of high-voltage transistors are connected in series, connected to a write power supply terminal via a load of the drain electrode of the first high-voltage transistor, and a substrate of the first high-voltage transistor is connected to the write circuit. A source electrode short-circuited to the electric body is short-circuited to a substrate electrode of a second high-voltage transistor, and further connected to a drain electrode of the second high-voltage transistor,
A high voltage transistor structure for writing in a nonvolatile memory element, further comprising a configuration in which a source electrode of the second high voltage transistor is grounded.
JP57110831A 1982-06-29 1982-06-29 Structure of high withstand voltage transistor for write of nonvolatile memory element Granted JPS593975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110831A JPS593975A (en) 1982-06-29 1982-06-29 Structure of high withstand voltage transistor for write of nonvolatile memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110831A JPS593975A (en) 1982-06-29 1982-06-29 Structure of high withstand voltage transistor for write of nonvolatile memory element

Publications (2)

Publication Number Publication Date
JPS593975A true JPS593975A (en) 1984-01-10
JPH0316792B2 JPH0316792B2 (en) 1991-03-06

Family

ID=14545763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110831A Granted JPS593975A (en) 1982-06-29 1982-06-29 Structure of high withstand voltage transistor for write of nonvolatile memory element

Country Status (1)

Country Link
JP (1) JPS593975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522072B2 (en) 2011-10-28 2019-12-31 Apple Inc. Display with vias for concealed printed circuit and component attachment
US10620490B2 (en) 2011-10-05 2020-04-14 Apple Inc. Displays with minimized border regions having an apertured TFT or other layer for signal conductors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620490B2 (en) 2011-10-05 2020-04-14 Apple Inc. Displays with minimized border regions having an apertured TFT or other layer for signal conductors
US10877332B2 (en) 2011-10-05 2020-12-29 Apple Inc. Displays with minimized border regions having an apertured TFT layer for signal conductors
US10522072B2 (en) 2011-10-28 2019-12-31 Apple Inc. Display with vias for concealed printed circuit and component attachment

Also Published As

Publication number Publication date
JPH0316792B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US4016588A (en) Non-volatile semiconductor memory device
EP0030856B1 (en) Charge-pumping semiconductor memory cell comprising a charge-storage region and memory device using such a cell
KR950011025B1 (en) Semiconductor memory device
US4425631A (en) Non-volatile programmable integrated semiconductor memory cell
US4532535A (en) Electrically reprogrammable non volatile memory cell floating gate EEPROM with tunneling to substrate region
JPS6112396B2 (en)
US3469155A (en) Punch-through means integrated with mos type devices for protection against insulation layer breakdown
JPH0368542B2 (en)
JPH0760864B2 (en) Semiconductor integrated circuit device
JPS5829199A (en) Programming of non-volatile memory
US9368506B2 (en) Integrated circuits and methods for operating integrated circuits with non-volatile memory
JPS59215767A (en) Insulated gate semiconductor device with low on resistance
JPS61500939A (en) E2PROM memory device
JPS60207383A (en) Semiconductor device
JPS593975A (en) Structure of high withstand voltage transistor for write of nonvolatile memory element
JPS62183161A (en) Semiconductor integrated circuit device
JPS5911682A (en) Semiconductor nonvolatile storage device
JPS58122695A (en) Input overvoltage protection circuit
JPH02114674A (en) Semiconductor non-volatile memory
JPS6318864B2 (en)
JPS6241431B2 (en)
JPS5999760A (en) Semiconductor memory device
JPH0422030B2 (en)
JPS595494A (en) Semiconductor nonvoratile memory
JPS61245577A (en) Nonvolatile semiconductor memory element