JPS5939751A - Detection of molten slag agitation granulation finishing point - Google Patents

Detection of molten slag agitation granulation finishing point

Info

Publication number
JPS5939751A
JPS5939751A JP57151435A JP15143582A JPS5939751A JP S5939751 A JPS5939751 A JP S5939751A JP 57151435 A JP57151435 A JP 57151435A JP 15143582 A JP15143582 A JP 15143582A JP S5939751 A JPS5939751 A JP S5939751A
Authority
JP
Japan
Prior art keywords
slag
stirring
time
granulation
molten slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57151435A
Other languages
Japanese (ja)
Inventor
一利 曽我
岡山 勉
龍野 茂之
楠 光裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK, Kawasaki Steel Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP57151435A priority Critical patent/JPS5939751A/en
Publication of JPS5939751A publication Critical patent/JPS5939751A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高炉または転炉から排出される溶融スラグを攪
拌用鍋に受滓し、その溶融スラグを攪拌して造粒する過
程における攪拌造粒の完了点を検出する方法に関する。
Detailed Description of the Invention The present invention collects molten slag discharged from a blast furnace or converter in a stirring pot, and detects the completion point of stirring and granulation in the process of stirring and granulating the molten slag. Regarding the method.

従来から、溶融スラグの熱エネルギを回収するために鍋
に受滓された溶融スラグを攪拌造粒装置によって攪拌し
、この過程で輻射によって得られる熱エネルギを回収し
、造粒完了後の固形スラグvi:縦形熱交換器であるシ
ャフトクーラに装入され、このシャフトクーラ内にガス
を循環させることにより固形スラグとガスとの間で熱交
換されて、さらに熱エネルギが回収される。
Conventionally, in order to recover the thermal energy of the molten slag, the molten slag received in a pot is stirred by a stirring granulation device, and the thermal energy obtained by radiation is recovered in this process, and the solid slag after granulation is completed. vi: The solid slag is placed in a shaft cooler, which is a vertical heat exchanger, and by circulating gas within the shaft cooler, heat is exchanged between the solid slag and the gas, and thermal energy is further recovered.

ここで、溶融スラグの攪拌造粒完了点とは、4臂拌造粒
されているスラグから輻射により回収される熱エネルギ
が少なくなり、後続のシャフトクーラによって熱エネル
ギを回収した方が熱回収率がよくなる温度までスラグ表
面温度が達したときである。さらに、ハンドリングある
いは製品としての観点から、その温度は攪拌にて造粒さ
れた粒伏の固形スラグが再び溶着して大きな塊とならな
い潟度未満であり、かつ必要以上に攪拌することにより
て粒伏の固形スラグが細粒化し製品として不適当なもの
とならないとともに、後続のシャフトクーラにおいて循
環ガスの圧力損失が増大する粒度となる以前の時刻であ
る。このような観点から、溶融スラグの攪拌造粒の完了
点を検出することが重要となる。
Here, the completion point of stirring and granulation of molten slag means that less heat energy is recovered by radiation from the slag being granulated by four-arm stirring, and it is better to recover heat energy by the subsequent shaft cooler, which results in a higher heat recovery rate. This is when the slag surface temperature reaches a temperature at which it becomes good. Furthermore, from the viewpoint of handling or product, the temperature is below the lag temperature at which the granulated solid slag granulated by stirring does not weld together again and form large lumps, and the temperature is below the lag temperature that prevents the granulated solid slag granulated by stirring from forming into large lumps. This is the time before the solid slag becomes fine enough to become unsuitable as a product, and before it reaches a particle size that increases the pressure loss of the circulating gas in the subsequent shaft cooler. From this point of view, it is important to detect the completion point of stirring and granulation of molten slag.

本発明の目的は、鍋に受滓された溶融スラグを4■拌装
置によって攪拌造粒する際に、効率よく熱エネルギが回
収されしかも造粒されたスラグが再溶着せず、かり細粒
化しない伏態となる攪拌造粒完了点を検出する方法を提
供することである。
The purpose of the present invention is to efficiently recover thermal energy when molten slag received in a ladle is stirred and granulated using a 4-part stirring device, and the granulated slag is not re-welded and is finely granulated. It is an object of the present invention to provide a method for detecting the completion point of agitation granulation at which the granulation is in a state of failure.

以下、図面によって本発明の詳細な説明する0第1図は
溶融スラグの顕然回収設備のうち攪拌造粒し輻射伝熱に
より熱回収を行なう部分の断面図である。予め、内部に
製品スラグによる敷滓4が形成された鍋l内に、高炉あ
るいは転炉からたとえば1400〜1850°の高温度
溶融スラグ5を流下投入する。攪拌造粒の位置まで鍋台
車8が移動する。溶融スラグVi電動機8によって回転
するバー7の内壁全面に設けられた被加熱流体、たとえ
ば水が通過するための輻射伝熱管6によりて溶融スラグ
の顕熱は回収される。攪拌造粒によって溶融スラグけ、
輻射伝熱によってたとえば約1100°C程度まで冷却
されるとともに粒伏のスラグとなる。造粒されたスラグ
はスキップホイストによって縦形熱交換器(シャフトク
ーラ)に投入さ九、ここで下方から押込まれる気体を対
流伝熱によって昇温し、最終的に顕熱が発熱ボイラにて
回収される。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a part of the molten slag apparent recovery equipment that performs agitation granulation and heat recovery by radiant heat transfer. High-temperature molten slag 5 of, for example, 1400 to 1850° is poured down from a blast furnace or converter into a pot l in which a slag 4 of product slag has been formed in advance. The pot truck 8 moves to the stirring granulation position. Sensible heat of the molten slag is recovered by a radiant heat transfer tube 6 provided on the entire inner wall of the bar 7 rotated by the molten slag Vi electric motor 8 through which a fluid to be heated, such as water, passes. Molten slag is formed by stirring and granulation.
The slag is cooled to about 1100° C. by radiation heat transfer and becomes a granular slag. The granulated slag is fed into a vertical heat exchanger (shaft cooler) by a skip hoist, where the gas pushed in from below is heated by convection heat transfer, and the sensible heat is finally recovered in a heat generating boiler. be done.

攪拌造粒部のカバー7の中央にtま、鍋l内のスラグ表
面温度を測定するために赤外線を検出する単色式放射温
度計lOが取りつけられ、検出された温度は記録装置■
4によって記録される。この温度計10KFiスラグ表
面温度を正確に検出するために、その温度計10の視野
を清浄なガスでパージするノズルなどが設けられる。ま
た、電動機8の負荷電流は検出器16によって検出され
る。
A monochromatic radiation thermometer that detects infrared rays is attached to the center of the cover 7 of the stirring granulation section to measure the surface temperature of the slag inside the pot, and the detected temperature is recorded by a recording device.
Recorded by 4. In order to accurately detect the surface temperature of the thermometer 10KFi slag, a nozzle or the like is provided to purge the field of view of the thermometer 10 with clean gas. Further, the load current of the electric motor 8 is detected by a detector 16.

この実施例では、放射温度計10によるスラグ表面の温
度の計測を2点とする。温度計10VCよって検出され
るスラグ表面の温度はそれぞれ第2図に示されるように
変化する。変動の幅あるいは同期は、攪拌s20回転間
期や攪拌造粒の進行具合などによるのであるが、検出さ
れた温度信号の変動が激しいのでその変動を和らげるた
め、それぞれの温度信号θに演算フィルタ11をかける
In this example, the temperature of the slag surface is measured at two points by the radiation thermometer 10. The temperature of the slag surface detected by the thermometer 10VC varies as shown in FIG. The width or synchronization of the fluctuations depends on the stirring s20 rotation interval and the progress of stirring granulation, but since the detected temperature signals fluctuate sharply, in order to soften the fluctuations, a calculation filter 11 is applied to each temperature signal θ. multiply.

すなわち、画波数入力に対するその過渡応答を考慮の工
時定数を長くもつ一次の遅れ演算器をフィルタとして設
け、入力に対する出力過渡応答のにぶさを利用して激し
い信号の変動のうち同波数の大きい振動を消し、第8図
に示されるように滑らかな振動信号とした。実施例では
時定数80 secの遅れ演算器を使用している。演算
フィルタ11をかけられた2つの温度検出信号θfのう
ち高い方の信号を選択し出力するノ・イセレフター12
にかけられる。
In other words, a first-order delay calculator with a long time constant that takes into account the transient response to the image wave number input is provided as a filter, and the slowness of the output transient response to the input is used to detect large wave number fluctuations among severe signal fluctuations. The vibrations were eliminated, resulting in a smooth vibration signal as shown in FIG. In the embodiment, a delay calculator with a time constant of 80 seconds is used. A selector selector 12 selects and outputs the higher signal of the two temperature detection signals θf applied by the arithmetic filter 11.
Can be applied to.

演算処理されたスラグ表面の温度θSが予め実験により
知られた攪拌造粒完了時の温度θ5ojc達し、かつ一
定時間Ta2間θSがθsO以下0状態が続いた時刻【
0を検出する。この一定時間Tsとは温度信号θSの変
動を考慮のと決定する口この実施例でけθsO= 10
50°C、Ts = 80secとしている。
The time when the calculated temperature θS of the slag surface reaches the temperature θ5ojc at the completion of stirring granulation, which was known in advance by experiment, and θS continues to be 0 or less than θsO for a certain period of time Ta2 [
Detects 0. In this embodiment, this fixed time Ts is determined by taking into account the fluctuation of the temperature signal θS.
The temperature was set at 50°C and Ts = 80 sec.

この時刻toを攪拌造粒完了点とするVCは鍋内スラグ
の表面のうち一部分しか温度を計測していないため、そ
の部分だけ局部的に温度が下がっている可能性がある。
Since the VC whose agitation granulation is completed at time to measures the temperature of only a portion of the surface of the slag in the pan, there is a possibility that the temperature has locally decreased in that portion.

そこで受滓量、敷滓量、撹拌−棒の回転数による攪拌時
間Tを予め実;験により決めておき、操業状況に応じて
決められた攪拌時間Tをタイマにて設定し、攪拌開始か
ら時間Tが経過したことと時刻toが検出されたことの
同条件が成立する時刻を攪拌完了点TOとする。この時
刻TOで第1図に示される制御回路13によって電動機
3が休止され、攪拌造粒を完了する。その結果攪拌造粒
部における輻射顕然の回収効率と、シャフトクーラにお
ける対流伝熱における熱回収効率が向上する。
Therefore, the stirring time T based on the amount of slag received, the amount of slag, and the number of rotations of the stirring rod is determined in advance through experiments, and the stirring time T determined according to the operating conditions is set using a timer, and from the start of stirring. The time when the same conditions that time T has elapsed and time to has been detected are established as the stirring completion point TO. At this time TO, the electric motor 3 is stopped by the control circuit 13 shown in FIG. 1, and the stirring granulation is completed. As a result, the recovery efficiency of radiation in the stirring granulation section and the heat recovery efficiency of convective heat transfer in the shaft cooler are improved.

本発明の方法においては、温度計lOの数を増やし適当
な位置に配置すれば、鍋内スラグ表面の湯度測定点が増
し、結果として鍋内スラグ表面の最高温度の検出精度が
増し、したがって攪拌完了点の検出精度が向上する。
In the method of the present invention, by increasing the number of thermometers and arranging them at appropriate positions, the number of hot water temperature measurement points on the surface of the slag in the pot increases, and as a result, the accuracy of detecting the maximum temperature on the surface of the slag in the pot increases. The detection accuracy of the stirring completion point is improved.

前述の攪拌造粒完了点の検出方法では、造粒後のスラグ
が再溶着することを確実に防ぐた2め、安全サイドをみ
て設定時間Tをむやみに長く設定する傾向があり、それ
が粒化したスラグの細粒化をすすめるおそれがある。
In the above-mentioned method for detecting the completion point of agitation granulation, in order to reliably prevent the slag from re-welding after granulation, there is a tendency to set the set time T to be unnecessarily long on the safe side. There is a risk that the granulated slag will become finer.

そこで上記のような問題点を解決する時間設定によらな
い実施例を次に説明する。温度計lOによって検出され
記録装置14に記録されるスラグ表面の温度は、第4図
に示されるように変化する。
Therefore, an embodiment that does not depend on time setting and solves the above-mentioned problems will be described next. The temperature of the slag surface detected by the thermometer IO and recorded in the recording device 14 changes as shown in FIG.

時刻tlVcおいて攪拌体2によってスラグの攪拌を開
始すると、撹拌棒2の回転周期などに依存してスラグ表
面の検出温度が変11シクク、その変化幅dθが攪拌時
間の経過とともに小さくなっていく。スラグ表面の温度
の変化幅dθけ、攪拌開始時刻tllcおいて最大幅d
θl である。本発明の方法に従えば、スラグ表面の温
度変化幅dθが最大幅dθI VC対して予め定めた第
1の比率dθ/dθ1=α(一定)に達する時刻を検出
する。このときの時刻は、第4図において参照符【2で
示され、このときのスラグ表面の温度変化幅は、doo
で示されている。この第1の比率dθ0/dθl−αけ
本件発明者の実験によれば第1式で示されるとおりとな
る。
When stirring of the slag is started by the stirring body 2 at time tlVc, the detected temperature on the slag surface changes by 11 steps depending on the rotation period of the stirring rod 2, and the width of the change dθ becomes smaller as the stirring time passes. . The maximum width d at the stirring start time tllc is the temperature change width dθ on the slag surface.
θl. According to the method of the present invention, the time when the temperature change width dθ on the slag surface reaches a predetermined first ratio dθ/dθ1=α (constant) with respect to the maximum width dθIVC is detected. The time at this time is indicated by the reference mark [2 in FIG. 4, and the temperature change range on the slag surface at this time is
It is shown in According to the inventor's experiments, this first ratio dθ0/dθl−α is as shown in the first equation.

dθ0/dθl中1          ・・・11)
dθ0は温度に換算して約30〜50°Cである。
1 in dθ0/dθl...11)
dθ0 is approximately 30 to 50°C in terms of temperature.

第4図に示される実験結果では、スラグ表面の温度の変
化幅dθは攪拌開始時刻tiにおいて最大幅dθ1 と
なったけれども、攪拌開始時刻【1以降において最大幅
が得られることもあり、この場合においてもまた、その
最大幅に対してスラグ表面の温度の変化幅dθが予め定
めた第1の比率に達する時刻が検出される。
In the experimental results shown in Fig. 4, the width of change dθ in the temperature of the slag surface reached the maximum width dθ1 at the stirring start time ti, but the maximum width may be obtained after the stirring start time [1]. Also, the time at which the temperature change width dθ of the slag surface reaches a predetermined first ratio with respect to the maximum width is detected.

検出器16YCよって検出されるモータ3の負荷電流の
時間経過は、第5図に示される。時刻tlにおいて撹拌
が開始されると負荷電流の変化幅diは徐々に大きくな
シ、ついに最大幅dil  K到り、その後減少してゆ
く。本発明の方法に従えば、負荷電流の変化幅diが最
大幅dil  K対して予め定めた第2の比率di/d
il=β(一定)に達する時刻を検出する。このときの
時刻は、第5図において参照符t2で示され、このとき
の負荷電流の変化幅はdiOで示されている。この第2
の比率diO/dll=βは、本件発明者の実験によれ
ば第2式で定める値である。
The time course of the load current of the motor 3 detected by the detector 16YC is shown in FIG. When stirring is started at time tl, the variation width di of the load current gradually increases, finally reaches the maximum width dilK, and then decreases. According to the method of the present invention, the change width di of the load current is determined by a predetermined second ratio di/d with respect to the maximum width dil K.
Detect the time when il=β (constant). The time at this time is indicated by reference t2 in FIG. 5, and the width of change in the load current at this time is indicated by diO. This second
According to the inventor's experiments, the ratio diO/dll=β is a value determined by the second equation.

diO/dil中1 2          °−[2) 前述のスラグ表面の温度変化幅の比率dθ/d 01が
第1の比率αに達する時刻の検出だけでは、攪拌開始時
刻【lにおけるスラグ表面の温度変化幅の変動、攪拌の
方法、攪拌体2の回転周期や回転方向などによってスラ
グ表面の温度変化幅の比率dθ/dθ1が変動するので
、攪拌造粒完了点を誤るおそれがある。また負荷電流の
変化幅の比率di/dil  は、大略的に時間経過と
ともに小さくなるけれども、変動するので、負荷電流の
変化幅の比率di/dilが第2の比率βに達する時刻
の検出だけでは、攪拌造粒完了点を誤る場合がありうる
diO/dil 1 2 ° - [2) It is not enough to detect the time when the ratio dθ/d 01 of the temperature change range on the slag surface reaches the first ratio α. Since the ratio dθ/dθ1 of the width of temperature change on the slag surface varies depending on the variation in width, the stirring method, the rotation period and direction of rotation of the stirring body 2, etc., there is a risk of erroneously determining the completion point of stirring granulation. Furthermore, although the ratio di/dil of the width of change in the load current generally decreases over time, it fluctuates, so it is not enough to simply detect the time when the ratio di/dil of the width of change in the load current reaches the second ratio β. , the completion point of agitation granulation may be mistaken.

このような問題点を解決するために、本発明の方法では
第1式が成立し、かつ第2式が成立する時刻t2を攪拌
造粒の完了点とするのである。この時刻t2で第1図に
示される制御回路15によって、Na機3が休止され、
攪拌造粒を完了するOその結果攪拌造粒部にンける輻射
顕然の回収効率と、シャフトクーラにおける対流による
熱エネルギの回収効率が、向上されるとともに、攪拌造
粒後の工程においてスラグが再溶着することがなく、シ
カモシャフトクーラにおいて循環ガスの圧力損失を増大
する粒径にまで細粒化されることがない。
In order to solve such problems, in the method of the present invention, the time t2 at which the first equation holds and the second equation holds is set as the completion point of stirring granulation. At this time t2, the Na machine 3 is stopped by the control circuit 15 shown in FIG.
As a result, the recovery efficiency of radiation in the agitation granulation section and the recovery efficiency of thermal energy through convection in the shaft cooler are improved, and the slag is reduced in the process after agitation granulation. It does not re-weld and is not refined to a particle size that would increase the pressure loss of the circulating gas in the Shikamo shaft cooler.

また、攪拌装置を電動機以外の駆動装置を用いた場合に
は負荷電流値の変動幅の比の代わりに、負荷トルクを検
出し、その負荷トルクの変Ur幅の変化も負荷電流値の
場合と同様で第2比率βがβ′となる。本件発明者の実
験によれば、 β′中0.65              ・・・1
3)となる。
In addition, when a drive device other than an electric motor is used for the stirring device, the load torque is detected instead of the ratio of the variation width of the load current value, and the change in the variation width of the load torque is also the same as the load current value. Similarly, the second ratio β becomes β'. According to the inventor's experiments, β' is 0.65...1
3).

本発明の方法の他の実施例として、前述のスラグ表面温
度を複数個所で検出し、その検出値のうち最も高い検出
値が設定値以下になり、かつ予め定めた時間が過ぎた時
刻を攪拌造粒完了点とする検出方法と、スラグ表面温度
を検出し、その検出値の変化幅が最大幅に対して予め定
めた第1の比率に達し、かつ攪拌電動機の負荷電流の変
化幅が最大幅に対して予め定めた第2の比率に達した時
刻を攪拌造粒完了点とする検出方法とを折衷してもよく
、さらにそれぞれの方法の条件の成否を論理演算するこ
とによって攪拌造粒完了点の検出の精度を高めてもよい
As another embodiment of the method of the present invention, the above-mentioned slag surface temperature is detected at multiple locations, and the stirring is performed at a time when the highest detected value among the detected values becomes below a set value and a predetermined time has passed. A method of detecting the granulation completion point, a detection method of detecting the slag surface temperature, a detection method in which the range of change in the detected value reaches a predetermined first ratio to the maximum width, and the range of change in the load current of the stirring motor is the maximum. It is also possible to compromise with a detection method in which the time when a predetermined second ratio is reached is the completion point of stirring granulation, and furthermore, by logically calculating the success or failure of the conditions of each method, stirring granulation can be performed. The accuracy of detection of the completion point may be increased.

本発明の方法のさらに他の実施例として、第4図を参照
して温度計lOによって検出される温度の平均値θを求
め、この平均値θが予め定めた値θ0たとえば1050
°CIC達することを検出し、このような条件が第1式
および第2式に示された条件の成立と同時に成立する時
点を攪拌造粒の完了点としてもよい。このようにして温
度の平均値θが予め定めた値θ0に達することを検出す
ることによって、攪拌造粒完了点の検出がさらに正確に
なる。
As still another embodiment of the method of the present invention, the average value θ of the temperatures detected by the thermometer IO is determined with reference to FIG.
The completion point of stirring granulation may be determined by detecting that the CIC is reached and at the same time as the conditions shown in the first and second equations are satisfied. By detecting that the average value θ of the temperature reaches the predetermined value θ0 in this manner, the point at which stirring granulation is completed can be detected more accurately.

以上のように本発明の方法によれば、攪拌造粒完了点を
正確に検出することができ、これによって溶融スラグの
熱エネルギが効率よく回収されるとともに、造粒後のス
ラグの再溶着が防がれ、さらに製品として好ましくない
スラグの細粒化が抑制され、シャフトクーラにおける固
形スラグの細粒化による循環ガスの圧力損失が低減され
る。
As described above, according to the method of the present invention, it is possible to accurately detect the completion point of agitation granulation, thereby efficiently recovering the thermal energy of molten slag, and preventing re-welding of slag after granulation. Furthermore, the granulation of the slag, which is not desirable as a product, is suppressed, and the pressure loss of the circulating gas due to the granulation of the solid slag in the shaft cooler is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の攪拌造粒部の断面図、第2
図は単色式放射温度計lOによって検出されたスラグ表
面温度θと攪拌時間との関係を示す図、第8図は演算処
理されたスラグ表面温度θf(θS)と攪拌時間との関
係を示す図、第4図は単色式放射温度計lOによって検
出されたスラグ表面温度θと攪拌時間との関係を示す図
、第5図は電動機3の負荷電流と攪拌時間との関係を示
す図である。 l・・・鍋、8・・・電動機、5・・・溶融スラグ、l
O・・・単色式放射温度計、θ・・・単色式放射温度計
によるスラグ表面温度、dθ・・・スラグ表面温度変化
幅、dθl ・・・スラグ表面温度最大変化幅、α・・
・第1の比率、di・・・負荷電流変化幅、dil  
・・・負荷電流最大変化幅、β・・・第2の比率 代理人   弁理士 西教圭一部 P#秤秤量 間r $i粁時間 第5図 循秤時間
Fig. 1 is a cross-sectional view of the stirring granulation part of one embodiment of the present invention, Fig. 2
The figure shows the relationship between the slag surface temperature θ detected by the monochromatic radiation thermometer IO and the stirring time, and Figure 8 shows the relationship between the calculated slag surface temperature θf (θS) and the stirring time. , FIG. 4 is a diagram showing the relationship between the slag surface temperature θ detected by the monochromatic radiation thermometer IO and the stirring time, and FIG. 5 is a diagram showing the relationship between the load current of the electric motor 3 and the stirring time. l... Pot, 8... Electric motor, 5... Molten slag, l
O... Monochromatic radiation thermometer, θ... Slag surface temperature measured by monochromatic radiation thermometer, dθ... Slag surface temperature change width, dθl... Slag surface temperature maximum change width, α...
・First ratio, di...Load current change width, dil
...Maximum change width of load current, β...Second ratio agent Patent attorney Kei NishiP#Weighing time r $i Time Figure 5 Circulation time

Claims (2)

【特許請求の範囲】[Claims] (1)鍋に受滓された溶融スラグを電動機により駆ll
11する1(を拌手段によって攪拌して造粒する際に、
鍋内のスラグ表面温度を復雛個所で検出し、前記検出値
のうち、最も高い検出値が設定値以下になり、かつ攪拌
開始から予め定めた時間が過ぎた時刻を4慌拌造粒完了
点とすることを特徴とする溶融スラグの攪拌造粒完了点
の検出方法。
(1) The molten slag caught in the pot is driven by an electric motor.
11 When granulating by stirring 1 (with a stirring means,
The slag surface temperature in the pot is detected at multiple locations, and the 4-rush granulation is completed when the highest detected value among the detected values becomes below the set value and a predetermined time has passed from the start of stirring. A method for detecting the completion point of agitation granulation of molten slag, characterized in that the point is determined as a point.
(2)鍋に受滓された溶融スラグを電FaI機により駆
uJする攪拌手段によって攪拌して造粒する際に、鍋内
のスラグ表面温度を検出し、前記検出値の変化幅が最大
幅に対して予め定めた第1の比率に達し、かつ前記電1
III機の負荷電流の変化幅が最大幅に対して予め定め
た第2の比率に達した時刻を攪拌造粒完了点とすること
を特徴とする溶融スラグの攪拌造粒完了点の検出方法。
(2) When the molten slag received in the ladle is stirred and granulated by a stirring means driven by an electric FaI machine, the surface temperature of the slag in the ladle is detected, and the range of change of the detected value is the maximum width. reaches a predetermined first ratio to
A method for detecting the completion point of agitation granulation of molten slag, characterized in that the agitation granulation completion point is defined as the time when the variation range of the load current of the III machine reaches a predetermined second ratio with respect to the maximum width.
JP57151435A 1982-08-30 1982-08-30 Detection of molten slag agitation granulation finishing point Pending JPS5939751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57151435A JPS5939751A (en) 1982-08-30 1982-08-30 Detection of molten slag agitation granulation finishing point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151435A JPS5939751A (en) 1982-08-30 1982-08-30 Detection of molten slag agitation granulation finishing point

Publications (1)

Publication Number Publication Date
JPS5939751A true JPS5939751A (en) 1984-03-05

Family

ID=15518545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151435A Pending JPS5939751A (en) 1982-08-30 1982-08-30 Detection of molten slag agitation granulation finishing point

Country Status (1)

Country Link
JP (1) JPS5939751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523281A (en) * 2003-03-19 2006-10-12 ハネウェル・インターナショナル・インコーポレーテッド Filters for volatile hydrocarbon emissions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523281A (en) * 2003-03-19 2006-10-12 ハネウェル・インターナショナル・インコーポレーテッド Filters for volatile hydrocarbon emissions

Similar Documents

Publication Publication Date Title
US11441206B2 (en) System and method of operating a batch melting furnace
JPS5939751A (en) Detection of molten slag agitation granulation finishing point
US4484947A (en) Method for melting a charge of bulk solid metal
US5238171A (en) Brazing method by continuous furnace
CN208026661U (en) A kind of iron ore melting dripping test device
JPH0160530B2 (en)
JPH0444529B2 (en)
CA2178762A1 (en) Electrically Heated Metal Melt Cell
JPS5819435A (en) Controlling method for continuous heating furnace
CN211261753U (en) Smelting furnace with uniform heating
JP2679287B2 (en) Iron
Sorokin et al. Possibility of Slag Sensible Heat Recovery on Drum-like Installations
US4403326A (en) Electric arc furnace with controlled operation
JP2826861B2 (en) Detector for detecting the amount of molten metal
JPH04162947A (en) Method for controlling molten steel temperature
SU455155A1 (en) Apparatus for producing metals
SU917899A1 (en) Metal continuous casting machine automatic control apparatus
JPS60114520A (en) Method for controlling temperature of continuous heating furnace
Mucciardi et al. Thermal cycling of ladles at Stelco McMaster works
SU985742A1 (en) Method of checking submerged-resistor induction furnace lining condition
JPH01185422A (en) Method for measuring temperature of molten iron
KR20230146309A (en) Fluid wax pelletizer for continuous discharging of granular wax
SU1640175A1 (en) Method of control of metal melting process in induction crucible furnace
JP2024042564A (en) Slag outflow amount estimation system of electric furnace and refining method in electric furnace
JPS5472704A (en) Steel sheet detector