JPS5939682B2 - Structure construction displacement measuring device - Google Patents

Structure construction displacement measuring device

Info

Publication number
JPS5939682B2
JPS5939682B2 JP934080A JP934080A JPS5939682B2 JP S5939682 B2 JPS5939682 B2 JP S5939682B2 JP 934080 A JP934080 A JP 934080A JP 934080 A JP934080 A JP 934080A JP S5939682 B2 JPS5939682 B2 JP S5939682B2
Authority
JP
Japan
Prior art keywords
light
laser
measuring device
light shielding
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP934080A
Other languages
Japanese (ja)
Other versions
JPS56107111A (en
Inventor
昂 三引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP934080A priority Critical patent/JPS5939682B2/en
Publication of JPS56107111A publication Critical patent/JPS56107111A/en
Publication of JPS5939682B2 publication Critical patent/JPS5939682B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 例えば、スライデイングフオームエ法によりサイロを構
築する場合、サイロの側壁が常に鉛直上方に延長してコ
ンクリートが打設されることが要求されており、従来で
は、作業監視員がトランシツトで定期的に測量すること
によつてこれをチエクしていた。
Detailed Description of the Invention For example, when constructing a silo using the sliding foam method, it is required that the side walls of the silo are always extended vertically upwards when concrete is poured. This was checked by personnel who carried out periodic measurements using transits.

しかしながらこのような方法では、新たに施工された部
分の位置を連続的に検出することが不可能であり、しか
もこの測量に多大の時間を要していた。
However, with this method, it is impossible to continuously detect the position of newly constructed parts, and moreover, this surveying takes a lot of time.

本発明者はこのような難点を克服した構造物構築変位測
定装置を発明し、昭和54年9月11日特許出願(特願
昭54−115668号)したが、同発明においては、
ビーム発信器より発信されるビームを選択的に透過させ
るために、半径方向に指向した回転角検出溝と中心角の
増加に対して中心からの距離が比例的に増大するアルキ
メデスの渦巻曲線状の半径検出溝とを回転遮光板に形成
していたが、同回転遮光板の中心より離れた位置におけ
る前記半径検出溝の円周方向に対する傾斜角が小さいた
め、同半径検出溝を前記ビームが通過しうる前記回転遮
光板の回転角度範囲が広くなり、半径検出精度が良くな
つた。
The present inventor invented a structure construction displacement measuring device that overcomes these difficulties, and filed a patent application on September 11, 1978 (Japanese Patent Application No. 115668-1972).
In order to selectively transmit the beam emitted from the beam transmitter, a rotation angle detection groove oriented in the radial direction and an Archimedean spiral curve shape in which the distance from the center increases proportionally as the center angle increases. However, since the angle of inclination of the radius detection groove with respect to the circumferential direction at a position away from the center of the rotation light shielding plate is small, the beam passes through the radius detection groove. The rotation angle range of the rotary light shielding plate that can be rotated is widened, and the radius detection accuracy is improved.

また前記発明では、ビームの位置は極座標表示であるた
め、通常広く用いられている直交座標で表示するには、
座標変換を行なわねばならず、その計算が面倒であつた
Furthermore, in the invention, since the beam position is displayed in polar coordinates, in order to display it in orthogonal coordinates, which are usually widely used,
Coordinate transformation had to be performed, and the calculation was troublesome.

本発明はこのような欠点を除去した構造物構築変位測定
装置の発明に係り、構造物の構築方向に沿つてビームが
発信されるように同構造物の着工部分に近い個所に固定
されたビーム発信器と、前記構造物の現在施工部分に近
い個所にこれと常に一定の相対位置を存して設けられた
ビーム受信器とよりなり、同ビーム受信器は、相互に交
叉した少なくとも2本の直線スリットが設けられ前記ビ
ームに対して直角または略直角な面に沿つて移動しうる
少なくとも1枚の扁平遮光部材と、同扁平遮光部材に隣
接してこれと平行に配置された集光部材と、同集光部材
を挟んでビーム発信器と反対側で同集光部材の光軸上の
焦点位置に配設されたセンサーと、前記扁平遮光部材の
位動量を計測する移動量計測器とを備えたことを特徴と
するもので、その目的とする処は、構造物の構築変位を
極めて容易にかつ構築期間に亘り連続的に正確に測定す
ることができる装置を供する点にある。
The present invention relates to the invention of a structure construction displacement measurement device that eliminates such drawbacks, and the present invention relates to a structure construction displacement measuring device that eliminates such drawbacks. It consists of a transmitter and a beam receiver installed at a location close to the currently constructed part of the structure and always at a constant relative position to the transmitter, and the beam receiver consists of at least two beams that intersect with each other. at least one flat light shielding member provided with a linear slit and movable along a plane perpendicular or substantially perpendicular to the beam; and a light condensing member disposed adjacent to and parallel to the flat light shielding member. , a sensor disposed at a focal position on the optical axis of the light condensing member on the opposite side of the beam transmitter across the light condensing member, and a movement measuring device for measuring the positional amount of the flat light shielding member. The object of this invention is to provide a device that can extremely easily and accurately measure the construction displacement of a structure continuously over the construction period.

本発明は前記したように構造物の構築方向に沿つてビー
ムが発信されるように同構造物の着工部分に近い個所に
ビーム発信器を固定し、前記構造物の現在施工部分に近
い個所にこれと常に一定の相対位置を存してビーム受信
器を設け、相互に交叉した少なくとも2本の直線スリツ
トが設けられ前記ビームに対して直角または略直角な面
に沿つて移動しうる少なくとも1枚の扁平遮光部材と、
同扁平遮光部材に隣接してこれと平行に配置された集光
部材と、同集光部材を挟んでビーム発信器と反対側で同
集光部材の光軸上の焦点位置に配設されたセンサーと、
前記扁平遮光部材の移動量を計測する移動計量測器とで
前記ビーム受信器を構成した\め、前記ビーム発信器よ
りビームを発信させると、同ビームは前記受信器に受信
される。この場合、前記扁平遮光部材を移動させると、
同扁平遮光部材がある距離移動した時に、これ迄遮光さ
れていたビームが前記複数本のスリツトの内の1本のス
リツトを通過し、前記集光部材で屈折されて前記センサ
ーに達し、同センサーで前記ビームの到達が検出され、
前記移動量計測器により前記扁平遮光部材の移動量が計
測される。それから再び前記扁平遮光部材を移動させる
と、前記したと同様に、前記ビームが通過したスリツト
以外の残りのスリツトをビームが通過し、前記扁平遮光
部材の再移動量が計測される。このように本発明におい
ては、前記扁平遮光部材に設けられた複数本の直線スリ
ツトの配列状態と、同スリツトをビームが通過するに必
要な前記扁平遮光部材の移動量とにより前記ビームの位
置が直交座標で直ちに求められる。
As described above, the present invention fixes a beam transmitter at a location close to the construction start part of the structure so that the beam is transmitted along the construction direction of the structure, and fixes the beam transmitter at a location close to the currently constructed part of the structure. A beam receiver is provided at a constant relative position to the beam, and at least one sheet is provided with at least two linear slits that intersect each other and is movable along a plane perpendicular or substantially perpendicular to the beam. a flat light-shielding member;
A light condensing member disposed adjacent to and parallel to the flat light shielding member, and a focal point on the optical axis of the light condensing member on the opposite side of the beam transmitter across the light condensing member. sensor and
Since the beam receiver is configured with a moving measuring instrument that measures the amount of movement of the flat light shielding member, when a beam is emitted from the beam transmitter, the beam is received by the receiver. In this case, when the flat light shielding member is moved,
When the flat light blocking member moves a certain distance, the beam that has been blocked until now passes through one of the plurality of slits, is refracted by the light condensing member, and reaches the sensor. arrival of the beam is detected at
The movement amount of the flat light shielding member is measured by the movement amount measuring device. Then, when the flat light shielding member is moved again, the beam passes through the remaining slits other than the slit through which the beam passed, and the amount of re-movement of the flat light shielding member is measured in the same manner as described above. In this way, in the present invention, the position of the beam is determined by the arrangement of the plurality of linear slits provided in the flat light shielding member and the amount of movement of the flat light shielding member necessary for the beam to pass through the slits. It can be immediately determined using Cartesian coordinates.

従つて、本発明によれば、構造物が構築方向に沿つて漸
次施工されるに伴つて前記ビーム受信器も同じ方向に移
動する場合、新たに施工される部分が着工部分に対して
どの程度側方にずれたかが直交座標で求められ、構造物
の構築変位が連続的に頗る容易にかつ正確に測定される
Therefore, according to the present invention, when the beam receiver also moves in the same direction as the structure is gradually constructed along the construction direction, it is difficult to determine how much the newly constructed part is relative to the starting part. Lateral displacement is determined using orthogonal coordinates, and the construction displacement of the structure is continuously measured easily and accurately.

また本発明においては、前記扁平遮光部材に設けられた
複数本の直線スリツトの配列状態を適宜選定することに
より、構造物における構築変位の測定精度を大巾に向上
させることができる。
Further, in the present invention, by appropriately selecting the arrangement of the plurality of linear slits provided in the flat light shielding member, the measurement accuracy of construction displacement in a structure can be greatly improved.

さらに本発明においては、前記扁平遮光部材に設けられ
た複数本のスリツトは直線であるため、前記ビームが同
扁平遮光部材のどの部分に投射されても、前記スリツト
とビームとの相対的位置関係は変らず、測定精度は均一
である。以下本発明を第1図ないし第3図に図示の実施
例について説明すると、1は例えばスライデイングフオ
ームエ法により構築されるコンクリート製サイロで、同
サイロ1の側方基礎部2にレーザ発光器3が一体に据付
けられており、同レーザ発光器3より鉛直上方に指向し
てレーザ光ビーム4が間欠的に発信されるようになつて
いる。
Furthermore, in the present invention, since the plurality of slits provided in the flat light shielding member are straight, no matter which part of the flat light shielding member the beam is projected onto, the relative positional relationship between the slits and the beam is does not change, and the measurement accuracy is uniform. The present invention will be described below with reference to the embodiments shown in Figs. 3 are integrally installed, and a laser light beam 4 is intermittently emitted from the laser emitter 3 in a vertically upward direction.

また前記レーザ光ビーム4の延長上に位置し、施工中の
サイロ頂部に存在する型枠(図示されず)にレーザ受光
器5が一体に取付けられており、同レーザ受光器5は、
第2図に図示されるように、内面に吸光処理が施された
ケース6と、同ケース6の下端両側に水平面内で相互に
平行に枢支された1対の巻取りロール7と、同ロール7
にそれぞれ両端が一体に固着されて巻装された遮光フィ
ルム8と、同フイルム8より上方に位置して光軸が鉛直
方向へ指向するように前記ケース6に一体に取付けられ
た直径約30C7TLの凸型フレネル集光板9と、同フ
レネル集光板9の焦点位置(焦点距離約30cm)に水
平に配設されたスリガラス等の拡散板10と、前記フレ
ネル集光板9の光軸上でこれより約10cTn上方へ離
れて配設されたホトセンサー11と、遮光フイルム8の
移動距離計数凹凸17に隣接して配置されたホトインタ
ラプタ一12と、前記1対の巻取りロール7のいずれか
一方または両方に連結された図示されないモータとより
なつている。
Further, a laser receiver 5 is integrally attached to a formwork (not shown) located on the extension of the laser beam 4 and existing at the top of the silo under construction.
As shown in FIG. 2, there is a case 6 whose inner surface has been subjected to a light-absorbing treatment, a pair of take-up rolls 7 that are pivoted in parallel to each other in a horizontal plane on both sides of the lower end of the case 6, and roll 7
A light-shielding film 8 with a diameter of about 30C7TL is attached integrally to the case 6 and positioned above the film 8 so that the optical axis is directed in the vertical direction. A convex Fresnel condenser plate 9, a diffuser plate 10 such as ground glass horizontally disposed at the focal point of the Fresnel condenser plate 9 (with a focal length of about 30 cm), and a diffuser plate 10, such as ground glass, disposed horizontally at the focal point position (focal length of about 30 cm) of the Fresnel condenser plate 9; 10cTn A photo sensor 11 disposed apart from above, a photo interrupter 12 disposed adjacent to the movement distance counting unevenness 17 of the light-shielding film 8, and either or both of the pair of winding rolls 7. It consists of a motor (not shown) connected to the motor.

しかして前記遮光フイルム8は、第3図に図示されるよ
うに、透明な透光部13と不透明な遮光部14とよりな
り、同遮光部14にはフイルム8の側縁に対して直角な
Y方向へ指向したX成分検出溝15と、同検出溝15の
一端から45゜傾斜した方向へ指向したY成分検出溝1
6とが形成さへ遮光部14の一側縁に等間隔に移動距離
計数凹凸17が設けられている。
As shown in FIG. 3, the light-shielding film 8 consists of a transparent light-transmitting part 13 and an opaque light-shielding part 14. An X-component detection groove 15 oriented in the Y direction, and a Y-component detection groove 1 oriented in a direction inclined at 45 degrees from one end of the detection groove 15.
Movement distance counting unevenness 17 is provided at equal intervals on one side edge of the light shielding part 14.

さらに前記レーザ受光器5のケース6と一体のキヤビネ
ツト18に増巾器19とマイクロコンピユータ20とが
内蔵されている。
Furthermore, an amplifier 19 and a microcomputer 20 are built into a cabinet 18 that is integrated with the case 6 of the laser receiver 5.

そしてマイクロコンピユータ20は、巻取りロール7の
回転制御とホトインタラプタ−12の動作制御とを行な
うとともに、ホトセンサー11で検出されて増巾器19
で増巾された検出信号とホトインタラプタ−12の検出
信号とを受けてレーザ光ビーム4の位置を換算して求め
ることができるようになつている。
The microcomputer 20 controls the rotation of the take-up roll 7 and the operation of the photointerrupter 12.
The position of the laser beam 4 can be calculated by receiving the amplified detection signal and the detection signal of the photointerrupter 12.

第1図ないし第3図に図示の実施例は前記したように構
成されているので、検出動作開始以前では、前記遮光フ
イルム8の大部分は左方の巻取りロール7に巻装される
と\もに、フレネル集光板9は第3図に図示される遮光
部14の右半部で覆われて、外界の太陽光は勿論、レー
ザ光ビーム4も遮蔽されている。
Since the embodiment shown in FIGS. 1 to 3 is configured as described above, most of the light shielding film 8 is wound on the left winding roll 7 before the detection operation starts. In addition, the Fresnel condenser plate 9 is covered by the right half of the light shielding part 14 shown in FIG. 3, and not only sunlight from the outside but also the laser beam 4 are shielded.

そしてレーザ発光器3は固定されているため、同レーザ
発光器3から発信されるレーザ光ビーム4は常に鉛直上
方に向つて発信されている。
Since the laser emitter 3 is fixed, the laser beam 4 emitted from the laser emitter 3 is always emitted vertically upward.

次にマイクロコンピユータ20に検出動作開始信号が加
えられると、マイクロコンピユータ20の制御信号によ
り、遮光フイルム8は右方の巻取りロール7に巻取られ
て右方へ移送され、X成分検出溝15がフレネル集光板
9の左端に差し掛つた時に、前記ホトインタラプタ−1
2が動作を開始し、遮光フィルム8のX方向移動量が検
出される。そしてX成分検出溝15がレーザ光ビーム4
と交叉して、ケース6内にレーザ光ビーム4が入射する
と、フレネル集光板9により拡散板10上に集光され、
ホトセンサー11が動作され、その検出信号が増巾器1
9を介してマイクロコンピユータ20に送信され、この
瞬間のホトインタラプタ−12によるX方向移動量によ
り、レーザ光ビーム4がレーザ受光器5に照射された位
置のX方向成分Xが求められる。さらに遮光フイルム8
がX方向へ移送され、Y成分検出溝16がレーザ光ビー
ム4と交叉すると、前記したX成分検出と同様に作動し
、前記レーザ光ビーム4がY成分検出溝16を通過した
点からX成分検出溝15に至る距離が検出され、この距
離がレーザ受光器5に照射されるレーザ光ビーム4の位
置のY方向成分yと一致し(溝15,16のなす角が4
5゜であるため)、この距離によりレーザ光ビーム位置
のy成分が求められる。
Next, when a detection operation start signal is applied to the microcomputer 20, the light-shielding film 8 is wound around the right winding roll 7 and transferred to the right by the control signal of the microcomputer 20, and the X-component detection groove 15 approaches the left end of the Fresnel light condensing plate 9, the photointerrupter 1
2 starts operating, and the amount of movement of the light-shielding film 8 in the X direction is detected. The X-component detection groove 15 corresponds to the laser beam 4.
When the laser beam 4 enters the case 6, it is focused on the diffuser plate 10 by the Fresnel condenser plate 9.
The photosensor 11 is operated and its detection signal is transmitted to the amplifier 1.
9 to the microcomputer 20, and from the amount of movement in the X direction by the photointerrupter 12 at this moment, the X direction component X of the position where the laser light beam 4 is irradiated onto the laser receiver 5 is determined. Furthermore, light shielding film 8
is moved in the X direction, and when the Y component detection groove 16 intersects with the laser beam 4, the operation is similar to the X component detection described above, and the X component is detected from the point where the laser beam 4 passes through the Y component detection groove 16. The distance to the detection groove 15 is detected, and this distance matches the Y-direction component y of the position of the laser beam 4 irradiated to the laser receiver 5 (the angle formed by the grooves 15 and 16 is 4
5°), the y-component of the laser beam position can be determined from this distance.

従つてコンクリート製サイロ1の施工中の型枠が正確に
鉛直上方に向つて移動しておれば、これと一体のレーザ
受光器5は前記レーザ光ビーム4に対し相対的に変位す
ることはなく、施工中に所定時間毎に測定されたX,Y
成分の値は一定となる。しかしながら、前記型枠が斜に
移動して水平方向へ僅かでもずれると、前記マイクロコ
ンピユータ20の演算により、その水平方向のずれが直
角座標でX,Y成分として求められる。
Therefore, if the formwork of the concrete silo 1 under construction is accurately moved vertically upward, the laser receiver 5 integrated with it will not be displaced relative to the laser beam 4. , X, Y measured at predetermined intervals during construction
The values of the components remain constant. However, if the formwork moves diagonally and shifts even slightly in the horizontal direction, the microcomputer 20 calculates the horizontal shift as X and Y components in rectangular coordinates.

また前記レーザ光ビーム4は間欠的に発信され、しかも
フレネル集光板9により拡散板10に集光されてからホ
トセンサー11に受光されるため、外乱は殆んど遮断さ
れ、SN比は頗る高く、変位が正確に測定される。
Furthermore, since the laser beam 4 is emitted intermittently and is focused by the Fresnel condenser plate 9 onto the diffuser plate 10 and then received by the photosensor 11, most of the disturbances are blocked and the S/N ratio is extremely high. , the displacement is measured accurately.

さらに拡散板10にてレーザ光ビーム4が拡散されるた
め、レーザ光ビーム4の相対的な位置関係により、拡散
板10に照射されるレーザ光ビーム4の入射角が大きい
場合でも、ホトセンサー11で全反射されることがなく
、レーザ光ビーム4の照射が確実に検出される。
Furthermore, since the laser light beam 4 is diffused by the diffuser plate 10, even if the incident angle of the laser light beam 4 irradiated onto the diffuser plate 10 is large, depending on the relative positional relationship of the laser light beams 4, the photosensor 11 The irradiation of the laser beam 4 is reliably detected without being totally reflected.

さらにまたレーザ発光器3、レーザ受光器5およびマイ
クロコンピユータ20をサイロ1の施工全期間に亘り設
置し、作動状態に設定できるため、スライデイングフオ
ーム型枠の水平方向移動量を自動的に所定時間毎あるい
は連続的に測定することができ、大巾な省力化を図るこ
とができると\もに、適切な対策を遅滞なく講すること
ができる。
Furthermore, since the laser emitter 3, laser receiver 5, and microcomputer 20 can be installed and activated during the entire construction period of the silo 1, the amount of horizontal movement of the sliding form can be automatically controlled for a predetermined period of time. If measurements can be taken every time or continuously, it will be possible to achieve significant labor savings, and appropriate countermeasures can be taken without delay.

第1図ないし第3図に図示の実施例は前記したようにX
成分検出溝15とY成分検出溝16とのなす角を45゜
に設定したが、第4図に図示するように両溝15,16
の交角をθと適宜設定してもよく、この場合には、トザ
光ビーム4がY成分検出溝16を通過した点よりX成分
検出溝15に至る距離》と、レーザ光ビーム4が両溝1
5,16の交叉した点からY方向にずれたY方向成分y
とは、y=′?FCOtθなる関係が成立するので、こ
の換算をマイクロコンピユータ20で行なわせれば、Y
方向成分yを求めることができる。
The embodiment shown in FIGS. 1 to 3 is as described above.
Although the angle between the component detection groove 15 and the Y component detection groove 16 was set to 45 degrees, both grooves 15 and 16 were set as shown in FIG.
The intersection angle of θ may be set as appropriate. In this case, the distance from the point where the laser beam 4 passes through the Y component detection groove 16 to the X component detection groove 15 and the distance between the laser beam 4 and the Groove 1
Y direction component y shifted in the Y direction from the point where 5 and 16 intersect
What does y=′? Since the relationship FCOtθ is established, if this conversion is performed by the microcomputer 20, Y
The direction component y can be determined.

また第5図に図示するようにY成分検出溝16を遮光フ
イルム8の移動方向を対称軸として2本対称に設けると
、Y方向成分yを2度に亘つて測定することができ、そ
の測定精度および信頼性が大巾に向上する。
Furthermore, as shown in FIG. 5, if two Y-component detection grooves 16 are provided symmetrically with the direction of movement of the light-shielding film 8 as the axis of symmetry, the Y-direction component y can be measured twice; Accuracy and reliability are greatly improved.

さらに第6図に図示するようにX成分検出溝15とY成
分検出溝16とを対称に2本づつ設けると、X方向成分
xとY方向成分yとを2度に亘つて測定することができ
、その測定精度および信頼性がさらに一段と向上する。
Furthermore, if two X-component detection grooves 15 and two Y-component detection grooves 16 are provided symmetrically as shown in FIG. 6, it is possible to measure the X-direction component x and the Y-direction component y twice. This further improves measurement accuracy and reliability.

さらにまた第7図に巻取リロール7と遮光フイルム8と
を所定間隔1を介して上下2組設ければ、第8図に図示
されるように、第1遮光フイルム8aによるレーザ光ビ
ーム4のXl,yl位置成分と第2遮光フイルム8bに
よるレーザ光ビーム4のX2y2位置成分とから鉛直な
レーザ光ビーム4に対するレーザ受光器5の傾斜角αを
求めることができる。
Furthermore, if two upper and lower sets of the take-up reroll 7 and the light shielding film 8 are provided with a predetermined interval 1 in between as shown in FIG. 7, as shown in FIG. The inclination angle α of the laser receiver 5 with respect to the vertical laser beam 4 can be determined from the X1, yl position components and the X2y2 position component of the laser beam 4 caused by the second light shielding film 8b.

このように第7図に図示の実施例によれば、レーザ光ビ
ーム4に対するレーザ受光器5の水平方向移動量X,y
を測定することができるのみならず、その傾斜角αを測
定することができる。
According to the embodiment shown in FIG. 7, the horizontal movement amounts X, y of the laser receiver 5 with respect to the laser beam 4 are
Not only can it be measured, but also its inclination angle α can be measured.

前記実施例では、本発明をスライデイングフオームエ法
によるコンクリート製サイロエ事に適用したが、その外
に、シールドエ法によるトンネルエ事や、縦孔掘削工事
や、その他の各種建設工事にも勿論適用できる。また集
光部材としてフレネル集光板の代りに普通の凸レンズを
用いることもできる。
In the above embodiments, the present invention was applied to concrete silo construction using the sliding form method, but it can of course also be applied to tunnel construction using the shield method, vertical hole excavation work, and other various construction works. . Moreover, an ordinary convex lens can be used as the light condensing member instead of the Fresnel light condensing plate.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種種の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る構造物構築変位測定装置の一実施
例を図示した概略側面図、第2図は前記実施例の要部拡
大縦断側面図、第3図はその要部拡大展開図、第4図は
他の実施例の説明図、第5図および第6図はそれぞれさ
らに他の実施例の要部拡大展開図、第7図はさらに他の
実施例の要部拡大縦断側面図、第8図はその原理を図示
した説明図である。 1・・・・・・コンクリート製サイロ、2・・・・・・
サィロ側方基礎部、3・・・・・・レーザ発光器、4・
・・・・・レーザ光ビーム、5・・・・・・レーザ受光
器、6・・・・・・ケース、7・・・・・・巻取りロー
ル、8・・・・・・遮光フイルム、9・・・・・・フレ
ネル集光板、10・・・・・・拡散板、11・・・・・
・ホトセンサー、12・・・・・・ホトインタラプタ一
、13・・・・・・透光部、14・・・・・・遮光部、
15・・・・・・X成分検出溝、16・・・・・・Y成
分検出溝、17・・・・・・移動距離計数凹凸、18・
・・・・・キヤビネツト、19・・・・・・増巾器、2
0・・・・・・マイクロコンピユータ。
Fig. 1 is a schematic side view illustrating an embodiment of the structure construction displacement measuring device according to the present invention, Fig. 2 is an enlarged vertical sectional side view of the main part of the embodiment, and Fig. 3 is an enlarged development view of the main part. , FIG. 4 is an explanatory diagram of another embodiment, FIGS. 5 and 6 are enlarged developed views of the main parts of still another embodiment, and FIG. 7 is an enlarged vertical sectional side view of the main parts of still another embodiment. , FIG. 8 is an explanatory diagram illustrating the principle. 1... Concrete silo, 2...
Silo side foundation, 3... Laser emitter, 4.
... Laser light beam, 5 ... Laser receiver, 6 ... Case, 7 ... Winding roll, 8 ... Light shielding film, 9... Fresnel light condensing plate, 10... Diffusion plate, 11...
・Photo sensor, 12... Photo interrupter, 13... Light transmitting part, 14... Light shielding part,
15...X component detection groove, 16...Y component detection groove, 17...Movement distance counting unevenness, 18.
...cabinet, 19...multiplier, 2
0...Microcomputer.

Claims (1)

【特許請求の範囲】[Claims] 1 構造物の構築方向に沿つてビームが発信されるよう
に同構造物の着工部分に近い個所に固定されたビーム発
信器と、前記構造物の現在施工部分に近い個所にこれと
常に一定の相対位置を存して設けられたビーム受信器と
よりなり、同ビーム受信器は、相互に交叉した少なくと
も2本の直線スリットが設けられ前記ビームに対して直
角または略直角な面に沿つて移動しうる少なくとも1枚
の扁平遮光部材と、同扁平遮光部材に隣接してこれと平
行に配置された集光部材と、同集光部材を挟んでビーム
発信器と反対側で同集光部材の光軸上の焦点位置に配設
されたセンサーと、前記扁平遮光部材の移動量を計測す
る移動量計測器とを備えたことを特徴とする構造物構築
変位測定装置。
1. A beam transmitter fixed at a location close to the starting part of the structure so that the beam is transmitted along the construction direction of the structure, and a beam transmitter fixed at a location close to the currently constructed part of the structure at all times. The beam receiver is provided with at least two linear slits that intersect with each other and is movable along a plane perpendicular or substantially perpendicular to the beam. a light-concentrating member disposed adjacent to and parallel to the flat light-shielding member; and a light-concentrating member disposed on the opposite side of the beam transmitter across the light-concentrating member. A structure construction displacement measuring device comprising: a sensor disposed at a focal point on an optical axis; and a movement amount measuring device for measuring the amount of movement of the flat light shielding member.
JP934080A 1980-01-31 1980-01-31 Structure construction displacement measuring device Expired JPS5939682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP934080A JPS5939682B2 (en) 1980-01-31 1980-01-31 Structure construction displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP934080A JPS5939682B2 (en) 1980-01-31 1980-01-31 Structure construction displacement measuring device

Publications (2)

Publication Number Publication Date
JPS56107111A JPS56107111A (en) 1981-08-25
JPS5939682B2 true JPS5939682B2 (en) 1984-09-26

Family

ID=11717734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP934080A Expired JPS5939682B2 (en) 1980-01-31 1980-01-31 Structure construction displacement measuring device

Country Status (1)

Country Link
JP (1) JPS5939682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334312Y2 (en) * 1986-08-30 1991-07-19
JPH0334311Y2 (en) * 1986-08-30 1991-07-19

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138516A (en) * 1984-07-31 1986-02-24 Ohbayashigumi Ltd Measuring device for construction accuracy of slip forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334312Y2 (en) * 1986-08-30 1991-07-19
JPH0334311Y2 (en) * 1986-08-30 1991-07-19

Also Published As

Publication number Publication date
JPS56107111A (en) 1981-08-25

Similar Documents

Publication Publication Date Title
US20050083303A1 (en) Tracking motion using an interference pattern
US3943361A (en) Dimensional measurement of remote objects using projected light raster
US4457626A (en) Apparatus for determining the position of a mark on an object
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
EP0110937B1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
CN102654442A (en) Surface tension detection device and method
US4171160A (en) Distance measuring instrument
JPS5939682B2 (en) Structure construction displacement measuring device
US6337473B2 (en) Beam position detector having a photodetection unit
JPS6341402B2 (en)
US3843264A (en) Process and apparatus for determining the presence,in a given area of the edge of a sheet or of a ribbon of transparent material
US3866053A (en) Apparatus for detecting the condition of an opaque band-shaped material travelling on a delivery system
JPS6118809A (en) Non-contacting multi-point displacement measurement
JPS5912638Y2 (en) Photoelectric detection device
JP3282745B2 (en) Plate width and meandering measurement device using two-dimensional distance meter
SU1677511A1 (en) Apparatus for tracing objects
JP2675051B2 (en) Optical non-contact position measuring device
JP2565274B2 (en) Height measuring device
JP3450457B2 (en) Scanning light detection sensor
RU1768921C (en) Light spot displacement metering device
JPS5918405A (en) Optical displacement measuring device
JPH0318887Y2 (en)
JPH0331367B2 (en)
SU370462A1 (en) DEVICE FOR CONTROL OF DEVELOPMENT FROM THE DIRECTION OF THE SURFACE OF AN OBJECT