JPS5939383A - Waste water disposal - Google Patents

Waste water disposal

Info

Publication number
JPS5939383A
JPS5939383A JP15117782A JP15117782A JPS5939383A JP S5939383 A JPS5939383 A JP S5939383A JP 15117782 A JP15117782 A JP 15117782A JP 15117782 A JP15117782 A JP 15117782A JP S5939383 A JPS5939383 A JP S5939383A
Authority
JP
Japan
Prior art keywords
boron
type
resin
fluorine
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15117782A
Other languages
Japanese (ja)
Other versions
JPS6161879B2 (en
Inventor
Yoshihiro Eto
良弘 恵藤
Yukio Ito
伊藤 征生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP15117782A priority Critical patent/JPS5939383A/en
Publication of JPS5939383A publication Critical patent/JPS5939383A/en
Publication of JPS6161879B2 publication Critical patent/JPS6161879B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable to remove both of fluorine and boron from waste water containing fluorine and boron, while efficiently regenerating each of chelating and anion-exchange resins at a required time, by circulating said waste water through the beds of the chelating and anion-exchange resins. CONSTITUTION:Waste water containing fluorine and boron is circulated through the beds of chelating and anion-exchange resin to remove both of fluorine and boron from it, and each of the resins is regenerared at a required time. Said chleating resin is pref. Al type, while the anion-exchange resin is pref. OH type. The regeneration of OH type anion-exchange resin used for the removal of boron is performed by circulating a mineral acid such as sulfuric acid through it to exude boron and then a sodium hydroxide-contg. liquid through it to convert it into OH type suited to the adsorption of boron. The regeneration of Al type chelating resin is performed by eluting fluorine with a mineral acid such as sulfuric acid and then circulating an Al salt solution such as aluminum sulfate to replenish Al which has been eluted at the same time.

Description

【発明の詳細な説明】 本発明は、フッ素およびホウ素を含有する廃水の処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing fluorine and boron.

通常、ゴミ焼却場洗煙廃水や排煙脱硫廃水中などには、
フッ素とともにホウ素も含有されている。
Normally, wastewater from garbage incinerators and flue gas desulfurization wastewater contains
It also contains boron along with fluorine.

フッ素含有廃水の処理方法としては、濃厚液のときはカ
ルシウム塩を添加して不溶性沈殿として除去し、希薄液
のときは活性アルミナやアニオン交換樹脂を用いて除去
し、濃厚溶出液を回収しカルシウム塩を添加して不溶性
の沈殿とする方法などがある。
As a treatment method for fluorine-containing wastewater, if it is a concentrated liquid, calcium salts are added to remove it as an insoluble precipitate, and if it is a dilute liquid, it is removed using activated alumina or anion exchange resin, and the concentrated eluate is collected and calcium is removed. There are methods such as adding salt to form an insoluble precipitate.

またホウ素含有廃水の処理方法としては、イオン交換樹
脂を用いて吸着処理する方法、硫酸アルミニウムによっ
て不溶性沈殿物とする方法などがある。しかし、フッ素
およびホウ素を同時に含有する廃水を処理する方法につ
いては。
Further, methods for treating boron-containing wastewater include a method of adsorption treatment using an ion exchange resin and a method of forming an insoluble precipitate with aluminum sulfate. But as for how to treat wastewater containing fluorine and boron at the same time.

従来、効果的に処理する方法が無かった。Until now, there was no effective way to treat it.

また、フッ素含有廃水を金属(群)とキレート結合する
官能基を有するイオン交換樹脂(以下。
In addition, ion exchange resins (hereinafter referred to as ion exchange resins) have functional groups that chelate fluorine-containing wastewater with metal(s).

キレート樹脂と言う。)と接触させて処理する方法は、
すでに公知であるが、ホウ素含有廃水については、キレ
ート樹脂では全くと言ってよい−1ど除去できない。
It's called chelate resin. ), the method of treatment is as follows:
As is already known, boron-containing wastewater cannot be removed at all by chelate resins.

本発明は、フッ素とホウ素を同時に含有する廃水を、2
種のイオン交換樹脂を用−いて処理し、フッ素とホウ素
の両者を除去する。方法を提供するもので、その要旨は
、フッ素およびホウ素を含む廃水を、キレート樹脂層と
アニオン交換樹脂層とに通水して処理するとともに、必
要時に各樹脂を再生することを特徴とする廃水の処理方
法にある。
The present invention enables wastewater containing both fluorine and boron to be
treatment with a seed ion exchange resin to remove both fluorine and boron. The present invention provides a method for treating wastewater containing fluorine and boron by passing it through a chelate resin layer and an anion exchange resin layer, and regenerating each resin when necessary. It is in the processing method.

本発明におけるキレート樹脂として、スチレン系化合物
やフェノール類、アルデヒド類の縮合体やアクリルエス
テル系化合物の樹脂母体に、官能基としてジエチレント
リアミン、トリエチレンテトラミン、テトラエチレンペ
ンタミン。
As the chelate resin in the present invention, diethylenetriamine, triethylenetetramine, or tetraethylenepentamine is used as a functional group in a resin matrix of a styrene compound, a phenol, a condensate of aldehydes, or an acrylic ester compound.

ノ2酢酸、あるいは上記アミン類とハロゲン化酢酸との
反応生成物であるアミノカルボン酸類。
diacetic acid, or aminocarboxylic acids that are reaction products of the above amines and halogenated acetic acids.

ジェタノールアミン、ジグロバノールアミン類等のアル
コールアミン類、尿素、チオ尿素等を導入したものなど
の公知の樹脂を用いることができる。
Known resins such as those into which alcohol amines such as jetanolamine and diglobanolamine, urea, thiourea, etc. are introduced can be used.

さらに、本発明では、鉄、アルミニウム等の金属を吸着
させたキレート樹脂を用いるが、特に、アルミニウム形
が吸着性能が良好で、しかも硫酸アルミニウムを用いて
再生すると、後段の廃液処理に対して好都合となるので
、好凍しい。
Furthermore, in the present invention, a chelate resin adsorbed with metals such as iron and aluminum is used. In particular, the aluminum type has good adsorption performance, and when regenerated using aluminum sulfate, it is advantageous for subsequent waste liquid treatment. Therefore, it is good for freezing.

アニオン交換樹脂としては、SO4形もしくはOH形を
用いることができる。S04形の樹脂は硫酸または硫酸
アルミニウムで再生することにより、またOH形の樹脂
は硫酸または硫酸アルミニウムで再生したのち、水酸化
ナトリウム溶液を通液することにより得られる。
As the anion exchange resin, SO4 type or OH type can be used. The S04 type resin can be obtained by regenerating with sulfuric acid or aluminum sulfate, and the OH type resin can be obtained by regenerating with sulfuric acid or aluminum sulfate and then passing a sodium hydroxide solution through the resin.

本発明の処理方法においては、OH形の方が、処理原水
のpHが中性附近の場合でもpH調整する必要がなく、
そのまま通水処理を行うことができるので、好適である
In the treatment method of the present invention, the OH type does not require pH adjustment even when the pH of the raw water to be treated is near neutral;
This is suitable because it can be subjected to water flow treatment as it is.

処理廃水は、本処理工程の前に、特にpH調整する必要
はないが、中性附近であることが望ましい。また、ホウ
素とフッ素が錯体、例えばホウフッ化物などを形成して
いる場合には、あらかじめ適当なアルミニウム、化合物
などを添加して錯体を分解しておく必要がある。さらに
、ホウ素やフッ素を高濃度に含む廃水では、あらかじめ
石灰などを用いて、凝集沈殿処理を行なうのが望ましい
。その処理水のpHは、はぼ中性附近なので、上記の通
り、特にpH調整する必要はない。
Although it is not necessary to particularly adjust the pH of the treated wastewater before this treatment step, it is desirable that the pH of the treated wastewater be around neutral. Further, when boron and fluorine form a complex, such as a borofluoride, it is necessary to add appropriate aluminum, a compound, etc. in advance to decompose the complex. Furthermore, for wastewater containing high concentrations of boron or fluorine, it is desirable to perform a coagulation-sedimentation treatment using lime or the like in advance. Since the pH of the treated water is close to neutral, there is no need to particularly adjust the pH as described above.

以下、好ましい例を図示したフローチャートを参照しな
がら、説明する。
A preferred example will be described below with reference to a flowchart illustrating it.

上記廃水をまずOH形アニオン交換樹脂層に通水し、ホ
ウ素をOH形アニオン交換樹脂に吸着せしめ、廃水中よ
り除去する。次いで、該廃水をAt形キレート樹脂層に
通水し、フッ素を樹脂に吸着せしめ、廃水中より除去す
る。両樹脂への通水速度は、とくに限定されないが、通
常S■(空間速度)5〜25程度とする。このとき、各
樹脂への通水量は、使用する交換樹脂のイオン交換能、
カラム充填量、および廃水中のフッ素およびホウ素の含
有量および最終処理水中のフッ素およびホウ素の含有量
をどの程度の濃度咬でにするかによって、適当に決める
ことができる。なお、OII形アニオン交換樹脂からの
排出水はく若干アルカリ性9M形キレート樹脂からの排
出水は、若干、酸性と、各々異なるpI(を示すので、
必要に応じて、pH調整剤を加えて、中性としてから後
段の樹脂に通水することがのぞましい。
The above waste water is first passed through an OH type anion exchange resin layer, and boron is adsorbed on the OH type anion exchange resin and removed from the waste water. Next, the wastewater is passed through an At-type chelate resin layer, and fluorine is adsorbed onto the resin and removed from the wastewater. The speed of water passing through both resins is not particularly limited, but is usually about S2 (space velocity) 5 to 25. At this time, the amount of water flowing through each resin is determined by the ion exchange capacity of the exchange resin used,
The amount of column filling, the content of fluorine and boron in the waste water, and the content of fluorine and boron in the final treated water can be appropriately determined depending on the concentration. Note that the water discharged from the OII type anion exchange resin is slightly alkaline; the water discharged from the 9M type chelate resin is slightly acidic; each exhibits a different pI.
If necessary, it is preferable to add a pH adjuster to make the solution neutral before passing water through the resin in the subsequent stage.

所定の通水量の廃水を処理した各イオン交換樹脂は、逆
洗し、再生剤を通液して吸着したフッ素およびホウ素を
溶離させる。該再生剤の通液によシ高濃度のフッ素およ
びホウ素を含有する再生廃液が生じる。
Each ion exchange resin that has been treated with a predetermined amount of wastewater is backwashed and a regenerant is passed through it to elute adsorbed fluorine and boron. The passage of the regenerant produces a regenerated waste liquid containing high concentrations of fluorine and boron.

ホウ素除去に用いたOH形アニオン交換樹脂の再生は、
ξれに鉱酸を通液し、ホウ素を溶離したのち、ホウ素吸
着に最適な(用形とするために、水酸化プ用・リウム含
有液を通液して行なう。ここで用いる鉱酸は、硫酸、塩
酸などが用いられるが、とくにAt形キレート樹脂再生
後の再生廃液を用いると、その液中に多量に存在する遊
離の硫酸を利用することができて好まし7い。
The regeneration of the OH type anion exchange resin used for boron removal is as follows:
After eluting the boron by passing a mineral acid through it, a solution containing hydroxide and lithium is passed through to form the optimal form for boron adsorption.The mineral acid used here is , sulfuric acid, hydrochloric acid, etc. are used, but it is particularly preferable to use a regenerated waste liquid after regenerating the At type chelate resin, since it is possible to utilize a large amount of free sulfuric acid present in the liquid.

A)、形キl/−)樹脂の再生は、鉱酸でフッ素を溶離
後、同時に溶離するMを補給するために、At塩溶液を
通液して行なう。ここで用いる鉱酸およびAt塩は、塩
酸塩を用いると再生廃液中のホウ素除去が困難となるの
で、硫酸および硫酸アルミニウム・が好適である。
A), form Kl/-) Resin is regenerated by eluting fluorine with a mineral acid and then passing an At salt solution through the resin in order to replenish M which is eluted at the same time. As the mineral acid and At salt used here, sulfuric acid and aluminum sulfate are preferable since it becomes difficult to remove boron from the recycled waste liquid if hydrochloride is used.

」1記再生によってNaOH再生廃液、H2SO。” 1. NaOH regenerated waste liquid, H2SO by regeneration.

再生廃液、および硫酸アルミニウム再生廃液が生じるが
、これらは混合されて、沈殿、固液分離処理を受ける。
A recycled waste liquid and an aluminum sulfate recycled waste liquid are produced, which are mixed and subjected to precipitation and solid-liquid separation processes.

すなわち、上記再生廃液は、アルミニウム化合物および
カルシウム化合物の存在下に、pH9以上、好ましくは
plI 10μ上、さらに好ましカルシウムを生成させ
、廃液中のホウ素およびフッ素を共沈もしくは吸着によ
シ沈殿物中に移行させる。pHが9未満となると、 ア
ルミン酸カルシウムが生成17にくくなり、その分、処
理効率が低下する。カルシウム化合物としては、水酸化
カルシウムや酸化カルシウム等のカルシウム化合物を用
いる。
That is, the above-mentioned regenerated waste liquid has a pH of 9 or more, preferably 10μ or more, and more preferably calcium is produced in the presence of an aluminum compound and a calcium compound, and boron and fluorine in the waste liquid are precipitated by co-precipitation or adsorption. move it inside. When the pH is less than 9, calcium aluminate becomes difficult to produce, and the treatment efficiency decreases accordingly. As the calcium compound, calcium compounds such as calcium hydroxide and calcium oxide are used.

アルミニウム化合物の必要量は、再生廃液中のフッ素量
およびホウ素量によって決まるが、通常、再生廃液中に
は、十分な量のアルミニウム化合物が含まれている。ま
たカルシウム化合物の必要量は再生廃液中の残留アルミ
ニウムイオン量によって決まるが、通常、アルミニウム
化合物の5重量倍以上とする。
The required amount of aluminum compounds is determined by the amount of fluorine and boron in the recycled waste liquid, but usually the recycled waste liquid contains a sufficient amount of aluminum compounds. The required amount of the calcium compound is determined by the amount of residual aluminum ions in the recycled waste liquid, but is usually at least 5 times the weight of the aluminum compound.

pI−Iの調整は、必要によってアルカリ剤を添加して
行なう。カルシウム剤として水酸化カルシウムを使用す
る場合には、新だにアルカリ剤を添加しなくてもよい場
合がある。
Adjustment of pI-I is carried out by adding an alkaline agent if necessary. When using calcium hydroxide as the calcium agent, it may not be necessary to add a new alkaline agent.

こうして、p[Iを調整したのち、沈殿槽で固液分離を
する。生成する沈殿の形態は明瞭ではないが、不溶性で
沈降性が良く、自然沈降によって容易に固液分離され、
系外に除去することができる。得られた処理水はこれを
処理原水にもどし、沈殿物は汚泥として廃棄する。
After adjusting p[I in this way, solid-liquid separation is performed in a precipitation tank. Although the form of the precipitate formed is not clear, it is insoluble and has good sedimentation properties, and is easily separated into solid and liquid by natural sedimentation.
Can be removed from the system. The resulting treated water is returned to treated raw water, and the sediment is disposed of as sludge.

なお、上述の図示の処理方法では、アニオン交換樹脂層
−キレート樹脂層の順に処理廃水を通水したが、本発明
の処理方法においては、キレート樹脂層およびアニオン
交換樹脂層のどちらを先にしても同等の効果が得られる
In the treatment method illustrated above, the treated wastewater was passed through the anion exchange resin layer and the chelate resin layer in this order, but in the treatment method of the present invention, which one of the chelate resin layer and the anion exchange resin layer is passed first? The same effect can be obtained.

本発明によって、フッ素およびホウ素を含む廃水を2種
のイオン交換樹脂を用いて、両者共除去でき、しかも各
樹脂の再生を効率良く行うことができる。
According to the present invention, waste water containing fluorine and boron can be removed using two types of ion exchange resins, and each resin can be efficiently regenerated.

また、本発明の処理法において、樹脂の再生゛ によシ
排出される再生廃液を効率良く処理できる。
Furthermore, in the treatment method of the present invention, the recycled waste liquid discharged during resin regeneration can be efficiently treated.

さらに、キレート樹脂の再生廃液中に多量に存在する硫
酸によってアニオン交換樹脂を再生するので、硫酸の有
効利用を行なうことができる。  、 実施例1 フッ素をfi5ppm、ホウ素を4.4 ppm、塩素
を45000 ppm 、硫酸イオンを9500 pp
m含有するゴミ焼却場洗煙、廃水(pH7,8)  を
、on形アニオン交換樹脂を59 m(! 充填したカ
ラムに空間速度(以下SVと略する。)10の速度で通
水【−130I!の通水−Moに達するまで、処理水の
ホウ素含有量はt ppm以下であった。
Furthermore, since the anion exchange resin is regenerated using sulfuric acid present in a large amount in the chelate resin regeneration waste liquid, sulfuric acid can be used effectively. , Example 1 Fluorine fi5ppm, boron 4.4ppm, chlorine 45000ppm, sulfate ion 9500ppm
Waste incinerator smoke washing and wastewater (pH 7, 8) containing 59 m of on-type anion exchange resin was passed through a column packed with 59 m of on-type anion exchange resin at a space velocity (hereinafter abbreviated as SV) of 10 [-130 I]. The boron content of the treated water was less than t ppm until reaching -Mo.

次に、この処理水を、At形キレート樹脂を500 m
g充填したカラムに、SV 10の速度で通水した。そ
の結果、29tの通水量に達するまで、最終処理水中の
フッ素は1 pI)m以下であった。
Next, this treated water was treated with At-type chelate resin for 500 m
Water was passed through the packed column at a rate of SV 10. As a result, the fluorine content in the final treated water was below 1 pI)m until the water flow rate reached 29 tons.

実施例2 実施例1で用いた樹脂を再生した。最初に、Aj形キレ
ート樹脂層に、501/lの濃度の硫酸1.5tをl 
4/hrの流速で通液し、得らり、た再生産@ 250
 mlをOH形アニオン交換樹脂層に100m/、/h
rの流速で通液した。
Example 2 The resin used in Example 1 was recycled. First, 1.5 t of sulfuric acid with a concentration of 501/l was added to the Aj type chelate resin layer.
Reproduction @250
ml to the OH type anion exchange resin layer at 100m/,/h
The liquid was passed through at a flow rate of r.

さらに、M形キレート樹脂層に501/zの濃度の硫酸
アルミニウム溶液1.Otを通液し、一方、OH形アニ
オン交換樹脂層に40.?βの濃度の水酸化ナトリウム
溶液50m1  を通液し、各樹脂の再生処理を終了し
た。
Furthermore, an aluminum sulfate solution with a concentration of 501/z was added to the M-type chelate resin layer. On the other hand, 40.0% Ot was passed through the OH type anion exchange resin layer. ? 50 ml of sodium hydroxide solution having a concentration of β was passed through the tube to complete the regeneration treatment of each resin.

」1記処理によって得られた再生廃液5.31(水洗水
2.751を含む)は、フッ素354 ppm 、ホウ
素を24 pptn 、アルミニウム760 pptn
を含んでいた。この混合廃液に消石灰40000 pp
l’nを添加し、■旧12.6 で固液分離処理を行な
った結果、−に澄水中のフッ素は7.6 ppm、ホウ
素は0.4ppm  となった。
The regenerated waste liquid 5.31% (including 2.751% of washing water) obtained by the process described in 1 contains 354 ppm of fluorine, 24 pptn of boron, and 760 pptn of aluminum.
It contained. Add 40,000 pp of slaked lime to this mixed waste liquid.
As a result of adding l'n and carrying out solid-liquid separation treatment using (1) old 12.6, the amount of fluorine in the clear water was 7.6 ppm and the amount of boron was 0.4 ppm.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の廃水の処理方法の−(rlJを示すフ
ローチャー1・である。
The drawing is a flowchart 1 showing -(rlJ) of the wastewater treatment method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)  フッ素およびホウ素を含む廃水をキレート樹
脂層とアニオン交換樹BW層とに通水し7て処理すると
ともに、必要時に各樹脂を再生することを特徴とする廃
水の処理方法。
(1) A method for treating wastewater, which comprises treating wastewater containing fluorine and boron by passing it through a chelate resin layer and an anion exchange tree BW layer, and regenerating each resin when necessary.
(2)上記キレート樹脂はAt形、アニオン交換樹脂t
;、Loll形のものを用いる特許請求の範囲第1項に
記載の廃水の処理方法。
(2) The above chelate resin is At type, anion exchange resin T
The method for treating wastewater according to claim 1, using a Loll-type wastewater.
(3)上記樹脂の再生は、M形キレート樹脂層に鉱酸を
通液し、その再生廃液をOIL形アニオン父換樹脂層に
通液し、ついでA/=形キレキレート樹脂層酸アルミニ
ウム含有液を通液し、011形アニJン文換樹脂層に水
酸化ナトリウノ、含有液を通液して行なう特許請求の範
囲第2項に記載の廃水の処理方法。
(3) To regenerate the above resin, a mineral acid is passed through the M-type chelate resin layer, the recycled waste liquid is passed through the OIL-type anion-containing resin layer, and then the A/=-type chelate resin layer contains aluminum acid. 2. The method for treating wastewater according to claim 2, which comprises passing a solution containing sodium hydroxide through the 011 type AniJ transliteration resin layer.
JP15117782A 1982-08-31 1982-08-31 Waste water disposal Granted JPS5939383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15117782A JPS5939383A (en) 1982-08-31 1982-08-31 Waste water disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15117782A JPS5939383A (en) 1982-08-31 1982-08-31 Waste water disposal

Publications (2)

Publication Number Publication Date
JPS5939383A true JPS5939383A (en) 1984-03-03
JPS6161879B2 JPS6161879B2 (en) 1986-12-27

Family

ID=15512981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15117782A Granted JPS5939383A (en) 1982-08-31 1982-08-31 Waste water disposal

Country Status (1)

Country Link
JP (1) JPS5939383A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457683U (en) * 1987-10-02 1989-04-10
JPH01140695U (en) * 1988-03-16 1989-09-26

Also Published As

Publication number Publication date
JPS6161879B2 (en) 1986-12-27

Similar Documents

Publication Publication Date Title
US4448693A (en) Method for partially desalinating water with a weakly acid and strongly basic ion exchanger materials and subsequently regenerating the ion exchanger materials
US4125594A (en) Purification of hydrofluoric acid etching solutions with weak anion exchange resins
JPH05212382A (en) Method for removing heavy metal ion from waste liquid stream
RU2594420C2 (en) Method of removing boron-containing concentrate at nuclear power stations
JPS5815193B2 (en) How to treat boron-containing water
JPS5924876B2 (en) How to treat boron-containing water
JPS5939383A (en) Waste water disposal
JP3942235B2 (en) Method for treating boron-containing water
US4894167A (en) Process for removing heavy metal cations and/or alkali metal cations from aqueous solutions with an ion exchanger material
CA2077312C (en) Condensate polisher regenerant system
JP2001239273A (en) Method of treating water containing boron and fluorine
Lokshin et al. Water purification with titanium compounds to remove fluoride ions
JP2001232372A (en) Treatment process for water containing boron
JPH11235595A (en) Treatment of boron-containing waste water
JPH0256958B2 (en)
JP4315567B2 (en) Method for treating wastewater containing fluorine and boron
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JPS60143891A (en) Treatment of waste water from stack gas desulfurization
US7157005B2 (en) Regenerant reuse
JP6045965B2 (en) Borofluoride ion-containing wastewater treatment method and borofluoride ion-containing wastewater treatment apparatus
RU2000141C1 (en) Method for ion-exchange removal of metal ions from solutions
JPS591396B2 (en) How to treat water containing boron and COD
JPH0561988B2 (en)
JPH0299189A (en) Process for treating waste water containing fluorine