JPS593933A - Heating of semiconductor wafer with light irradiation - Google Patents

Heating of semiconductor wafer with light irradiation

Info

Publication number
JPS593933A
JPS593933A JP11149782A JP11149782A JPS593933A JP S593933 A JPS593933 A JP S593933A JP 11149782 A JP11149782 A JP 11149782A JP 11149782 A JP11149782 A JP 11149782A JP S593933 A JPS593933 A JP S593933A
Authority
JP
Japan
Prior art keywords
wafer
outer periphery
temperature
auxiliary heating
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11149782A
Other languages
Japanese (ja)
Other versions
JPS6331093B2 (en
Inventor
Hiroshi Shimizu
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP11149782A priority Critical patent/JPS593933A/en
Publication of JPS593933A publication Critical patent/JPS593933A/en
Publication of JPS6331093B2 publication Critical patent/JPS6331093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent occurrence of a large warppage and a slip line detrimental to the subsequent treatment process by a method wherein the part in the vicinity of the outer periphery of a semiconductor wafer is additionally heated by an auxiliary heating source so as to uniformize the temperature all over the wafer. CONSTITUTION:An auxiliary heating source 2, which is composed of a halogen or infrared bulb and provided with an annular sealed body made of quartz glass as well as a filament 2b within the sealed body, is arranged on the lower or upper side of a wafer 1 in contact with the surface of an outer peripheral part 1c or a part 1b in the vicinity of the outer periphery of the wafer 1. While the wafer 1 is subjected to main heating on both sides by receiving light irradiation from a planar light source from both above and below, the part 1b in the vicinity of the outer perihery is additionally heated by the auxiliary heating source 2. It is thus possible to make very small the temperature difference between a center part 1a and the part 1b in the vicinity of the outer periphery, and to uniformize the temperature all over the wafer 1.

Description

【発明の詳細な説明】 本発明は半導体ウェハーを光照射で加熱する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heating a semiconductor wafer by light irradiation.

最近、半導体ウェハー(以下単に「ウェハー」という。Recently, semiconductor wafers (hereinafter simply referred to as ``wafers'') have become popular.

)への不純物の導入方法として、不純物濃度、接合の深
さを精密に制御し得ることから、不純物をイオン状態に
して加速してウェハーに打ち込むイオン・注入法が使用
されてきている。この(2) イオン注入法においては、イオンが注入された後のウェ
ハーの表面における結晶状態が変化して荒れたものとな
るため、この荒れを消失せしめて良好な表面状態とする
ために、イオノ注人後約900Cまたはそれ以上の温度
にウェハーを加熱処理する必要があり、この加熱処理は
、注入された不純物の深さ方向の濃度分布が熱拡散によ
り変化しないように短時間で行なわなけれはならない。
), the ion implantation method has been used in which impurities are converted into ions, accelerated, and implanted into the wafer because the impurity concentration and junction depth can be precisely controlled. In this (2) ion implantation method, the crystal state on the surface of the wafer changes after ions are implanted and becomes rough, so ion implantation is performed to eliminate this roughness and create a good surface condition. After implantation, it is necessary to heat the wafer to a temperature of approximately 900C or higher, and this heat treatment must be performed in a short time so that the concentration distribution of the implanted impurity in the depth direction does not change due to thermal diffusion. No.

また、生産性を向上させるためにもウェハーの急速加熱
、急速冷却が要請されている。
Furthermore, rapid heating and cooling of wafers is required to improve productivity.

このような要請により、最近、ウェハーを光照射で加熱
する方法が開発され、この方法によれは、わずか数秒間
という短時間で十数百度まで昇温か可能である。
In response to such demands, a method has recently been developed in which wafers are heated by light irradiation, and with this method, the temperature can be raised to over 10-100 degrees Celsius in a short period of just a few seconds.

しかしながら、ウェハー、例えば単結晶シリコンをこれ
に単に光照射することにより、数秒間以内の短時間にお
いて、温度1ooo c前後の処理温度に昇温せしめ更
にこの処理温度に保つという加熱処理を施す場合には、
昇温時及び処理温度時においてウェハーにおける外周近
傍部と中央部との(8) 間に比較的大きな温度差が生じ、この温度差が原因とな
ってウェハーに後、の処理工程で支障をきたすような大
きな「反り」が発生し、更には「スリップライン」と呼
ばれる損傷が発生することが分った。
However, when performing heat treatment on a wafer, such as single crystal silicon, by simply irradiating it with light, the temperature is raised to a processing temperature of around 100°C within a short period of several seconds, and then maintained at this processing temperature. teeth,
When the temperature is raised and the processing temperature is increased, a relatively large temperature difference occurs between the area near the outer periphery and the central area (8) of the wafer, and this temperature difference causes problems in the subsequent processing steps of the wafer. It was found that large "warps" like this occur, and damage called "slip lines" also occurs.

これは、ウェハーの厚さは普通0.5Kg前後程度と非
常に薄く、厚さ方向における温度分布は1時間的には1
0−3秒の桁の程度で緩和されるので実質的には悪影醤
を及ぼすことはないが、ウエノ1−の面に沿った方向に
おける温度分布は、たとえウェハーの表面を均一な照射
エネルギー密度で光照射しても、ウェハーの外周近傍部
からの熱放散がウェハーの中央部からの熱放散よりも相
当大きいので、昇温時においてはウェハーの外周近傍部
の温度がψエバーの中央部の温度に追従できず、処理温
度時においてもウェハーの外周近傍部の温度がウェハー
の中央部の温度にまで達することがなく。
This is because the thickness of the wafer is usually very thin, around 0.5 kg, and the temperature distribution in the thickness direction is 1 hour.
Since the relaxation is on the order of 0-3 seconds, there is virtually no adverse effect. Even if the wafer is irradiated with light at a high density, the heat dissipation from the wafer's outer periphery is considerably larger than the heat dissipation from the wafer's center. Even at processing temperatures, the temperature near the outer periphery of the wafer does not reach the temperature at the center of the wafer.

結局ウェハーの外周近傍部の温度はウェハーの中央部の
温度より相当に低くなってしまうからである。
This is because the temperature near the outer periphery of the wafer ends up being considerably lower than the temperature at the center of the wafer.

このようにウェハーに大きな「反り」が発生すると、後
の処理工程例えばフォトエツチング処理工程においてパ
ターン鐵が乱れるため支障をきたし、また「スリップラ
イン1が発生すると、ウェハーそのものが半導体材料と
して使用し得ない無価値なものとなり重大な損失を招く
こととなる。
If a large "warp" occurs in the wafer in this way, it will cause problems in subsequent processing steps, such as the photo-etching process, as the patterned iron will be disturbed. It becomes worthless and causes serious losses.

本発明は斯かる観点からなされたものであって。The present invention was made from this point of view.

半導体ウェハーを光照射で加熱する方法において。In a method of heating a semiconductor wafer by light irradiation.

後の処理工程に支障をきたすような大きな「反り」及び
「スリップライン」のような損傷が生じないような加熱
方法を提供することを目的とし、そのt#!j9とする
ところは、半導体ウェハーを光照射で加熱する方法にお
いて、へロrン電球やモリブデンヒーターの如き自己発
熱する補助加熱源を半導体ウェハーの外周部若しくは外
周近傍部の表面に接触して配置し、前記補助加熱源で半
導体ウェハーの主に外周近傍部を補助的に加熱しながら
若しくは補助的に加熱しておいて、半導体ウェハーを光
照射で加熱することにある。
The purpose is to provide a heating method that does not cause damage such as large "warps" and "slip lines" that may interfere with subsequent processing steps, and its t#! j9 refers to a method of heating a semiconductor wafer by light irradiation, in which an auxiliary heating source that generates self-heating, such as a Heron light bulb or a molybdenum heater, is placed in contact with the surface of the semiconductor wafer at or near its outer periphery. However, the semiconductor wafer is heated by light irradiation while or previously heated mainly in the vicinity of the outer periphery of the semiconductor wafer using the auxiliary heating source.

以下図面を参照しながら本発明方法の一実施せ1」(b
 ) を説明する。
Hereinafter, with reference to the drawings, one embodiment of the method of the present invention 1" (b
).

第1図は、光照射炉内に配置されたウニ/’% −1を
−F方から見た加熱方法の説明図、第2図は、第1図を
側方から見た説明図であって1図には示されていないが
ウェハーlの上方及び下方には、各々消費電力600W
の棒状のへロrン電球12本を一平面上に近接して並べ
て成る面光源が配置され。
Figure 1 is an explanatory diagram of the heating method for sea urchin/'% -1 placed in a light irradiation furnace, viewed from the -F direction, and Figure 2 is an explanatory diagram of Figure 1, viewed from the side. Although not shown in Figure 1, there are power consumption devices of 600 W each above and below the wafer L.
A surface light source consisting of 12 rod-shaped Heron light bulbs arranged closely on one plane is arranged.

この面光源によりウェハー1の表面における照射エネル
ギー密度が均一となり且つウェハーlの表面製置がウェ
ハーlの中央部1aで約1000 Cになるようにウェ
ハー1が光照射されるようになっている。光照射のため
の前記面光源の全消費電力は約14KWに及び、ウェハ
ーlは直径4インチの円板状であってホウ素をイオン注
入した単結晶シリコンより成るものである。
With this surface light source, the wafer 1 is irradiated with light so that the irradiation energy density on the surface of the wafer 1 is uniform and the surface temperature of the wafer 1 is about 1000 C at the center 1a of the wafer 1. The total power consumption of the surface light source for light irradiation is about 14 KW, and the wafer I is disk-shaped with a diameter of 4 inches and is made of single-crystal silicon into which boron ions have been implanted.

2は環状の石英ガラス製の封体な具えた。ハロrノ電球
若しくけ赤外線電球などより成る補助加熱源であって、
その封体内部にフィラメント2bを具えており、この補
助加熱源2はウニ・・−1め外周部lc若しくは外周近
傍部1bの表面に接触するよ(6) う例えばウェハー1の下向側または上面側に配置する。
2 was equipped with an annular quartz glass enclosure. An auxiliary heating source consisting of a halo light bulb or an infrared light bulb,
A filament 2b is provided inside the envelope. Place it on the top side.

ここでウェハー1は1例えば補助加熱源2に固定して設
けた石英製の叉待爪により補助加熱源2に接触保持せし
めるようにすればよいが、補助加熱源2をウニ/”t−
1の下面側に配置する場合には、補助加熱源2をウェハ
ー1の文待合として兼用せしめることもでき、この場合
には叉待爪を除いてもよい。
Here, the wafer 1 may be held in contact with the auxiliary heating source 2 by, for example, quartz claws fixed to the auxiliary heating source 2.
When disposed on the lower surface side of the wafer 1, the auxiliary heating source 2 can also be used as a support for the wafer 1, and in this case, the interlocking claws may be omitted.

そして前記面光源によりウニ/)−1に光照射して加熱
する際に、或いはこの光照射に先だって、補助加熱源2
にカロえる電力を例えば400W−1300Wの範囲で
調整して点灯することにより、ウェハー1の外周近@部
1bにおける温度と補助加熱源2の管壁の温度とが約5
00tZ’以上の温度域において11ぼ同じになるよう
に、ウェハーlの外周近傍部1bを補助的に加熱する。
Then, when heating the sea urchin /)-1 by irradiating light with the surface light source, or prior to this light irradiation, the auxiliary heating source 2
By adjusting the power that increases in the range of 400W to 1300W and turning on the light, the temperature near the outer periphery of the wafer 1 and the temperature of the tube wall of the auxiliary heating source 2 will be approximately 5.
The portion 1b near the outer periphery of the wafer 1 is additionally heated so that the temperature is approximately the same in the temperature range of 00tZ' or higher.

上記方法によれば、ウェハーlの両面が上方及び下方か
ら面光源により光照射を受けて主加熱が行なわれるが、
ウェハー■の外周fa I C若しくは外周近傍部1b
を1.これに接触し・て配置した補助加熱(7) 源2により加熱するため、この補助加熱源2によりウェ
ハー1の外周近傍s1bが補助的に加熱されるようにな
り、この結果中央部1aと外周近傍部tbとの温度差が
極めて小さくなってウェハー1の全体の温度が均一化さ
れるようになり、結局後の処理工程で支障ンさた丁よう
な太さな「反り」の発生を防止することかでさると共に
「スリップライン」の発生乞防止することができる。し
かもウェハー1の外周近傍部1bは補助加熱源2により
接触部から直接の伝導熱を受けて加熱されるため熱効率
がよい。実際ウェハー1の中央部1aの温度は約100
0t:’となるのに対してウェハーlの外周近傍部1b
の温度は約970c程度となり、この外周近傍部tbの
温度は稍低めKはなるものの、後の処理工程で支障をさ
た丁ような大さな「反り」が発生せず、1−かも「スリ
ップライン」も発生せず、ウェハー1を良好に加熱処理
することができる。ところで補助加熱源2による補助加
熱を行なわない他は上述の実施例と同様の方法によりウ
ェハー1の加熱処理を行なったところ、ウェハー1の外
局近特開昭59−3933(3) 缶部1bの温度は約600Cとかなシ低い値となシ。
According to the above method, main heating is performed by irradiating both sides of the wafer l with light from above and below from the surface light source.
Outer periphery fa IC or outer periphery vicinity 1b of wafer ■
1. Since the auxiliary heating (7) source 2 placed in contact with this heats the wafer 1, the auxiliary heating source 2 additionally heats the wafer 1 near its outer periphery s1b, and as a result, the central portion 1a and the outer periphery The temperature difference between the wafer 1 and the neighboring portion tb becomes extremely small, and the temperature of the entire wafer 1 becomes uniform, thereby preventing the occurrence of thick "curvature" that may cause problems in later processing steps. By doing this, you can prevent the occurrence of "slip lines". In addition, since the portion 1b near the outer periphery of the wafer 1 is heated by receiving direct conductive heat from the contact portion by the auxiliary heating source 2, thermal efficiency is good. In fact, the temperature of the center portion 1a of the wafer 1 is approximately 100
0t:', whereas the area 1b near the outer periphery of the wafer l
The temperature is about 970C, and although the temperature near the outer periphery tb is slightly lower K, there is no large "warp" that would cause problems in the later processing steps, and it is possible to The wafer 1 can be satisfactorily heat-treated without the occurrence of "slip lines." By the way, when the wafer 1 was heated in the same manner as in the above-described embodiment except that the auxiliary heating source 2 was not used, the wafer 1 was heated. The temperature is about 600C, which is a low value.

後の処理工程に支障をきたすような大きな「反り」が発
生し、またウェハー1の周辺に「スリップライン」の発
生が認められた。
A large "warp" that interfered with subsequent processing steps occurred, and "slip lines" were observed around the wafer 1.

本発明は1以上の実施例からも理解されるように、外周
近傍部1bからの熱放散による温度低下を相殺するよう
に、補助加熱源をウェハーの外周部lc若しく、は外周
近傍部1bに接触せしめて主に外周近傍部1bを補助的
に加熱してやり、中央部と外周近傍部との温度差を小さ
くし、ウェハー全面の温度を均一化することによって、
後の処理工程に支障をきたす大きな「反シ」及び「スリ
ップライン」の発生を防止しようとするものである。
As can be understood from one or more embodiments, the present invention provides an auxiliary heating source to the outer peripheral portion lc of the wafer or the outer peripheral portion 1b so as to offset the temperature drop due to heat dissipation from the outer peripheral portion 1b. By bringing the wafer into contact with the wafer to supplementarily heat mainly the portion 1b near the outer periphery, reducing the temperature difference between the center portion and the portion near the outer periphery, and making the temperature over the entire surface of the wafer uniform,
This is intended to prevent the occurrence of large "slip lines" and "slip lines" that would interfere with later processing steps.

以上本発明方法の具体的一実施例を説明したが。A specific embodiment of the method of the present invention has been described above.

本発明はこれに限定されず種々変更を加えることができ
る。′例えば補助加熱源2は、第8図に示すように、複
数例えば4つに分割した補助加熱源21、22.2B、
 lをそれぞれ対称的にウェハー1の外周部1c若しく
は外周近傍部1bの表面に接触せしめるようにし、ても
よい。こO場合、補助加熱源(9) 21、22.28.24の各々は互に電気的に独立した
ものであってもよいし、或いは互に電気的に接続された
ものであってもよい。また面光源がウェハー1の上方或
いは下方の一方側のみに配置されている場合には、ウェ
ハー1の面光源に対向する面とは反対側の面に補助加熱
源2が位置されるようにすれば、補助加熱源2が面光源
からウェハー1に照射される光を遮ぎることかないので
好ましい。
The present invention is not limited to this, and various changes can be made. 'For example, as shown in FIG. 8, the auxiliary heating source 2 is divided into a plurality of auxiliary heating sources 21, 22.2B,
1 may be brought into contact with the surface of the outer peripheral portion 1c or the outer peripheral portion 1b of the wafer 1 in a symmetrical manner. In this case, each of the auxiliary heating sources (9) 21, 22, 28, and 24 may be electrically independent from each other, or may be electrically connected to each other. . In addition, if the surface light source is placed only on one side above or below the wafer 1, the auxiliary heating source 2 may be placed on the surface of the wafer 1 opposite to the surface facing the surface light source. For example, it is preferable that the auxiliary heating source 2 does not block the light irradiated onto the wafer 1 from the surface light source.

またウニI・−1の支持と補助加熱源2の支持は全く別
個の支持機構により支持するようにしてもよい。ぞして
光照射によるウェハー加熱は、一般的にはアルゴンのよ
うな不活性ガス雰囲気または真空内で行なわれるので、
補助加熱源は電球類に限ることなく 、 5in2のコ
ーティングを施したモリブデンヒーターのような金属類
の抵抗発熱体を利用してもよく、補助加熱源の出力は、
その消費電力に応じて自己発熱するものであれば良い。
Furthermore, the support of the sea urchin I.-1 and the support of the auxiliary heating source 2 may be supported by completely separate support mechanisms. Since wafer heating by light irradiation is generally performed in an inert gas atmosphere such as argon or in a vacuum,
The auxiliary heating source is not limited to light bulbs, but may also be a metal resistance heating element such as a 5in2 coated molybdenum heater, and the output of the auxiliary heating source is:
Any device that self-heats according to its power consumption may be used.

以上のように本発明方法は、半導体ウェハーを光照射で
加熱する方法において、ハロゲン電球ヤモリブデンヒー
ターの如き自己発熱する補助加熱(10) 源を半導体ウェハーの外周部若しくは外周近傍部の表面
に接触して配置し、前記補助加熱源で半導体ウェハーの
主に外周近傍部を補助的に加熱しながら若しくは補助的
に加熱しておいて、半導体ウェハーを光照射で加熱する
方法であるから、ウェハー面上の温度分布の均一性を改
善し、後の処理工程に支障をきたす大きな「反9」及び
「スリップライン」のような損傷を抑制することができ
As described above, the method of the present invention is a method of heating a semiconductor wafer by light irradiation, in which a self-heating auxiliary heating (10) source such as a halogen bulb gecko heater is brought into contact with the outer periphery of the semiconductor wafer or the surface near the outer periphery. This is a method in which the semiconductor wafer is heated by light irradiation while the auxiliary heat source is used to auxiliarily heat mainly the vicinity of the outer periphery of the semiconductor wafer, or the semiconductor wafer is heated by light irradiation. It can improve the uniformity of the temperature distribution on the surface and suppress damages such as large "anti-9" and "slip lines" that may interfere with later processing steps.

実用上の価値は極めて大きい。The practical value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明方法の一実施例を示
す説明用平面図及び説明用縦断正面図。 第8図は本発明方法の他の実施例を示す説明用平面図で
ある、 1・・・半導体ウェハー  2・・・補助加熱源la・
・・中央部      1b・・・外周近傍部lc・・
・外周部
FIG. 1 and FIG. 2 are an explanatory plan view and an explanatory longitudinal sectional front view, respectively, showing an embodiment of the method of the present invention. FIG. 8 is an explanatory plan view showing another embodiment of the method of the present invention. 1... Semiconductor wafer 2... Auxiliary heating source la.
...Central part 1b...Outer peripheral part lc...
·The outer periphery

Claims (1)

【特許請求の範囲】[Claims] 1)半導体ウェハーを光照射で加熱する方法において、
ハロゲンを球やモリブデンヒーターの如き自己発熱する
補助加熱源を半導体ウェハーの外周部若しくは外周近傍
部の表面に接触して配置し、前記補助加熱源で半導体ウ
ェハーの主に外周近傍部を補助的に加熱しながら若しく
は補助的に加熱しておいて、半導体ウェハーを光照射で
加熱する方法。
1) In a method of heating a semiconductor wafer by light irradiation,
An auxiliary heating source that generates heat by itself, such as a halogen bulb or a molybdenum heater, is placed in contact with the outer periphery of the semiconductor wafer or the surface near the outer periphery, and the auxiliary heating source mainly heats the semiconductor wafer in the auxiliary vicinity. A method of heating a semiconductor wafer with light irradiation while heating it or with supplementary heating.
JP11149782A 1982-06-30 1982-06-30 Heating of semiconductor wafer with light irradiation Granted JPS593933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11149782A JPS593933A (en) 1982-06-30 1982-06-30 Heating of semiconductor wafer with light irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11149782A JPS593933A (en) 1982-06-30 1982-06-30 Heating of semiconductor wafer with light irradiation

Publications (2)

Publication Number Publication Date
JPS593933A true JPS593933A (en) 1984-01-10
JPS6331093B2 JPS6331093B2 (en) 1988-06-22

Family

ID=14562782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11149782A Granted JPS593933A (en) 1982-06-30 1982-06-30 Heating of semiconductor wafer with light irradiation

Country Status (1)

Country Link
JP (1) JPS593933A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764937A (en) * 1980-10-09 1982-04-20 Ushio Inc Annealing device
JPS58194332A (en) * 1981-12-04 1983-11-12 Ushio Inc Heating method of semiconductor with irradiation of light
JPS6331094A (en) * 1986-07-24 1988-02-09 Nec Ic Microcomput Syst Ltd Prom eraser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764937A (en) * 1980-10-09 1982-04-20 Ushio Inc Annealing device
JPS58194332A (en) * 1981-12-04 1983-11-12 Ushio Inc Heating method of semiconductor with irradiation of light
JPS6331094A (en) * 1986-07-24 1988-02-09 Nec Ic Microcomput Syst Ltd Prom eraser

Also Published As

Publication number Publication date
JPS6331093B2 (en) 1988-06-22

Similar Documents

Publication Publication Date Title
JPS58223320A (en) Diffusing method for impurity
JPS6411712B2 (en)
US4469529A (en) Method for heating semiconductor wafer by means of application of radiated light with supplemental circumferential heating
US4468259A (en) Uniform wafer heating by controlling light source and circumferential heating of wafer
US4535227A (en) Method for heating semiconductor wafer by means of application of radiated light
JPH0482215A (en) Lamp annealing equipment
JPS6244848B2 (en)
JPH03266424A (en) Annealing process of semiconductor substrate
US4486652A (en) Blackbody radiation source with constant planar energy flux
JPS593933A (en) Heating of semiconductor wafer with light irradiation
JPS6244847B2 (en)
JPS593934A (en) Heating of semiconductor wafer with light irradiation
JPS6331096B2 (en)
JPS60137027A (en) Optical irradiation heating method
JPS6331094B2 (en)
JP2979550B2 (en) Lamp annealing equipment
JPS59121832A (en) Method for heating semiconductor wafer by photo irradiation
JPH025295B2 (en)
JPS63271922A (en) Heat treatment device
JPH0240480Y2 (en)
JP2001156011A (en) Heat treatment equipment for semiconductor wafer
JPS60732A (en) Annealing method
JPS59121821A (en) Set-up means for heater
JPS6088431A (en) Heating method by photo irradiation
JPS59101825A (en) Manufacture of semiconductor device and heat treatment apparatus therefor