JPS5939243B2 - surface coated tool parts - Google Patents

surface coated tool parts

Info

Publication number
JPS5939243B2
JPS5939243B2 JP9539678A JP9539678A JPS5939243B2 JP S5939243 B2 JPS5939243 B2 JP S5939243B2 JP 9539678 A JP9539678 A JP 9539678A JP 9539678 A JP9539678 A JP 9539678A JP S5939243 B2 JPS5939243 B2 JP S5939243B2
Authority
JP
Japan
Prior art keywords
coating layer
layer
coated tool
coated
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9539678A
Other languages
Japanese (ja)
Other versions
JPS5570501A (en
Inventor
文洋 植田
則文 菊池
幸一 竹島
泰次郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9539678A priority Critical patent/JPS5939243B2/en
Publication of JPS5570501A publication Critical patent/JPS5570501A/en
Publication of JPS5939243B2 publication Critical patent/JPS5939243B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Description

【発明の詳細な説明】 この発明は、靭性および耐摩粍性にすぐれ、かつ工具部
品との付着力が強固な被覆層を有し、特に切削用および
耐摩性用などとして使用するのに適した表面被覆工具部
品に関するものである。
Detailed Description of the Invention The present invention has a coating layer that has excellent toughness and abrasion resistance and has strong adhesion to tool parts, and is particularly suitable for use in cutting and wear-resistant applications. The present invention relates to surface-coated tool parts.

従来、一般に、例えば切削用および耐摩性用工具部品が
工具凧 高速度鋼、ダイス鋼、および超硬合金なでの材
料で製造されることは公知であり、さらに特性向上をは
かる目的で、タングステン(W)およびタングステンカ
ーバイド(以下WCという)のうちの1種または2種か
らなる被覆層を化学蒸着法によつて前記工具部品の表面
に形成することもよく知られるところである。上記従来
表面被覆工具部品における被覆層は、多くの場合層厚5
μm以下と比較的薄く、一その平均結晶粒径も1μm以
下となつているために、すぐれた靭性および耐摩耗性を
もつものになつている。
It is generally known in the past that cutting and wear-resistant tool parts, for example, are manufactured from materials such as high-speed steel, die steel, and cemented carbide, and in order to further improve their properties, tungsten It is also well known to form a coating layer of one or two of (W) and tungsten carbide (hereinafter referred to as WC) on the surface of the tool part by chemical vapor deposition. The coating layer in the conventional surface-coated tool parts mentioned above is often 5.
Because it is relatively thin (less than 1 μm) and has an average crystal grain size of less than 1 μm, it has excellent toughness and wear resistance.

しかし、近年、上記従来表面被覆工具部品に対して、寸
法精度の向上をはかるための被覆層の研削および工具部
品再利用のための被覆層の再研削の必要性が要求される
傾向にあり、これを反映して比較的層厚の厚い、すなわ
ち具体的には層厚5〜1000μm、望ましくは5Of
tm以上の被覆層を有する表面被覆工具部品が求められ
るようになつてきた。
However, in recent years, there has been a tendency for the above-mentioned conventional surface-coated tool parts to require grinding of the coating layer in order to improve dimensional accuracy and re-grinding of the coating layer in order to reuse the tool parts. Reflecting this, the layer thickness is relatively thick, specifically, the layer thickness is 5 to 1000 μm, preferably 5Of.
There is a growing demand for surface-coated tool parts having a coating layer of tm or more.

しかしながら、上記の比較的薄い被覆層を有する従来表
面被覆工具部品において、その被覆層を層厚5μm以上
に厚くすると、工具部品への前記被覆層の付着力が低下
するようになつて前記被覆層に剥離が生じたり、さらに
前記被覆層の平均結晶粒径を1μm以下におさえること
ができなくなJ つて前記被覆層に靭性および耐摩耗性
の劣化をきたし実用に供し得ないものとなるのが現状で
ある。
However, in the conventional surface-coated tool parts having the above-mentioned relatively thin coating layer, when the coating layer is thickened to a layer thickness of 5 μm or more, the adhesion of the coating layer to the tool part decreases, and the coating layer In addition, it becomes impossible to suppress the average crystal grain size of the coating layer to 1 μm or less, resulting in deterioration of the toughness and wear resistance of the coating layer, making it impossible to put it into practical use. This is the current situation.

そこで、本発明者等は、上述のような観点から、表面被
覆工具部品におけるWおよびWCのうちの1種または2
種からなる被覆層の層厚を、寸法精フ 度の向上および
再使用をはかる目的で5〜1000μmと厚くしても、
前記被覆層の工具部品への付着力が強固で、しかもすぐ
れた靭性および耐摩耗性を確保するために前記被覆層の
平均結晶粒径が1μm以下の表面被覆工具部品を得べく
研究を行なつた結果、(a) WおよびWCのうちの1
種または2種からなる層厚5〜1000μmの厚い被覆
層を工具部品表面に形成するに先だつて、中間層として
層厚0.5〜100Itm0Ni:10〜99重量%を
含有するNi合金を介在させると、前記被覆層の工具部
品表面への付着力がきわめて強固になること。
Therefore, from the above-mentioned point of view, the present inventors proposed that one or two types of W and WC be used in surface-coated tool parts.
Even if the thickness of the coating layer consisting of seeds is increased to 5 to 1000 μm for the purpose of improving dimensional accuracy and reuse,
In order to ensure that the coating layer has strong adhesion to the tool part and also has excellent toughness and wear resistance, research is being conducted to obtain a surface-coated tool part in which the coating layer has an average crystal grain size of 1 μm or less. As a result, (a) one of W and WC
Prior to forming a thick coating layer of 5 to 1000 μm consisting of a species or two species on the surface of a tool component, a Ni alloy containing 0.5 to 100 Itm0Ni: 10 to 99% by weight is interposed as an intermediate layer. and that the adhesion of the coating layer to the surface of the tool component becomes extremely strong.

(6)WおよびWCのうちの1種または2種からなる被
覆層を有する表面被覆工具部品において、前記被覆層に
、フツ素および塩素のうちの1種または2種を、0.0
05〜1原子%、望ましくは0.1〜0.5原子%含有
させると、前記被覆層の層厚が5〜10001tmと厚
くなつても結晶粒成長が抑制されて平均結晶粒径1μm
以下の微細組織の被覆層が安定的に得られるようになり
、この結果前記被覆層はすぐれた靭性および耐摩耗性を
有するようになること。
(6) In a surface-coated tool component having a coating layer made of one or two of W and WC, one or two of fluorine and chlorine is added to the coating layer at 0.00.
When the content is 0.05 to 1 atomic %, preferably 0.1 to 0.5 atomic %, even if the thickness of the coating layer is as thick as 5 to 10,001 tm, crystal grain growth is suppressed and the average crystal grain size is 1 μm.
A coating layer having the following microstructure can be stably obtained, and as a result, the coating layer has excellent toughness and wear resistance.

以.J:I(a)および(b)に示される知見を得たの
である。
Henceforth. The findings shown in J:I (a) and (b) were obtained.

この発明は、上記知見にもとづいてなされたもので、以
下に中間層としてのNi合金層のNi含有量およびその
層厚、さらに被覆層におけるフツ素および塩素の含有量
を上記のとおり限定した理由を説明する。(a)中間層
のNi含有量 その含有量が10重量%未満でも、また99重量%を越
えて含有しても、工具部品表面と被覆層との間に所望の
強固な付着力を確保することができないことが経験的に
確認されたことに基づき、その含有量を10〜99重量
%と定めた。
This invention was made based on the above knowledge, and the reason for limiting the Ni content and thickness of the Ni alloy layer as the intermediate layer, as well as the fluorine and chlorine contents in the coating layer as described above, is as follows. Explain. (a) Ni content in the intermediate layer Whether the Ni content is less than 10% by weight or more than 99% by weight, the desired strong adhesion is ensured between the tool component surface and the coating layer. Based on the fact that it has been empirically confirmed that it cannot be used, the content was determined to be 10 to 99% by weight.

なお、この場合、上記Ni合金中間層を介して工具部品
表面に被覆層を、例えば化学蒸着法により形成するに際
しては、前記工具部品表面が加熱されるため前記N1合
金中間層を構成する成分の前記工具部品表面への拡散が
生じ、したがつて前記被覆層が形成された後の表面被覆
工具部品の表面部においては、前記中間層構成成分が工
具部品内部へ向つて連続的に減少する濃度分布をもつた
ものになつている。
In this case, when forming a coating layer on the surface of the tool component via the Ni alloy intermediate layer, for example, by chemical vapor deposition, the surface of the tool component is heated, so that the components constituting the N1 alloy intermediate layer are heated. After diffusion to the tool part surface occurs and therefore the coating layer is formed, in the surface area of the surface-coated tool part, the concentration of the intermediate layer component decreases continuously toward the inside of the tool part. It has become something with a distribution.

(5)中間層の層厚 その層厚が0.5μm未満では、工具部品表面への被覆
層形成に際して、所望の付着力向上効果が得られず、一
方100μmを越えた層厚にすると、使用中に変形を生
じ易くなり、この結果として表面被覆工具部品の使用中
での寸法精度低下をまねくことになることから、その層
厚を0.5〜100μmと定めた。
(5) Layer thickness of intermediate layer If the layer thickness is less than 0.5 μm, the desired effect of improving adhesion cannot be obtained when forming a coating layer on the surface of tool parts, whereas if the layer thickness exceeds 100 μm, the use The thickness of the layer was determined to be 0.5 to 100 μm because deformation would easily occur within the layer, resulting in a decrease in dimensional accuracy during use of the surface-coated tool component.

なお、望ましくは5〜50μmとするのがよい。(6)
被覆層におけるフツ素および塩素の含有量その含有量が
0.005原子%未満では、被覆層の層厚が5〜100
0μmと厚くなつた場合、所望の結晶粒成長抑制効果を
得ることができず、多くの場合部分的ではあるが、1μ
m以上の粗大化した結晶粒径をもつた領域が現われるよ
うになり、このような粗大化した結晶粒が存在する被覆
層においては、その層厚が10μm以上になると柱状晶
を形成するようになり、所望の靭性および耐摩耗性を確
保することができない。
In addition, it is preferable to set it as 5-50 micrometers desirably. (6)
When the content of fluorine and chlorine in the coating layer is less than 0.005 at%, the thickness of the coating layer is 5 to 100%.
If the thickness is 0 μm, the desired effect of suppressing grain growth cannot be obtained, and in many cases, the thickness is only 1 μm, albeit partially.
Regions with coarse crystal grains of 10 μm or more appear, and in the coating layer where such coarse grains exist, columnar crystals begin to form when the layer thickness becomes 10 μm or more. Therefore, the desired toughness and wear resistance cannot be secured.

一方1原子%を越えて含有させると、被覆層中に、多く
の場合フツ素および塩素のいずれか、あるいは両成分の
濃縮領域が層状に現われるようになり、この層状領域は
脆く、しかも前記層状領域を有する被覆層は全体的に付
着強度が低く、したがつて所望の靭性および耐摩耗性を
確保することができなくなることから、その含有量を0
.005〜1原子%と定めた。また、この発明の表面被
覆工具部品の製造に際して、中間層としてのNl合金層
は、電気あるいは無電解メツキ、化学的あるいは物理的
蒸着法、およびスパツタリング法などによつて形成する
ことができ、またフツ素および塩素のうちの1種または
2種を含有するWおよびWCのうちの1種または2種か
らなる被覆層は、先に同一出願人が出願した特願昭53
−59907号(表面被覆工具部品およびその製造法)
に記載される方法によつて形成することができる。
On the other hand, if the content exceeds 1 atom%, in most cases, a layered region of concentrated fluorine and/or chlorine will appear in the coating layer, and this layered region will be brittle, and the layered region will be A coating layer having a region has a low adhesion strength as a whole, and therefore it is impossible to secure the desired toughness and wear resistance, so its content is reduced to 0.
.. The content was determined to be 0.005 to 1 atomic %. Further, in manufacturing the surface-coated tool component of the present invention, the Nl alloy layer as an intermediate layer can be formed by electric or electroless plating, chemical or physical vapor deposition, sputtering, etc. A coating layer consisting of one or two of W and WC containing one or two of fluorine and chlorine is disclosed in Japanese Patent Application No. 53, previously filed by the same applicant.
-59907 (Surface coated tool parts and manufacturing method thereof)
It can be formed by the method described in .

つぎに、この発明の表面被覆工具部品を実施例により説
明する。
Next, the surface-coated tool component of the present invention will be explained using examples.

高速度鋼(SKH−4)製工具部品表面に、物理蒸着法
により層厚3μMONl層を形成した懺反応容器内に挿
入し、の条件で加熱処理を行ない、反応後、反応容器内
の残留ガスを除去し、冷却することによつて本発明表面
被覆工具部品を製造した。
A tool part made of high speed steel (SKH-4) is inserted into a reaction vessel in which a 3 μM layer is formed on the surface using a physical vapor deposition method, and heat treated under the following conditions. After the reaction, residual gas in the reaction vessel A surface coated tool part of the present invention was produced by removing and cooling.

この結果得られた本発明表面被覆工具部品は、Ni合金
からなる層厚10μmの中間層を介して、平均結晶粒径
1μm以下を有し、塩素0.1原子%含有のW2CとW
Cの混合体からなるタングステンカーバイドで構成され
た層厚30μmの被覆層を有し、前記被覆層と前記Ni
合金層の境界部の組成は、60(f)Ni−5%CO−
29%Fe−5%w一1%Crからなり、また工具部品
表面と前記Nl合金層の境界部は、10%Nl−14(
!)CO55%Fe−16%W−4(f)Cr−1(f
)(以上重量0!))からなる組成を有するものであつ
た。
The resulting surface-coated tool part of the present invention has an average crystal grain size of 1 μm or less and contains W2C and W2C containing 0.1 atom% of chlorine through an intermediate layer of Ni alloy with a thickness of 10 μm.
The coating layer has a thickness of 30 μm and is made of tungsten carbide made of a mixture of
The composition of the boundary part of the alloy layer is 60(f)Ni-5%CO-
It consists of 29%Fe-5%w-1%Cr, and the boundary between the tool component surface and the Nl alloy layer is 10%Nl-14 (
! )CO55%Fe-16%W-4(f)Cr-1(f
) (weight 0!)).

さらに、上記本発明表面被覆工具部品の破面を観察した
ところ、被覆層と中間層、中間層と工具部品表面との間
には全くクラツクが存在せず、付着力の高いことが確認
された。また、比較の目的で、上記Nl合金からなる中
間層を形成せず、上記実施例におけると同一の条件で工
具部品表面に直接被覆層を形成した比較表面被覆工具部
品の破面を観察したところ、被覆層と工具部品表面との
間にボード状のクラツタが部分的に存在するのが見られ
た。
Furthermore, when the fracture surface of the surface-coated tool component of the present invention was observed, there were no cracks at all between the coating layer and the intermediate layer, and between the intermediate layer and the surface of the tool component, confirming that the adhesive force was high. . In addition, for the purpose of comparison, the fracture surface of a comparative surface-coated tool part was observed in which a coating layer was directly formed on the surface of the tool part under the same conditions as in the above example without forming the intermediate layer made of the Nl alloy. It was observed that board-like clutter was partially present between the coating layer and the surface of the tool component.

ついで、上記本発明表面被覆工具部品および比較表面工
具部品について、の条件で湿式切削試験を行なつたとこ
ろ、中間層を有しない比較表面被覆工具部品においては
、切削開始後、2分で被覆層剥離が生じたのに対して、
本発明表面被覆工具部品においては、被覆層に剥離やチ
ツピングの発生が皆無であり、きわめてすぐれた切削性
能を示した。
Next, wet cutting tests were conducted on the above-mentioned surface-coated tool parts of the present invention and comparative surface-coated tool parts under the following conditions, and it was found that in the comparative surface-coated tool parts without an intermediate layer, the coating layer was removed within 2 minutes after the start of cutting. While peeling occurred,
In the surface-coated tool parts of the present invention, there was no occurrence of peeling or chipping in the coating layer, and extremely excellent cutting performance was exhibited.

実施例 2 ダイス鋼(SKD−11)製打ち抜き用金型およびパン
チの表面に、電気メツキ法により層厚7μmの純Ni層
を形成した後、反応容器内に挿人し、反応時間を4時間
とする以外は実施例1におけると同一の条件で加熱処理
して被覆層を形成することによつて本発明表面被覆工具
部品としての金型およびパンチ(以下本発明表面被覆金
型という)を製造した。
Example 2 After forming a pure Ni layer with a layer thickness of 7 μm on the surface of a die steel (SKD-11) punch and a die steel by electroplating, the material was inserted into a reaction vessel and the reaction time was 4 hours. A mold and a punch as the surface-coated tool parts of the present invention (hereinafter referred to as the surface-coated mold of the present invention) were manufactured by heat-treating and forming a coating layer under the same conditions as in Example 1 except for the following. did.

この結果得られた本発明表面被覆金型は、N1合金から
なる層厚30μmの中間層を介して、平均結晶粒径1μ
m以下を有し、塩素0.1原子%含有のW2CとWCの
混合体からなるタングステンカーバイドで構成された層
厚30μmの被覆層を有し、前記被覆層と前記中間層と
の境界部は、80%Ni−18%Fe−2%Crの組成
をもち、また前記中間層と前記金型表面の境界部は、1
0%Ni−79(fl)Fe−10%Cr−1%MO(
以上重量(f))の組成をもつものであつた。
The surface-coated mold of the present invention obtained as a result is coated with an average crystal grain size of 1 μm through an intermediate layer of N1 alloy with a thickness of 30 μm.
m or less, the coating layer has a thickness of 30 μm and is made of tungsten carbide made of a mixture of W2C and WC containing 0.1 at% chlorine, and the boundary between the coating layer and the intermediate layer is , has a composition of 80%Ni-18%Fe-2%Cr, and the boundary between the intermediate layer and the mold surface is 1
0%Ni-79(fl)Fe-10%Cr-1%MO(
It had a composition of weight (f)).

一方、比較の目的で、純Ni層の層厚を15μmと厚く
する以外は、上記実施例2におけると同一の条件で加熱
処理して、層厚が本発明範囲から高い方に外れた120
μmの中間層を有し、さらに被覆層と前記中間層の境界
部が95%NI一50I)Feの組成を、また金型と前
記中間層の境界部が10%Nl−79%Fe−10%C
r−1%MO(以上重量01))からねる組成を有する
比較表面被覆金型を製造した。ついで、上記本発明表面
被覆金型および比較表面被覆金型を、板厚0.5Trm
のけい素鋼板を打ち抜く試験に供したところ、比較表面
被覆金型は20万シヨツトで塑性変形が大きく、寿命に
達したのに対して、本発明表面被覆金型は50万シヨツ
ト後でも摩耗量および塑性変形量がきわめて小さく、さ
らに引続いての使用が可能な状態であつた。
On the other hand, for the purpose of comparison, heat treatment was performed under the same conditions as in Example 2 except that the layer thickness of the pure Ni layer was increased to 15 μm.
The interface between the coating layer and the intermediate layer has a composition of 95%Nl-50I), and the interface between the mold and the intermediate layer has a composition of 10%Nl-79%Fe-10. %C
A comparative surface-coated mold having a composition consisting of r-1% MO (weight 01) was manufactured. Next, the surface-coated mold of the present invention and the comparative surface-coated mold were heated to a plate thickness of 0.5Trm.
When a silicon steel plate was subjected to a punching test, the comparative surface-coated mold suffered large plastic deformation and reached the end of its life after 200,000 shots, whereas the surface-coated mold of the present invention showed no wear even after 500,000 shots. The amount of plastic deformation was extremely small, and the product was in a state where it could be used for further use.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni:10〜99重量%含有のNi合金からなる層
厚:0.5〜100μmの中間層を介して、フッ素およ
び塩素のうちの1種または2種を0.005〜1原子%
含有するタングステンおよびタングステンカーバイドの
うちの1種または2種からなる層厚:5〜1000μm
の被覆層を形成した表面被覆工具部品にして、前記中間
層によつて前記工具部品と前記被覆層との付着力強化を
はかり、前記フッ素および塩素のいずれか、あるいは両
方の含有によつて前記被覆層の平均結晶粒径を1μm以
下として靭性および耐摩耗性の向上をはかつたことを特
徴とする表面被覆工具部品。
1 Ni: 0.005 to 1 atomic % of one or two of fluorine and chlorine through an intermediate layer of 0.5 to 100 μm layer thickness consisting of a Ni alloy containing 10 to 99% by weight of Ni.
Layer thickness consisting of one or two of tungsten and tungsten carbide contained: 5 to 1000 μm
The intermediate layer strengthens the adhesion between the tool part and the coating layer, and the intermediate layer strengthens the adhesion between the tool component and the coating layer. A surface-coated tool component characterized in that the average crystal grain size of the coating layer is 1 μm or less to improve toughness and wear resistance.
JP9539678A 1978-08-07 1978-08-07 surface coated tool parts Expired JPS5939243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9539678A JPS5939243B2 (en) 1978-08-07 1978-08-07 surface coated tool parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9539678A JPS5939243B2 (en) 1978-08-07 1978-08-07 surface coated tool parts

Publications (2)

Publication Number Publication Date
JPS5570501A JPS5570501A (en) 1980-05-28
JPS5939243B2 true JPS5939243B2 (en) 1984-09-21

Family

ID=14136484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9539678A Expired JPS5939243B2 (en) 1978-08-07 1978-08-07 surface coated tool parts

Country Status (1)

Country Link
JP (1) JPS5939243B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323882Y2 (en) * 1985-07-23 1991-05-24
WO2019181742A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool
WO2019181740A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool
WO2019181741A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427445A (en) * 1981-08-03 1984-01-24 Dart Industries, Inc. Tungsten alloys containing A15 structure and method for making same
IL72728A (en) * 1983-08-22 1988-02-29 Ovonic Synthetic Materials Adherence wear resistant coatings
GB0422608D0 (en) * 2004-10-12 2004-11-10 Hardide Ltd Alloyed tungsten produced by chemical vapour deposition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323882Y2 (en) * 1985-07-23 1991-05-24
WO2019181742A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool
WO2019181740A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool
WO2019181741A1 (en) * 2018-03-19 2019-09-26 住友電気工業株式会社 Surface-coated cutting tool
CN110691663A (en) * 2018-03-19 2020-01-14 住友电气工业株式会社 Surface-coated cutting tool
CN110691664A (en) * 2018-03-19 2020-01-14 住友电气工业株式会社 Surface-coated cutting tool
JPWO2019181740A1 (en) * 2018-03-19 2020-07-27 住友電気工業株式会社 Surface coated cutting tool
JPWO2019181741A1 (en) * 2018-03-19 2020-07-27 住友電気工業株式会社 Surface coated cutting tool
JPWO2019181742A1 (en) * 2018-03-19 2020-07-27 住友電気工業株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JPS5570501A (en) 1980-05-28

Similar Documents

Publication Publication Date Title
JP6171187B2 (en) Cutting tool with sharp edge
JP2684721B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool and its manufacturing method
JP3611853B2 (en) Cemented carbide with a binder phase rich surface area and improved edge toughness strength
JP2009090452A (en) Coated cutting tool for general turning of heat-resistant super-alloy
KR100186288B1 (en) High toughness cermet and process for preparing the same
JPH09323204A (en) Multilayer coated hard tool
JP2006322042A (en) Nitrided steel with superhigh hardness and high abrasion resistance
WO2003082533A1 (en) Self-sharpening cutting tool with hard coating
US6194088B1 (en) Stainless steel coated with intermetallic compound and process for producing the same
US6326093B1 (en) Cemented carbide insert and method of making same
JP2007190669A (en) Cemented carbide insert for abrasion required for cutting-off and grooving in heat resisting super alloy (hrsa) and stainless steel
JP4297987B2 (en) High-strength fine-grain diamond sintered body and tool using the same
JPS5939243B2 (en) surface coated tool parts
JP4731645B2 (en) Cemented carbide and coated cemented carbide and method for producing the same
JPH01246361A (en) Diamond-coated sintered alloy having excellent release resistance and its production
JPS6210301B2 (en)
JPS5939242B2 (en) surface coated tool parts
JP2002080964A (en) Titanium-chromium alloy coated diamond crystal used in saw blade and method for producing the same
EP1222316A1 (en) Coated cemented carbide insert
JP3474254B2 (en) High-strength tough cemented carbide and its coated cemented carbide
JPS6256231B2 (en)
JP3194802B2 (en) Sintered alloy having Al-containing surface layer and method for producing the same
JP2814452B2 (en) Surface-finished sintered alloy, method for producing the same, and coated surface-finished sintered alloy obtained by coating the alloy with a hard film
JPS6315981B2 (en)
JPH10226597A (en) Diamond-clad hard member