JPS5938929A - Production of magnetic recording medium of thin metallic film type - Google Patents

Production of magnetic recording medium of thin metallic film type

Info

Publication number
JPS5938929A
JPS5938929A JP14836982A JP14836982A JPS5938929A JP S5938929 A JPS5938929 A JP S5938929A JP 14836982 A JP14836982 A JP 14836982A JP 14836982 A JP14836982 A JP 14836982A JP S5938929 A JPS5938929 A JP S5938929A
Authority
JP
Japan
Prior art keywords
magnetic
layer
deposited
substrate
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14836982A
Other languages
Japanese (ja)
Inventor
Kenji Yazawa
健児 矢沢
Kenichi Baba
馬場 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP14836982A priority Critical patent/JPS5938929A/en
Publication of JPS5938929A publication Critical patent/JPS5938929A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium which has high coercive force and an excellent squareness ratio by continuous vapor deposition with good mass productivity, by forming discontinuous islandlike nonmagnetic metallic layers on a nonmagnetic substrate while moving the substrate and forming a magnetic layer on said layer. CONSTITUTION:While a substrate 2 of polyester or the like is moved from a feed roll 3 to a take-up roll 4 in a vacuum deposition vessel 1, the substrate 2 is heated by a heating lamp 7 to about 150 deg.C. A shielding plate 8 is disposed between a vapor source 5 for a nonmagnetic metal such as Bi or the like and a vapor source 6 for a magnetic metal such as Co or a Co-Ni alloy and Bi or the like is first deposited by evaporation to discontinuous island shapes 9 at 10-1,000Angstrom thickness, whereafter a magnetic metallic layer 10 of Co or the like is deposited by evaporation to 100-1,000 deg.C thickness. The substrate deposited by evaporation with Bi or the like in the above-mentioned way is deposited thereon by evaporation with the magnetic layer continuously without taking up, whereby a magnetic tape or the like of which the magnetic layer 10 has a uniform and smooth surface and which has excellent coercive force and squareness ratio is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属薄膜型磁気記録媒体の製法に係る、背景技
術とその問題点 金属薄膜型磁気記録媒体におけるその金属薄膜磁性層は
、これにバインダーが混入されていないことから充填密
度の向上を図ることができ、高密度記録に好適で脚光を
浴びるに至っている。この神金属薄膜磁性層としてコ/
? )レトCO1或いはコノくルトCo−ニッケルNi
等の磁性金属を斜め蒸着して形成するとき、これに高い
抗磁力が得ら′i′しることが知られている。しかしな
がらこの場合、蒸着方向を被蒸着面に対する垂線に対し
て40°〜800に傾ける必要があることから蒸着効率
が低く生産性に問題がある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a metal thin film magnetic recording medium, and relates to background art and its problems. Since it is free of contaminants, it is possible to improve the packing density, making it suitable for high-density recording and has come into the spotlight. As this divine metal thin film magnetic layer,
? ) Reto CO1 or Konoku Ruto Co-Nickel Ni
It is known that a high coercive force can be obtained when a magnetic metal such as a metal is formed by oblique vapor deposition. However, in this case, it is necessary to tilt the deposition direction at an angle of 40° to 800 degrees with respect to the perpendicular to the surface to be deposited, resulting in low deposition efficiency and productivity problems.

しかしながら、このような斜め蒸着によらずに高い抗磁
力を有する磁性層を形成することは容易でなく、例えば
結晶磁気異方性が大きく高抗磁力が得られると期待され
るCo或いはCo−Niを単に蒸着してもその抗磁力は
10006(エルステッド)以下であシ、磁気記録媒体
としては不適当である。
However, it is not easy to form a magnetic layer with high coercive force without using such oblique deposition. Even if it is simply deposited, its coercive force is less than 10,006 Oersteds, making it unsuitable for use as a magnetic recording medium.

これに対して本出願人は、先に非磁性支持体上にビスマ
スBiのような低融点金属を蒸着することによってこれ
による不連続な非磁性金属層を形成し、これの上に金属
磁性層、例えばCoを蒸着することによって、この下地
層の非磁性金属層の影響を受けて微細粒子構造の磁性金
属層を形成して高抗磁力の磁性層を得ることができるよ
うにした磁気記録媒体を提案した。
In contrast, the present applicant first deposits a low melting point metal such as bismuth Bi on a nonmagnetic support to form a discontinuous nonmagnetic metal layer, and then forms a metal magnetic layer on top of this. , for example, by vapor-depositing Co, a magnetic metal layer with a fine grain structure is formed under the influence of the non-magnetic metal layer of the underlayer, and a magnetic layer with high coercive force can be obtained. proposed.

更に、本出願人は非磁性支持体の構成材料に依存するこ
となく、高抗磁力の金属磁性層を形成することができる
ものとして、非磁性支持体上にシリコンst′!!たけ
Slの化合物の非晶質連続膜を形成しこれの上に低融点
の非晶質金属の例えばBiを不連続の島状の層表して蒸
着し、これの上に例えばCoの蒸着膜による金PA磁性
層を形成するようにした磁気記録媒体を提案した。
Furthermore, the present applicant has developed silicon st'! on a non-magnetic support as a metal magnetic layer with high coercive force that can be formed without depending on the constituent material of the non-magnetic support. ! An amorphous continuous film of a compound of Bamboo Sl is formed, and a low melting point amorphous metal such as Bi is vapor deposited as a discontinuous island-like layer on top of this. A magnetic recording medium in which a gold PA magnetic layer is formed has been proposed.

このように表面にSlが被着さitだ或いはSiが被着
されない非磁性支持体上に不連続々島状の非磁性金属層
を形成し、これの上に磁性金属層が積層されてなる金属
薄膜型磁気記録媒体を得る方法としては、非磁性支持体
として長尺物を用意し、これを真空熱N層内でその供給
ロール側から巻取りロール側へと巻取りつつ移行させ、
この移行状態で島状に不連続にBiを蒸着1.て不連后
1;な非磁性金属層を形成してこれを一旦@堆りロール
に巻取り、その後、例えば巻取90−ル側を供給ロール
側と1〜て他方のロールへと移行させてBiの不連続な
非磁性金属層上にCo 、或いはCo−N1を連続磁性
金属層として蒸沼形成する方法が考えられる◇しかしな
がら、このようにBiを一旦蒸着させ、これを巻取る場
合、非磁性支持体が高温加熱状態にあり、低融点のBi
がまだ溶融状態でその巻取が行われるためにこれが非磁
性支持体上の他方の面に転写されるなどして、その後こ
れの上に形成したCo或いはCo−N1の蒸着層が均一
に表面性のよい層として形成されない。また、他の方法
としては真空蒸着槽内にS1層が表面に形成された、或
いは形成されていない非磁性体を固定配置し、これに上
述した低融点非磁性金属のBiを不連続の島状の層とし
て蒸着し、そ−の後、これの上にCo若しくはCo−N
1の金属磁性層を蒸着することが考えられる。
In this way, a discontinuous island-shaped non-magnetic metal layer is formed on the non-magnetic support whose surface is not coated with Sl or Si, and a magnetic metal layer is laminated on top of this. As a method for obtaining a metal thin film type magnetic recording medium, a long material is prepared as a nonmagnetic support, and this is transferred while being wound from the supply roll side to the take-up roll side in a vacuum thermal N layer.
In this transition state, Bi is deposited discontinuously in the form of islands.1. After that, a non-magnetic metal layer is formed, which is once wound onto a deposit roll, and then, for example, the winding 90-roll side is transferred to the supply roll side, and then the other roll is transferred. A possible method is to form a continuous magnetic metal layer of Co or Co-N1 on a discontinuous non-magnetic metal layer of Bi. However, when Bi is once deposited in this way and then rolled up, The non-magnetic support is heated to a high temperature, and the low melting point Bi
Since it is wound while still in a molten state, it is transferred to the other side of the non-magnetic support, and the Co or Co-N1 vapor deposited layer formed thereon is then uniformly formed on the surface. It is not formed as a layer with good properties. Another method is to fix a nonmagnetic material with or without an S1 layer formed on its surface in a vacuum evaporation tank, and place the above-mentioned low melting point nonmagnetic metal Bi on the nonmagnetic material in discontinuous islands. Co or Co-N is deposited on top of this.
It is conceivable to deposit one metal magnetic layer.

しかしながら、これらいずれの方法による場合において
も充分高い抗磁力が得られず、上述した金属薄膜型磁気
記録媒体を得る場合、その製造手順が大きな影響を及ぼ
すことを見出した。
However, it has been found that a sufficiently high coercive force cannot be obtained with any of these methods, and that the manufacturing procedure has a significant influence when obtaining the above-mentioned thin metal film type magnetic recording medium.

発明の概要 本発明においては、非磁性支持体上にこの非磁性支持体
を移動させながら不連続な島状の非磁性金属層とこれの
上に磁性金属1−とを形成する〇実施例 本発明において、例えば第1図に示すように真空蒸着#
(1)内に、例えば長尺物として用意された1非磁性支
持体(2)をその供給ロール(3)側から巻取りロール
(4)側へと矢印aに示す方向に一方向に移行させる。
Summary of the Invention In the present invention, a discontinuous island-shaped nonmagnetic metal layer and a magnetic metal 1- are formed on the non-magnetic support while moving the non-magnetic support. In the invention, for example, as shown in FIG.
(1), one non-magnetic support (2) prepared as a long object, for example, is transferred in one direction from the supply roll (3) side to the take-up roll (4) side in the direction shown by arrow a. let

この非磁性支持体(1)は、例えばポリエステル、ポリ
イミド、ポリエチレンテレフタレート等の高分子フィル
ムを使用し得る。この支持体(2)はその表面に冒頭に
述べたような3i非晶質層が予め被着されるか或いは被
着されないものが使用される。
As this non-magnetic support (1), for example, a polymer film such as polyester, polyimide, polyethylene terephthalate, etc. can be used. This support (2) is used either with or without a 3i amorphous layer previously deposited on its surface as mentioned at the beginning.

そしてこの非磁性支持体(2)の供給ロール(3)側か
ら巻取りロール(4)側への移行途上において、その一
方の面に対向して図においては下方に不連続な島状の非
磁性金属層を形成し得る低融点金属材料の例えばBlの
蒸着源(5)を配置すると共に、この非磁性支持体(2
)の移行方向に関する流れ1の後方、すなわち後段側に
金属薄膜磁性層を形成するだめの強磁性金属例えばCo
或いはCo−Ni等の磁性金属蒸着源(6)を配置する
。図において(7)は加熱用ラングを示す。また蒸着源
(5)及び(6)と非蒸着体としての非磁性支持体(2
)との間には遮蔽板(8)が配置される。
In the middle of the transition of the non-magnetic support (2) from the supply roll (3) side to the take-up roll (4) side, a discontinuous island-shaped non-magnetic material is formed downwardly in the figure, facing one side of the non-magnetic support (2). A vapor deposition source (5) of a low-melting metal material, such as Bl, which can form a magnetic metal layer is arranged, and the non-magnetic support (2
) A ferromagnetic metal, e.g.
Alternatively, a magnetic metal vapor deposition source (6) such as Co--Ni is arranged. In the figure, (7) indicates a heating rung. Also, the evaporation sources (5) and (6) and the non-magnetic support (2) as a non-evaporation body
) A shielding plate (8) is arranged between the two.

このような装置によって非磁性支持体(2)を移行させ
ながら例えばBiの蒸着を行って、第2図に示−すよう
に非磁性支持体(りの一方の面にこのBiよりなる島状
の不連続な非磁性金属層(9)を形成し、続いてこれの
上にCo或いはCo−Ni等の連続磁性金1ffi 1
4 (111を形成して巻取りロール(4)へと巻取ら
れるようになされる。
For example, by vapor-depositing Bi while moving the non-magnetic support (2) using such an apparatus, an island-like structure made of Bi is formed on one surface of the non-magnetic support (2) as shown in FIG. A discontinuous non-magnetic metal layer (9) is formed, and then a continuous magnetic gold layer such as Co or Co-Ni is formed on this layer.
4 (111) and is wound onto a winding roll (4).

ここに不連続の島状の非磁性金属層(9)の構成材料と
しては、すなわち蒸着源(5)としては上述したBlに
限らず、その他Sb + Tt + Se + Cd 
+ In +Sn + Te + Pb + Poまた
はそれらの合金を用い得る。これらの材料は蒸着条件を
選定することによシ非磁性支持体(2)上に不連続な島
状の層として形成することができるが、これらの金属元
素中でも特にBiを用いた場合は、これの上に磁性金属
層qQを蒸着したときにその磁性金属蒸着層の抗磁力H
eが顕著に大きくなることができることが確められた。
Here, the constituent material of the discontinuous island-shaped nonmagnetic metal layer (9), that is, the vapor deposition source (5), is not limited to the above-mentioned Bl, but also Sb + Tt + Se + Cd.
+ In + Sn + Te + Pb + Po or alloys thereof may be used. These materials can be formed as discontinuous island-like layers on the non-magnetic support (2) by selecting the deposition conditions, but when using Bi among these metal elements, When a magnetic metal layer qQ is deposited on top of this, the coercive force H of the magnetic metal deposited layer is
It has been established that e can become significantly large.

従ってこのような不連続島状の非磁性金H4層(9)と
してはBlを用いることが望ましい。また、この非磁性
金属Al(9)の厚さは、その平均膜厚が10〜100
01 (1tig/cm2〜100 ttg/cm” 
)好ましくは100〜1000 Xに選ばれる。
Therefore, it is desirable to use Bl as such a non-magnetic gold H4 layer (9) in the form of discontinuous islands. Moreover, the average thickness of this non-magnetic metal Al(9) is 10 to 100
01 (1tig/cm2~100ttg/cm”
) is preferably selected from 100 to 1000X.

また磁性層01け、co単体或いはCo合金の例えばN
lを4(Lfti1以下含有しだCo−Ni合金の蒸着
膜によって形成することが好ましい。そしてとの膜厚ハ
100〜1000 X、好寸シ<は250〜500 X
 K 選ばれる。すなわちこれはこの磁性層(10の厚
さがあまシ薄いと充分な磁束密度が得られなくなり、ま
た厚すぎると抗磁力Hc、更に角型比Rsが充分に得ら
れなくなることを認めたことになる。
In addition, the magnetic layer 01 is made of Co alone or a Co alloy such as N.
It is preferable to form a vapor-deposited film of a Co-Ni alloy containing 4 (Lfti or less).
K is selected. In other words, this is based on the recognition that if the thickness of this magnetic layer (10) is too thin, sufficient magnetic flux density cannot be obtained, and if it is too thick, sufficient coercive force Hc and squareness ratio Rs cannot be obtained. Become.

尚、上述した例では長尺物の非磁性支持体(2)を一方
向に移動させながら不連続な島状の非磁性金属層(9)
とこれの上に磁性金属層a1とを蒸着形成するようにし
た場合であるが、ある嚇合は蒸着源に対してシート状な
いしはディスク状の非磁性支持体(2)を相対的に回転
させながら同様の不連続な島状の非磁性金M11と磁性
金属層との蒸着形成を行うようにすることもできる。
In the above example, while moving the elongated nonmagnetic support (2) in one direction, the discontinuous island-shaped nonmagnetic metal layer (9) is
This is a case where the magnetic metal layer a1 is formed on the magnetic metal layer a1 by vapor deposition, but in some cases, the sheet-like or disk-like non-magnetic support (2) is rotated relative to the vapor deposition source. However, similar discontinuous island-shaped non-magnetic gold M11 and magnetic metal layer may be formed by vapor deposition.

しかしながら、いずれの場合においても非磁性支持体(
2)に対する各非磁性金M # (9)及び磁性金属層
αQの蒸着に当っての非磁性支持体(2)の移行速度は
線速度が0.1〜100 m7分となるように選ばれ、
この範囲で支持体(2)の移行による特性向上への影響
が顕著であることが確められた。
However, in both cases, the non-magnetic support (
The transfer speed of the non-magnetic support (2) during the vapor deposition of each non-magnetic gold M# (9) and the magnetic metal layer αQ for the 2) was selected such that the linear velocity was 0.1 to 100 m7min. ,
It was confirmed that within this range, the influence of transfer of support (2) on property improvement was significant.

実施例1゜ 第1図で説明した真空蒸着装置を用いて非磁性支持体(
2)の温度を150℃とし、巻取り速度が1.5m/分
で支持体(2)を移行させなからBlとCoとを11次
連続的に蒸着して不連続な島状の非磁性金属層(9)と
磁性金属層0〔)とを形成して金属薄膜型磁気記録媒体
を得た。この場合Coの膜厚は300X、Blの膜厚が
150Xにおいて抗磁力Heは8600e 、角形比R
sは0.75であった。
Example 1 A non-magnetic support (
The temperature in step 2) was set to 150°C, the winding speed was 1.5 m/min, and without moving the support (2), Bl and Co were continuously evaporated 11 times to form discontinuous island-shaped non-magnetic A metal thin film type magnetic recording medium was obtained by forming a metal layer (9) and a magnetic metal layer 0 [). In this case, the Co film thickness is 300X, the Bl film thickness is 150X, the coercive force He is 8600e, and the squareness ratio R
s was 0.75.

実施例2 実施例1と同様の方法において非磁性支持体(2)の温
度を170℃としてその巻取り速度1.5 m7分の条
件で同様の蒸着を行った。この場合COの膜厚が350
X、Blの膜厚が150Xにおい7Hcは8300e、
Riは0.80であった。
Example 2 In the same manner as in Example 1, vapor deposition was performed in the same manner as in Example 1, with the temperature of the nonmagnetic support (2) being 170° C. and the winding speed being 1.5 m7 minutes. In this case, the CO film thickness is 350
X, Bl film thickness is 150X, 7Hc is 8300e,
Ri was 0.80.

実施例3 シート状或いはディスク状の非磁性支持体をボールグー
に固定し、その中心が蒸M源真上の中心から10crn
離すようにして蒸着源に対して偏心させた状態で膜厚分
布が均一になるように蒸着源に′対してホルダー、した
がってシート状或いはディスク状の非磁性支持体を回転
させなからBiを200 X蒸着して不連続な島状の非
磁性金属層(9)を形成し、これの上にCoを300X
の厚さに蒸着した。このときの回転数は50 rpmと
した。この場合、そのHcは8600s 、 Rgは0
.88となった。尚、このような回転方式による」δ自
においてもその線速度は各部において0.1〜100m
/分の範囲となっている。
Example 3 A sheet-like or disk-like nonmagnetic support is fixed to a ball goo, and its center is 10 crn from the center directly above the vapor source.
The holder (therefore, the sheet-like or disk-like nonmagnetic support) is rotated with respect to the vapor deposition source so that the film thickness distribution becomes uniform while the Bi is placed eccentrically with respect to the vapor deposition source. A discontinuous island-like nonmagnetic metal layer (9) is formed by X evaporation, and Co is deposited on top of this by 300X
It was deposited to a thickness of . The rotation speed at this time was 50 rpm. In this case, its Hc is 8600s and Rg is 0
.. It became 88. In addition, even in the case of ``δ'' using such a rotation method, the linear velocity is 0.1 to 100 m at each part.
/minute range.

参考例1 基体温度150℃、すなわち非磁性支持体(2)の温度
150℃下において先ずBiを200Xの厚さに島状に
蒸清し、これを一旦巻取シ再びCoを300Xの厚さに
蒸着して得た。この場合の磁性金属層すなわちCoの表
面は肉眼によっても不均一な膜となった。
Reference Example 1 At a substrate temperature of 150°C, that is, a temperature of the non-magnetic support (2) of 150°C, Bi was first distilled into islands to a thickness of 200X, which was then wound up and Co was again distilled to a thickness of 300X. It was obtained by vapor deposition. In this case, the surface of the magnetic metal layer, ie, Co, was a non-uniform film even to the naked eye.

比較例1 非磁性支持体をボールグーに固定し、この固定したまま
の状態でBiを200X蒸着し、その後これの上にCo
を300Xの厚さに蒸着した。このようにして得た磁気
記録媒体はHcが850、R8が0.67となった。
Comparative Example 1 A non-magnetic support was fixed to a ball goo, Bi was evaporated at 200X while it remained fixed, and then Co was deposited on top of this.
was deposited to a thickness of 300X. The magnetic recording medium thus obtained had an Hc of 850 and an R8 of 0.67.

上述したように各実施例1〜3は参考例1及び比較例1
と比較して明らかなように、その角型比が格段的に向上
していることがわかる。
As mentioned above, each of Examples 1 to 3 is Reference Example 1 and Comparative Example 1.
As is clear from the comparison, the squareness ratio is significantly improved.

発明の効果 本発明製法によって得た磁気記録媒体によれば高い抗磁
力TIcを確実に得ることができた状態で、角型比RS
に優れた磁気記録媒体を得ることができ、また連続蒸着
によってその製造を行なうことができるので量産性にも
優れ工業的にその利益は犬である。
Effects of the Invention According to the magnetic recording medium obtained by the manufacturing method of the present invention, a high coercive force TIc can be reliably obtained, and the squareness ratio RS can be
It is possible to obtain a magnetic recording medium with excellent properties, and since it can be manufactured by continuous vapor deposition, it is excellent in mass production and has great industrial advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製法を実施する蒸着装置の一例を示す路
線的構成図、第2図は本発明によって得た金属薄膜型磁
気記録媒体の一例の路線的断面図である。
FIG. 1 is a schematic block diagram showing an example of a vapor deposition apparatus for implementing the manufacturing method of the present invention, and FIG. 2 is a schematic cross-sectional view of an example of a metal thin film type magnetic recording medium obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に、該非磁性支持体を移動させなから不
4枕な島状の非磁性金属層を形成し、該非磁性金属層上
に磁性金属層を形成することを特徴とする金属薄膜型磁
気記録媒体の製法。
A metal thin film characterized in that a nonmagnetic metal layer in the form of an island is formed on a nonmagnetic support without moving the nonmagnetic support, and a magnetic metal layer is formed on the nonmagnetic metal layer. Manufacturing method for type magnetic recording media.
JP14836982A 1982-08-26 1982-08-26 Production of magnetic recording medium of thin metallic film type Pending JPS5938929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14836982A JPS5938929A (en) 1982-08-26 1982-08-26 Production of magnetic recording medium of thin metallic film type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14836982A JPS5938929A (en) 1982-08-26 1982-08-26 Production of magnetic recording medium of thin metallic film type

Publications (1)

Publication Number Publication Date
JPS5938929A true JPS5938929A (en) 1984-03-03

Family

ID=15451216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14836982A Pending JPS5938929A (en) 1982-08-26 1982-08-26 Production of magnetic recording medium of thin metallic film type

Country Status (1)

Country Link
JP (1) JPS5938929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008705B2 (en) 2000-10-25 2006-03-07 Fujitsu Limited Layered polycrystalline structure and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008705B2 (en) 2000-10-25 2006-03-07 Fujitsu Limited Layered polycrystalline structure and method of making the same

Similar Documents

Publication Publication Date Title
EP0053811B1 (en) Magnetic recording media
JPS6329330B2 (en)
JPS5938929A (en) Production of magnetic recording medium of thin metallic film type
JPS6379968A (en) Production of magnetic recording medium
JPH026130B2 (en)
JPS60231911A (en) Magnetic recording medium
JPH0656650B2 (en) Magnetic recording medium
JPS6330691B2 (en)
JP2605803B2 (en) Magnetic recording media
JPH0311531B2 (en)
JPS62102414A (en) Magnetic recording medium
JPH0550053B2 (en)
JPS60205831A (en) Production of magnetic recording medium
JPS5816512A (en) Magnetic recording medium
JPS59112438A (en) Manufacture of magnetic recording medium
JPH0526249B2 (en)
JPS60201521A (en) Magnetic recording medium
JPS60202524A (en) Magnetic recording medium
JPS59148126A (en) Magnetic recording medium for vertical recording
JPH0630134B2 (en) Magnetic recording medium
JPS60140542A (en) Production of magnetic recording medium
JPS60211614A (en) Magnetic recording medium
JPS62102416A (en) Magnetic recording medium
JPS60237625A (en) Magnetic recording medium
JPH0341897B2 (en)