JPS5938819B2 - Magnetic powder separation device - Google Patents

Magnetic powder separation device

Info

Publication number
JPS5938819B2
JPS5938819B2 JP54043272A JP4327279A JPS5938819B2 JP S5938819 B2 JPS5938819 B2 JP S5938819B2 JP 54043272 A JP54043272 A JP 54043272A JP 4327279 A JP4327279 A JP 4327279A JP S5938819 B2 JPS5938819 B2 JP S5938819B2
Authority
JP
Japan
Prior art keywords
magnetic field
pipe
separation
magnet
branch point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54043272A
Other languages
Japanese (ja)
Other versions
JPS55134651A (en
Inventor
保昌 河野
弘人 田中
秀之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Kinzoku Kogyo KK
Original Assignee
Tohoku Kinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Kinzoku Kogyo KK filed Critical Tohoku Kinzoku Kogyo KK
Priority to JP54043272A priority Critical patent/JPS5938819B2/en
Priority to US06/137,372 priority patent/US4306970A/en
Priority to SE8002625A priority patent/SE8002625L/en
Priority to CA000349390A priority patent/CA1144485A/en
Priority to DE3013635A priority patent/DE3013635C2/en
Priority to FR8008080A priority patent/FR2453675B1/en
Publication of JPS55134651A publication Critical patent/JPS55134651A/en
Publication of JPS5938819B2 publication Critical patent/JPS5938819B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は冷却水等の流体中に磁性粉粒あるいは磁性粉粒
を含む粉粒が含有している場合の該粉粒を流体よシ分離
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for separating magnetic particles or particles containing magnetic particles from a fluid such as cooling water.

以下の説明は例として原発1次、2次冷却水中に含有さ
れる放射性クラウド(CRUD=CANADIAN R
EACTORUNKNOWNDEPO8ITの略)の粉
粒な分離する場合について述べたものである。
The following explanation takes as an example the radioactive cloud contained in the primary and secondary cooling water of a nuclear power plant (CRUD=CANADIAN R
This paper describes the case where the powder (abbreviation of EACTORUNKNOWNDEPO8IT) is separated into particles.

原子炉プラントの冷却水中には容器、燃料棒、パイプ等
鉄材から発生したマグネタイト (Magnetite ;Fe3O4)、マグネタイト
(Maghemite ;γ−F e 203 ) 1
″′”タイト(Hematite ; a −Fe20
3 )等で構成されたクラウド粉粒(鉄錆)が含有し、
冷却水の循環と同じ(流動している。
The cooling water of nuclear reactor plants contains magnetite (Fe3O4) and magnetite (γ-F e 203 ) generated from iron materials such as containers, fuel rods, and pipes.
"'" Tight (Hemate; a-Fe20
Contains cloud powder particles (iron rust) composed of 3), etc.
Same as cooling water circulation (flowing).

これらクラウド粉粒は長期間プラントを稼動すると膨大
な量になり、しかもこれらは放射能を帯びており、空間
放射線量が極めて高い。
When a plant is operated for a long period of time, these cloud particles become enormous in quantity, and they are radioactive, resulting in an extremely high amount of radiation in the air.

従って定期あるいは改修工事期間中におけるこれらクラ
ウド粉粒の除去には多人数の労力によシ、即ち人海戦術
で行なっておシ、稼動し日の浅い原子炉プラントでは無
視していた。
Therefore, the removal of these cloud particles during periodic or repair work requires the labor of many people, that is, by human-force tactics, and is ignored in nuclear reactor plants that have only recently been in operation.

しかし前記した如(クラウド粉粒は極めて高い放射能を
帯びているため作業者の被曝等安全性に大きな問題があ
った。
However, as mentioned above, cloud powder particles have extremely high radioactivity, which poses major safety problems such as exposure of workers to radiation.

本発明は上記問題を解消し効果的にクラウド粉粒を取除
くものであって、流体を導く配管に下流方向に延びる分
離管を連通させ分岐点の上流側に位置する前記配管の周
囲に磁性粉粒着磁用磁石を設は又該磁石下流端よ多分岐
点を経て分離管始端部に到る配管及び分離管の周囲に三
相交流電源に接続した二層全節奏コイルによる交流進行
磁界を発生する進行磁界発生装置したことを特徴とする
ものである。
The present invention solves the above-mentioned problem and effectively removes cloud particles, by connecting a separation pipe extending downstream to a pipe that guides a fluid, and magnetically attaching a magnetic material around the pipe located upstream of a branch point. A magnet for magnetizing powder particles is installed, and an AC traveling magnetic field is generated by a two-layer full-section coil connected to a three-phase AC power source around the piping and separation tube from the downstream end of the magnet to the starting end of the separation tube via multiple branch points. The present invention is characterized by a traveling magnetic field generating device that generates .

以下図面に基き本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

原子炉の一次あるいは二次冷却水系本流1にバイパス管
2、バイパス管2には分離管3をそれぞれ設け、本流1
とバイパス管2の分岐点より下流にバルブ4,5を本流
1、バイパス管2に設ける。
A bypass pipe 2 is provided in the main stream 1 of the reactor primary or secondary cooling water system, and a separation pipe 3 is provided in the bypass pipe 2.
Valves 4 and 5 are provided in the main flow 1 and the bypass pipe 2 downstream from the branch point of the bypass pipe 2.

バイパス管2及び分離管3はそれぞれ非磁性体で形成し
、バイパス管2と分離管30分岐点6の上流でバイパス
管2の周囲に直流電磁石7(又は永久磁石)を配設する
The bypass pipe 2 and the separation pipe 3 are each made of a non-magnetic material, and a DC electromagnet 7 (or a permanent magnet) is arranged around the bypass pipe 2 upstream of the branch point 6 of the bypass pipe 2 and the separation pipe 30.

前記電磁石7の下流から前記分岐点3を経て分離管3の
始端部に到るバイパス管2、分離管3の周囲に交流進行
磁界発生装置8を配設し、該磁界発生装置8にバイパス
管2から分離管3の下流方向へ進行する交流磁界9を生
せしめる様、位相合せ、電通を行う。
An AC traveling magnetic field generator 8 is disposed around the bypass pipe 2 and the separation pipe 3 that extend from the downstream side of the electromagnet 7 through the branch point 3 to the starting end of the separation pipe 3. Phase matching and energization are performed to generate an alternating current magnetic field 9 that advances from 2 to the downstream direction of the separation tube 3.

前記磁界発生装置8の下流に位置させ分離管3に直流電
磁石10(又は永久磁石)を配設し、分離管3の終端に
放射線を遮蔽するクラウド格納容器11を設置する。
A DC electromagnet 10 (or permanent magnet) is disposed in the separation tube 3 downstream of the magnetic field generator 8, and a cloud containment vessel 11 for shielding radiation is installed at the end of the separation tube 3.

次に上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

バルブ4を閉め、バルブ5を開け、炉冷動水をバイパス
管2を経て循環させる。
Valve 4 is closed and valve 5 is opened to circulate furnace cooling water through bypass pipe 2.

直流電磁石7、磁界発生装置8及び直流電磁石10を通
電励磁する。
The DC electromagnet 7, the magnetic field generator 8, and the DC electromagnet 10 are energized and excited.

冷却水中を浮遊するクラウド粉粒12を直流電磁石7で
着磁し、磁界発生装置8で生ぜしめられた磁界の流れ9
でもって前記クラウド微粒子12を分離管3へ分離する
Cloud powder particles 12 floating in cooling water are magnetized by a DC electromagnet 7, and a magnetic field flow 9 is generated by a magnetic field generator 8.
Accordingly, the cloud particles 12 are separated into the separation tube 3.

分離管3の終端は格納容器11で閉塞された状態である
ので冷却水はバイパス管2を流れ本流1に合流する。
Since the end of the separation pipe 3 is closed by the containment vessel 11, the cooling water flows through the bypass pipe 2 and joins the main stream 1.

分離したクラウド粉粒12は自重によシ落下沈降してゆ
き、直流電磁石10で磁気的に確実に採取され、格納容
器11へ貯蔵される。
The separated cloud powder particles 12 fall and settle due to their own weight, are magnetically reliably collected by a DC electromagnet 10, and stored in a containment vessel 11.

この際直流電磁石10を上下に移動させてやれば沈降速
度を早めることができ採取効率を増加させることができ
る。
At this time, by moving the DC electromagnet 10 up and down, the sedimentation speed can be accelerated and the collection efficiency can be increased.

第3図は他の実施例を示しバイパス管2と分離管3とを
直接的に接続し配列したものであシ、又特にバイパス管
を設けなくとも本流1にバルブを備えた分離管3を連通
させ前述と同様直流磁石7゜10、磁界発生装置8を設
けてもよい。
FIG. 3 shows another embodiment in which a bypass pipe 2 and a separation pipe 3 are directly connected and arranged, and a separation pipe 3 equipped with a valve in the main stream 1 can be used even without providing a bypass pipe. A direct current magnet 7.10 and a magnetic field generator 8 may be provided in communication with each other in the same manner as described above.

上記実施例に於て使用する磁界発生装置8を第4図に示
すものがある。
A magnetic field generating device 8 used in the above embodiment is shown in FIG.

カットエア等によるU型磁心14にコイル15を二層全
節巻に施し端子11U111v、11wに図に示す様に
三相交流源を接続し、交流進行磁界が矢印13の方向へ
進行する様にしたものである。
A coil 15 is wound in two layers on a U-shaped magnetic core 14 made of cut air, etc., and a three-phase AC source is connected to the terminals 11U, 111v and 11w as shown in the figure, so that the AC traveling magnetic field advances in the direction of the arrow 13. This is what I did.

ここで、第5図を参照して、前記コイル15に通電して
交流進行磁界を発生させた場合の作用について説明する
Here, with reference to FIG. 5, the effect when the coil 15 is energized to generate an alternating current traveling magnetic field will be described.

先ず端子11Uに通電すると、極a 、b 、e 。First, when the terminal 11U is energized, the poles a, b, and e.

dが磁化され磁界が発生し、次に端子11vに通電する
と極す、c、d、eが磁化され磁界は一極分移動する。
d is magnetized and a magnetic field is generated, and then when the terminal 11v is energized, the poles c, d, and e are magnetized and the magnetic field moves by one pole.

而して、通電位置が順次循環移動して磁界が進行する。As a result, the energized position sequentially moves in circulation and the magnetic field advances.

ここで、通電位置がかわシ、磁界が移動した場合、移動
する前と移動した後の磁界は大部分オーバラップしてお
り、磁界のとぎれがなく磁気密度、磁場勾配を均一とす
ることができクラウド粉粒12を効果的に磁界の上に乗
せて移送させることができる。
Here, when the energization position changes and the magnetic field moves, the magnetic fields before and after the movement mostly overlap, making it possible to maintain a uniform magnetic density and magnetic field gradient without interruption of the magnetic field. The cloud powder particles 12 can be effectively placed on the magnetic field and transported.

更に斯かる二層全節奏コイルによる磁界発生装置8の移
送効果は、以下に述べる単極巻きコイルによる磁界発生
装置(第6図参照)とを対比させると明確になるであろ
う。
Furthermore, the transfer effect of the magnetic field generating device 8 using such a two-layer full-pitch coil will become clearer when compared with the magnetic field generating device using a unipolar coil (see FIG. 6) described below.

単極巻コイルの場合は、端子U、、V、、Wを有する各
コイルでそれぞれ極a 、b 、cに巻付けており、通
電位置が変わると磁化された極は、例えば極aからbへ
、極すからCへ移動して磁界も移動する。
In the case of a single-pole wound coil, each coil having terminals U, V, W is wound around poles a, b, and c, respectively, and when the energization position changes, the magnetized pole changes from pole a to pole b, for example. , the magnetic field also moves from the pole to C.

この場合、磁界はオーバラップすることなくステップす
る如く移動するので、磁界にとぎれが生じる。
In this case, the magnetic fields move in a step-like manner without overlapping, so that interruptions occur in the magnetic fields.

従って、クラウド粉粒12が移動する速度と磁界の移動
とがマツチングしていないと、クラウド粉粒12は同じ
位置で躍動するだけで移動しない状況も発生する。
Therefore, if the speed at which the cloud powder particles 12 move and the movement of the magnetic field do not match, a situation may occur in which the cloud powder particles 12 only move in the same position and do not move.

この為、有効にクラウドを移動させるにはクラウドの移
動速度とマツチングさせた周波数を用いてコイルに通電
する必要があり、商用の50Hz、60Hzの電源が使
用できない。
Therefore, in order to effectively move the cloud, it is necessary to energize the coil using a frequency that matches the moving speed of the cloud, and commercial power sources of 50 Hz and 60 Hz cannot be used.

又、クラウド粉粒の流れ状態の変化がある場合には常に
最適な状態で磁界を発生移動させ得るとは限らない。
Furthermore, when there is a change in the flow state of the cloud particles, it is not always possible to generate and move the magnetic field in an optimal state.

以上は原子炉プラントの冷却水中に浮遊するクラウド微
粒子の分離に関し本発明を実施した場合を示したが、潤
滑油系に含まれる鉄粉等の分離に関し実施し得ることは
いうまでもない。
Although the present invention has been described above for the separation of cloud particles suspended in the cooling water of a nuclear reactor plant, it goes without saying that the present invention can also be applied to the separation of iron powder, etc. contained in a lubricating oil system.

本発明は上述した如き構成であるので、 (1) フィルター等に於ける分離採取と異なり流路
抵抗を増加させることなく効果的且つ連続自動的な磁性
粉粒の分離採取が可能である、 (1i) 目詰まりすることがないのでフィルターの
交換等の保守作業を軽減することができる、GiD
極めて微細な磁性粉粒も分離採取することができる、 +IV) 磁性粉粒のみを流体の流れと分離して採取
を行ない得る為採取した磁性粉粒を搬出する際本体の稼
動を停止させる必要がない、 更に本発明を原子炉プラントに実施した場合、M 放射
能物質を集中化でき、安全性が向上する、6/i)
放射能物質を別の格納容器に採取できる為後処理が簡単
にできる、 等優れた効果を発揮し得る。
Since the present invention has the above-described configuration, (1) unlike separation and sampling in filters, etc., it is possible to effectively and continuously automatically separate and collect magnetic powder particles without increasing flow path resistance; 1i) GiD can reduce maintenance work such as filter replacement because it does not get clogged.
Extremely fine magnetic powder particles can be separated and collected. +IV) Since only the magnetic powder particles can be separated from the fluid flow and collected, it is not necessary to stop the operation of the main unit when carrying out the collected magnetic powder particles. No. Furthermore, if the present invention is implemented in a nuclear reactor plant, M radioactive materials can be concentrated and safety will be improved. 6/i)
Radioactive materials can be collected in a separate containment container, making post-processing easier, and other excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉プラントにおける本発明の実施例の配置
図、第2図は該実施例の断面図、第3図は他の実施例の
断面図、第4図は磁界発生装置の説明図、第5図はコイ
ルを二層全節巻とした磁界発生装置の説明図、第6図は
コイルを単極巻とした磁界発生装置の説明図である。 2はバイパス管、3は分離管、7,10は直流電磁石、
8は磁界発生装置を示す。
Fig. 1 is a layout diagram of an embodiment of the present invention in a nuclear reactor plant, Fig. 2 is a sectional view of the embodiment, Fig. 3 is a sectional view of another embodiment, and Fig. 4 is an explanatory diagram of a magnetic field generator. , FIG. 5 is an explanatory diagram of a magnetic field generating device in which a coil is wound in two layers at full pitch, and FIG. 6 is an explanatory diagram of a magnetic field generating device in which a coil is wound in a single pole. 2 is a bypass pipe, 3 is a separation pipe, 7 and 10 are DC electromagnets,
8 indicates a magnetic field generator.

Claims (1)

【特許請求の範囲】 1 流体を導く配管に下流方向に延びる分離管を連通さ
せ分岐点の上流側に位置する前記配管の周囲に磁性粉粒
着磁用磁石を設は又該磁石下流端より分岐点を経て分離
管始端部に到る配管及び分離管の周囲に三相交流電源に
接続した二相全節巻コイルによる交流進行磁界を発生す
る進行磁界発生装置を配設したことを特徴とする磁性粉
粒の分離装置。 2 流体を導く配管に下流方向に延びる分離管を連通さ
せ分岐点の上流側に位置する前記配管の周囲に磁性粉粒
着磁用磁石を設は又該磁石下流端より分岐点を経て分離
管始端部に到る配管及び分離管の周囲に三相交流電源に
接続した二層全節巻コイルによる交流進行磁界を発生す
る進行磁界発生装置を配設し、該磁界発生装置の下流側
に位置する前記分離管に磁性粉粒採取用磁石を設けたこ
とを特徴とする磁性粉粒の分離装置。
[Claims] 1. A separation pipe extending downstream is connected to a pipe leading to a fluid, and a magnet for magnetizing powder particles is provided around the pipe located upstream of a branch point, and a magnet for magnetizing powder particles is provided around the pipe located on the upstream side of a branch point. A traveling magnetic field generating device that generates an AC traveling magnetic field by a two-phase full-pitch coil connected to a three-phase AC power supply is installed around the piping and the separating pipe that reach the starting end of the separating pipe via a branch point. Magnetic powder separation device. 2. A separation pipe extending in the downstream direction is connected to the pipe leading to the fluid, and a magnet for magnetizing powder is installed around the pipe located upstream of the branch point, and the separation pipe is connected from the downstream end of the magnet through the branch point. A traveling magnetic field generator that generates an AC traveling magnetic field by a two-layer full-pitch coil connected to a three-phase AC power supply is installed around the piping and separation pipe leading to the starting end, and is located downstream of the magnetic field generator. A magnetic powder separation device characterized in that the separation tube is provided with a magnet for collecting magnetic powder.
JP54043272A 1979-04-10 1979-04-10 Magnetic powder separation device Expired JPS5938819B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54043272A JPS5938819B2 (en) 1979-04-10 1979-04-10 Magnetic powder separation device
US06/137,372 US4306970A (en) 1979-04-10 1980-04-04 Magnetic particle separating device
SE8002625A SE8002625L (en) 1979-04-10 1980-04-08 MAGNETIC PARTICLE SEPARATION DEVICE
CA000349390A CA1144485A (en) 1979-04-10 1980-04-09 Magnetic particle separating device
DE3013635A DE3013635C2 (en) 1979-04-10 1980-04-09 Magnetic separator
FR8008080A FR2453675B1 (en) 1979-04-10 1980-04-10 DEVICE FOR SEPARATING MAGNETIC PARTICLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54043272A JPS5938819B2 (en) 1979-04-10 1979-04-10 Magnetic powder separation device

Publications (2)

Publication Number Publication Date
JPS55134651A JPS55134651A (en) 1980-10-20
JPS5938819B2 true JPS5938819B2 (en) 1984-09-19

Family

ID=12659177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54043272A Expired JPS5938819B2 (en) 1979-04-10 1979-04-10 Magnetic powder separation device

Country Status (1)

Country Link
JP (1) JPS5938819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166018A (en) * 1986-01-13 1987-07-22 Kobe Steel Ltd Cooling device for hot rolled wire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586743U (en) * 1981-07-08 1983-01-17 日本原子力研究所 Magnetic powder separation equipment
JP2013146731A (en) * 2013-03-06 2013-08-01 Toshiba Corp Wastewater treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166018A (en) * 1986-01-13 1987-07-22 Kobe Steel Ltd Cooling device for hot rolled wire

Also Published As

Publication number Publication date
JPS55134651A (en) 1980-10-20

Similar Documents

Publication Publication Date Title
US3539509A (en) Method for electromagnetic removal of iron-oxides from liquids
US3841486A (en) Device for purifying the feed water of a steam power installation
CA1144485A (en) Magnetic particle separating device
US4772383A (en) High-gradient magnetic separator
US4217213A (en) Device for the separation of minute magnetizable particles, method and apparatus
GB1578396A (en) Magnetic separator
US4395746A (en) Method and device for magnetically transporting
EP0856359B1 (en) Apparatus for magnetic purification
FI71674B (en) MAGNETISERBAR AVSKILJNINGSANORDNING FOER RENING AV VAETSKOR
JPS5938819B2 (en) Magnetic powder separation device
US5238577A (en) Method and device for magnetically removing charged particles from a body of liquid
Terentiev et al. Mathematical model of the reverse water post-purification at mining enterprises when using electromagnetic focusing of contaminants
JPS5910263B2 (en) Magnetic powder collection device
JPH0438320Y2 (en)
CN2354939Y (en) Multi-pole electromagnetically treating apparatus
JP4009699B2 (en) Purification device using magnetic material
GB2109709A (en) Apparatus for magnetically removing iron oxides from water in feed water system of thermoelectric power plant
JPH02218453A (en) Magnetic separator
JPS6327061B2 (en)
GB1590788A (en) Magnetic separators
JPH09327635A (en) Magnetic separating apparatus
JPS56115610A (en) Electromagnetic filter
JPS5927224B2 (en) Transfer device for magnetic powder and granules
SU1071317A1 (en) Electromagnetic separator
RU2047383C1 (en) Rotary electromagnet separator for cleaning technological liquids of low magnetic finely divided particles