JPS5938283B2 - Method for manufacturing PC steel bars with excellent stress corrosion resistance properties - Google Patents
Method for manufacturing PC steel bars with excellent stress corrosion resistance propertiesInfo
- Publication number
- JPS5938283B2 JPS5938283B2 JP3426581A JP3426581A JPS5938283B2 JP S5938283 B2 JPS5938283 B2 JP S5938283B2 JP 3426581 A JP3426581 A JP 3426581A JP 3426581 A JP3426581 A JP 3426581A JP S5938283 B2 JPS5938283 B2 JP S5938283B2
- Authority
- JP
- Japan
- Prior art keywords
- stress corrosion
- corrosion resistance
- manufacturing
- steel bars
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/08—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Reinforcement Elements For Buildings (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の詳細な説明】
この発明は耐応力腐食特性のすぐれたPC鋼棒の製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a PC steel bar with excellent stress corrosion resistance.
従来、パーライト系の細、中、太径のPC鋼棒は広く用
いられているが、これの応力腐食特性をいかに改善する
かという課題が残されている。Conventionally, pearlite-based PC steel bars of thin, medium, and large diameters have been widely used, but the problem remains as to how to improve their stress corrosion characteristics.
例えば、0605〜0、4%C程度のボルトや石油パイ
プライン用の0.1%C213%Mn材は水素脆性によ
る破壊(ボルトのばあいは遅れ破壊といわれる)が起る
ので、Cuを添加してこれを防ぐこ吉が行なわれている
。ラインパイプではCuの添加のみでは効果はなく、破
壊はMuSなどが起点となるので極低硫Cu鋼が考えら
れる。ボルト材では095〜5%のCuの添加で、また
パイプ材では003%のCuの添加で効果があるようで
ある。但し、ボルト材で0.5%以上のCuを添加した
ものでは熱間加工性など他の特性の面で問題がある。ボ
ルト材でのCuの効果のメカニズムは不明であるが、ラ
インパイプ材ではCu添加鋼は表面に緻密な生成物がで
きるためと考えられており、これによりH2が浸入しに
くくなると考えられる。またこれらのCuの添加によっ
ても高炭素鋼のばあいには応力腐食特性は改善すること
はできない。この発明は、このような点に鑑み、簡単な
方法で耐応力腐食特性を向上させることができるように
したものである。すなわち、この発明はC:0.5〜1
.0%、Si■ 0.15〜0.5%、Mn■ 0.3
〜089%、Cu■ 0.2〜1.0%、残部鉄および
不純物よりなる鋼棒に0.3〜3%のストレッチシダ処
理を施すようにしたものである。Cの含有量は0.5%
以下では強度が不足し、190%を越えるき靭性が劣化
するので0.5〜150%が適蟲である。For example, 0605~0.4%C bolts and 0.1%C213%Mn materials for oil pipelines will fracture due to hydrogen embrittlement (in the case of bolts, it is called delayed fracture), so Cu is added. Kokichi is being carried out to prevent this. For line pipes, the addition of Cu alone has no effect, and fractures start from MuS, so ultra-low sulfur Cu steel is considered. It seems that adding 0.95 to 5% Cu for bolt materials and adding 0.03% Cu for pipe materials is effective. However, bolt materials containing 0.5% or more of Cu have problems in terms of other properties such as hot workability. The mechanism of the effect of Cu on bolt materials is unknown, but it is thought that Cu-added steel forms dense products on the surface of line pipe materials, which makes it difficult for H2 to penetrate. Furthermore, even with the addition of Cu, the stress corrosion properties of high carbon steel cannot be improved. In view of these points, the present invention is designed to improve stress corrosion resistance using a simple method. That is, this invention has C: 0.5 to 1
.. 0%, Si■ 0.15-0.5%, Mn■ 0.3
A steel bar consisting of ~0.89% Cu, 0.2~1.0% Cu, and the balance iron and impurities is subjected to a stretch fern treatment of 0.3~3%. C content is 0.5%
If it is less, the strength will be insufficient, and if it exceeds 190%, the toughness will deteriorate, so 0.5 to 150% is suitable.
SiおよびMnの上記範囲はJISに規定されている通
常の範囲であって溶製上の要求によるものである。Cu
の添加による効果は第1図に示す腐食試験から示唆され
る。The above ranges for Si and Mn are normal ranges specified by JIS and are based on melting requirements. Cu
The effect of the addition of is suggested by the corrosion test shown in Figure 1.
すなわち、Cuを添加したものと添加しないものとの比
較を、20%NH4SCN水溶液中に浸漬して行なった
のが同図であり、0975%C鋼のCuを含有しないも
のは曲線1|2であり、0635%のCuを添加したも
のが曲線3|4である。これよりCuの添加によって耐
腐食性が向上することがわかる。またCuを添加しない
ものではストレッチすなわち引張り歪を付与すると腐食
は促進されるが、Cuを添加したものではストレッチの
付与によって耐腐食性が向上する。すなわち0075%
C、O、35%Cuのものに1%のストレッチを加えた
もの(曲線4)では浸漬初期には腐食は進むがその後は
ほとんど腐食は進まなくなる。第2図は第1図曲線4で
示した供試品の400倍断面組織を示し、金属生地Bの
表面に60μ厚さの腐食生成物Aが生じている。In other words, the figure shows a comparison between a steel with and without Cu added by immersing it in a 20% NH4SCN aqueous solution. Curve 3|4 shows that 0635% of Cu is added. This shows that the addition of Cu improves corrosion resistance. Further, in the case where Cu is not added, corrosion is accelerated by applying stretch, that is, tensile strain, but in the case where Cu is added, corrosion resistance is improved by applying stretch. i.e. 0075%
In the case of C, O, and 35% Cu with 1% stretch added (curve 4), corrosion progresses in the initial stage of immersion, but corrosion hardly progresses thereafter. FIG. 2 shows a 400 times cross-sectional structure of the sample shown by curve 4 in FIG.
これはストレッチングによる歪によって腐食が促進され
、この緻密な腐食生成物が表面を覆い、その後の腐食を
防止するためと考えられる。またCuの添加量およびス
トレッチングの量の影響を調べるために行なった実験で
は、第3図に示すようになった。This is thought to be because the strain caused by stretching accelerates corrosion, and this dense corrosion product covers the surface and prevents subsequent corrosion. Further, in an experiment conducted to investigate the effects of the amount of Cu added and the amount of stretching, the results were as shown in FIG.
すなわち、曲線5,6,7,8,9はそれぞれストレツ
チングを3%,1%,0.3%,0.2%,O%付与し
た後、400℃でブルーインクした鋼棒を60゜C,2
0%NH4SCN水溶液中に浸漬し、引張強さの70%
の応力を付与したばあいのCu含有量と破断時間との関
係図である。これよりCuの含有量が0.2%以上にな
ると、耐応力腐食性が向上することがわかる。ただし、
Cuの含有量をそれ以上に増加させても効果は変らず、
また含有量が多すぎると、熱間加工く慴リれが著しくな
るので1%以内が好ましい。またストレツチングの量を
増加させるほど耐応力腐食特性は向上するが、0.3%
以上であれば充分であり、かつ3%を越えると効果は飽
和するので0.3〜3%の範囲が適当である。上記曲線
5,6,7,8,9についてブルーインクを行なわなか
ったばあいはそれぞ゛れ曲線50,60,70,80,
90のようになり、耐応力腐食特性を向上させるために
はブルーインクは必須のものでないことがわかる。In other words, curves 5, 6, 7, 8, and 9 show that the steel rods were blue-inked at 400°C after being stretched by 3%, 1%, 0.3%, 0.2%, and 0%, respectively. ,2
Immersed in 0% NH4SCN aqueous solution, 70% of tensile strength
FIG. 3 is a diagram showing the relationship between Cu content and rupture time when stress is applied. This shows that stress corrosion resistance improves when the Cu content is 0.2% or more. however,
Even if the Cu content is increased beyond that, the effect remains the same.
Moreover, if the content is too large, the cracking during hot processing becomes significant, so it is preferably within 1%. Also, the stress corrosion resistance improves as the amount of stretching increases, but 0.3%
If it is more than 3%, it is sufficient, and if it exceeds 3%, the effect will be saturated, so a range of 0.3 to 3% is appropriate. If blue ink was not applied to the above curves 5, 6, 7, 8 and 9, the curves would be 50, 60, 70 and 80, respectively.
90, indicating that blue ink is not essential for improving stress corrosion resistance.
また、第1表に示すように、Cu:0.35%含むこの
発明の一実施例の鋼棒Gさ通常の鋼棒Dきを、60゜C
の20%NH4SCN水溶液中で引張強さの70%の応
力をかけて破断までの時間を調べたところ第2表に示す
ようになった。In addition, as shown in Table 1, a steel bar G of an embodiment of the present invention containing 0.35% Cu and a normal steel bar D were heated at 60°C.
When a stress of 70% of the tensile strength was applied in a 20% NH4SCN aqueous solution, the time until breakage was investigated, and the results are shown in Table 2.
なお、G,D材とも第1表の成分の材料を直径17wI
1.の丸棒に圧延して放冷した後10%のストレッチン
グ処理を行ない、350℃でブルーインク処理をしたも
のである。第2表から明らかなように、この発明では応
力腐食による破断時間が従来の10倍程度延びており、
耐応力腐食特性が大幅に向上しているこきがわかる。In addition, both G and D materials have a diameter of 17 wI.
1. After being rolled into a round bar and left to cool, it was subjected to a 10% stretching treatment and then treated with blue ink at 350°C. As is clear from Table 2, the rupture time due to stress corrosion in this invention is approximately 10 times longer than in the conventional method.
It can be seen that Koki has significantly improved stress corrosion resistance.
また、プレストレストコンクリート用鋼棒として熱処理
鋼やパーライト鋼が用いられているが、これらを上記第
1,2表のG材と比較したばあい、引張強さ、靭性、レ
ラクセーション特性はほぼ同じであり、耐応力腐食特性
は上記G材が著しくすぐれていることが確認された。In addition, heat-treated steel and pearlite steel are used as steel rods for prestressed concrete, but when these are compared with Material G in Tables 1 and 2 above, their tensile strength, toughness, and relaxation properties are almost the same. It was confirmed that the above-mentioned material G has significantly superior stress corrosion resistance properties.
以上説明したように、この発明は適当量のCuを含有さ
せた鋼にストレツチングを付与するようにしたものであ
り、一般の機械的性質は保持したまま耐応力腐食特性を
大幅に向上させたものである。As explained above, this invention applies stretching to steel containing an appropriate amount of Cu, and greatly improves stress corrosion resistance while maintaining general mechanical properties. It is.
第1図はCu含有およびストレッチングの腐食性に及ぼ
す影響を示す特性図、第2図はこの発明によってえられ
た鋼の断面組織写真、第3図はCu含有量およびストレ
ツチングの量と応力腐食割れとの関係図である。
4・・・・・・本発明品の腐食特性、5,6,7・・・
・・・本発明品の耐応力腐食割れ特性。Figure 1 is a characteristic diagram showing the effects of Cu content and stretching on corrosivity, Figure 2 is a photograph of the cross-sectional structure of the steel obtained by this invention, and Figure 3 is the relationship between Cu content and amount of stretching and stress corrosion. It is a relationship diagram with cracking. 4...Corrosion characteristics of the product of the present invention, 5,6,7...
...Stress corrosion cracking resistance of the product of the present invention.
Claims (1)
、Mn:0.3〜0.9%、Cu:0.2〜1.0%、
残部鉄および不純物よりなる鋼棒に0.3〜3%のスト
レッチング処理を施すことを特徴とする耐応力腐食特性
のすぐれたPC鋼棒の製造方法。1 C: 0.5-1.0%, Si: 0.15-0.5%
, Mn: 0.3-0.9%, Cu: 0.2-1.0%,
A method for producing a PC steel bar with excellent stress corrosion resistance, characterized by subjecting a steel bar consisting of the balance iron and impurities to a stretching treatment of 0.3 to 3%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3426581A JPS5938283B2 (en) | 1981-03-09 | 1981-03-09 | Method for manufacturing PC steel bars with excellent stress corrosion resistance properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3426581A JPS5938283B2 (en) | 1981-03-09 | 1981-03-09 | Method for manufacturing PC steel bars with excellent stress corrosion resistance properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57161029A JPS57161029A (en) | 1982-10-04 |
JPS5938283B2 true JPS5938283B2 (en) | 1984-09-14 |
Family
ID=12409334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3426581A Expired JPS5938283B2 (en) | 1981-03-09 | 1981-03-09 | Method for manufacturing PC steel bars with excellent stress corrosion resistance properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5938283B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07285372A (en) * | 1994-04-18 | 1995-10-31 | Ibaraki Pref Gov Shinyou Kumiai | Cash transport vehicle |
-
1981
- 1981-03-09 JP JP3426581A patent/JPS5938283B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57161029A (en) | 1982-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3230118A (en) | Method of developing high physical properties in ferrous material and product produced thereby | |
JPS5938283B2 (en) | Method for manufacturing PC steel bars with excellent stress corrosion resistance properties | |
US4923528A (en) | Method for manufacturing rolled steel products | |
Waterhouse et al. | The effect of shot-peening on the fretting-fatigue strength of an age-hardened aluminium alloy (2014A) and an austenitic stainless steel (En 58A) | |
US3959999A (en) | Method of producing long-length articles from hot-rolled carbon steel and article produced thereby | |
CN105483556A (en) | Reinforcing method for high-strength tire bead steel wire material and preparation method for tire bead steel wires | |
JP2713346B2 (en) | Stainless steel wire excellent in high strength properties and its manufacturing method | |
JPH0559168B2 (en) | ||
US2924544A (en) | Metallurgical process for cold-finishing steel | |
JPS6137335B2 (en) | ||
JP5609679B2 (en) | Mouth-drawing diameter reduction method and processed parts of high-strength ERW steel pipe | |
JPH03274227A (en) | Production of high strength steel wire for use in sour environment | |
JPS63210236A (en) | Manufacture of high-collapse oil well pipe having sour resistance | |
JPH06331530A (en) | Method for testing hic characteristic of steel tube material | |
JPH042720A (en) | Production of high strength steel wire for use in sour environment | |
JPS59226116A (en) | High tension bolt having characteristics of resistance to delayed fracture and its production | |
US2533394A (en) | Method of obtaining large grain size in silicon steel | |
JPH05500689A (en) | Method of manufacturing high tensile strain hardening wire for manufacturing reinforcing cables for elastic articles such as pneumatic tires and the like, and reinforcing members or cables made from such wires | |
AT140193B (en) | Process for surface hardening of stainless steels. | |
US3252840A (en) | Super strength steel alloy composition and product and process of preparing it | |
JPS62170417A (en) | Production of high-strength high-toughness graphite cast iron | |
JPH03281724A (en) | Production of high strength steel wire for use in sour environment | |
JP2780582B2 (en) | Maraging steel excellent in delayed fracture resistance and method of manufacturing the same | |
JPH01215928A (en) | Production of high strength and high toughness galvanized steel wire | |
JP3597906B2 (en) | Method of improving shape recovery characteristics of shape memory alloy |