JPS593810A - Electronic material substrate adding agent - Google Patents

Electronic material substrate adding agent

Info

Publication number
JPS593810A
JPS593810A JP57110692A JP11069282A JPS593810A JP S593810 A JPS593810 A JP S593810A JP 57110692 A JP57110692 A JP 57110692A JP 11069282 A JP11069282 A JP 11069282A JP S593810 A JPS593810 A JP S593810A
Authority
JP
Japan
Prior art keywords
silicon
silicon nitride
silicon carbide
reaction
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57110692A
Other languages
Japanese (ja)
Inventor
雉子牟田 等
八馬 進
恒夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57110692A priority Critical patent/JPS593810A/en
Publication of JPS593810A publication Critical patent/JPS593810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 電子材料基板添加剤、特に高熱伝導性及び高絶縁性を有
する電子材料基板添加剤に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic material substrate additive, particularly an electronic material substrate additive having high thermal conductivity and high insulation properties.

近年各種の電子材料機器が出廻シ、又これら材料の複雑
、多様化等と相俟ってコンパクト化も進められている。
In recent years, various electronic materials and devices have been distributed, and along with the complexity and diversification of these materials, progress has been made in making them more compact.

これらにあって、各種電子回路の集積化に伴ない、回路
の局所的な発熱が回路の性能等に大きな影響を及ぼし、
回路の集積度はその熱放散容量によって律せられる。
In these situations, as various electronic circuits become more integrated, local heat generation in the circuits has a large impact on the performance of the circuits.
The degree of integration of a circuit is determined by its heat dissipation capacity.

この為、従来においては、集積回路の裏面に厚手の銅板
を設けて熱放散を助けたり、熱放散の目的でフィンやフ
ァンを設ける等かなり犬がかシな装置を要し、その割に
は思う様に放熱きれない等の欠点があった。
For this reason, in the past, fairly bulky equipment was required, such as installing a thick copper plate on the back side of the integrated circuit to help dissipate heat, or installing fins or fans for the purpose of heat dissipation. It had drawbacks such as not being able to dissipate heat as expected.

又、金鵬を硝子でくるみ、金属による熱放散と硝子によ
る絶縁性を期待するものもあるが、これもそれ程性能の
よいものではない。
There is also a method of encasing Kinho in glass, hoping for heat dissipation from the metal and insulation from the glass, but this also does not have very good performance.

更に、シリコン系樹脂やエポキシ系樹脂に、熱伝導性充
填物として高純度アルミナの焼結体粉末や、窒化硼素焼
結体粉末全混入したものもあるが、これらもそれ程高熱
伝導性が得られない0 又、炭化珪素を主成分とし、これに酸化ベリリウム若し
くは窒化珪素を添加し、これを焼結体粉末として樹脂に
混入することにより、高熱伝導性及び高電気絶縁性を付
与しようとする提案がなされている(特開昭56−16
1461号芸報参照)。しかしながらこの方法は、焼結
体であることヲ要する為、特に炭化珪素の焼結体′ff
:得るにはかなりの高温と圧力f:要すると共に、これ
と共に酸化ベリリウムを用いる場合には、これの毒性が
問題となり、作業環境や衛生上の観点から工業的な製造
は著しい制約を受けなければならない欠点がある。
Furthermore, there are silicone-based resins and epoxy-based resins mixed with high-purity alumina sintered powder or boron nitride sintered powder as a thermally conductive filler, but these also do not have very high thermal conductivity. No 0 In addition, there is a proposal to add high thermal conductivity and high electrical insulation by adding beryllium oxide or silicon nitride to silicon carbide as the main component and mixing this into a resin as a sintered powder. (Japanese Unexamined Patent Publication No. 56-16
(See Geiho No. 1461). However, since this method requires a sintered body, it is particularly difficult to use a sintered body of silicon carbide.
In addition, when beryllium oxide is used in conjunction with beryllium oxide, its toxicity becomes a problem, and industrial production must be subject to significant restrictions from the viewpoint of working environment and hygiene. There are disadvantages that cannot be avoided.

又、酸化べIJ IJウムの代りに窒化珪素を用いる場
合には、炭化珪素の焼結に対し、高温を要する為、窒化
珪素はその一部が窒素と珪素に分解し、絶縁性を損う欠
点がある。
In addition, when silicon nitride is used instead of aluminum oxide, high temperatures are required for sintering silicon carbide, so some of the silicon nitride decomposes into nitrogen and silicon, impairing its insulation properties. There are drawbacks.

本発明者はこれらの点に鑑み、高熱伝導性であってしか
も高絶縁性を有する電子材料基板添加剤を見出すことを
目的として種々研究、検討した結果、特足形態となって
いる炭化珪素と窒化珪素ヲ用いることにより、前記目的
を達成し得ることを見出した。
In view of these points, the present inventor conducted various studies and examinations with the aim of finding an additive for electronic material substrates that has high thermal conductivity and high insulation properties, and as a result, discovered that silicon carbide, which has a special form, It has been found that the above object can be achieved by using silicon nitride.

かくして本発明は、炭化珪素を核とし、該核を窒化珪素
で被覆された形態を有する炭化珪素と窒化珪素とが接合
された結晶粒子から成る電子材料基板添加剤を提供する
にある。
Thus, the present invention provides an electronic material substrate additive comprising crystal grains in which silicon carbide and silicon nitride are bonded, and the core is silicon carbide and the core is coated with silicon nitride.

本発明において、核となる炭化珪素の粒径は、あまシ大
きすぎると、後述するようにこれを樹脂と混合した際に
局所的な熱伝導性を生ずる虞れがあり、この為、炭化珪
素の粒径は、一般に10μ程度以下が適当である。
In the present invention, if the particle size of silicon carbide that is the core is too large, there is a risk that local thermal conductivity will occur when it is mixed with a resin as described later. The appropriate particle size is generally about 10 μm or less.

又、これを被覆するような形態で存在せしめられる窒化
珪素の厚さは、これがあまり薄すぎると電気絶縁性が不
十分となシ、逆にあまり厚くなシすぎると、炭化珪素が
有する良好な熱伝導性が実質的に阻害されるので何れも
好ましくない。この為、窒化珪素の厚さは5X10−’
〜lμ程度を採用するのが適当である。
Also, if the thickness of silicon nitride that is present in a form that covers this is too thin, the electrical insulation will be insufficient, and if it is too thick, the good properties of silicon carbide will be deteriorated. Both are unfavorable because thermal conductivity is substantially inhibited. Therefore, the thickness of silicon nitride is 5X10-'
It is appropriate to adopt a value of about .about.lμ.

この様な炭化珪素と窒化珪素との複合体の製造方法とし
ては、いくつかの方法があるが、特に次の様な方法を採
用して製造を行なう場合には、高熱伝導性及び高電気絶
縁性が長期にわたり安定して得られる添加剤となシ得る
ので特に好ましい。
There are several methods for manufacturing such a composite of silicon carbide and silicon nitride, but in particular, when manufacturing using the following method, it is possible to achieve high thermal conductivity and high electrical insulation. It is particularly preferred since it can be used as an additive that provides stable properties over a long period of time.

四塩化珪素の様なハロゲンを含む無機珪素化合物とアン
モニアとを非酸化性雰囲気下に反応せしめて、非晶質な
珪素の菫化物を合成させ、この際この合成と同時に活性
な炭素を生成する炭素質物質ヲ、予め存在させておくこ
とによシ、先づ活性な炭素を核としてこれを取シ囲むよ
うに非晶質な珪素の窒化物を生成させる。次いで非酸化
性雰囲気下において非晶質な珪素の蟹化物を加熱によシ
、α晶の窒化珪素に転化せしめる。
An inorganic silicon compound containing a halogen such as silicon tetrachloride is reacted with ammonia in a non-oxidizing atmosphere to synthesize an amorphous silicon sulfuride, and at the same time, active carbon is generated at the same time as this synthesis. By pre-existing a carbonaceous substance, amorphous silicon nitride is first formed surrounding active carbon with active carbon as a core. Next, the amorphous silicon nitride is heated in a non-oxidizing atmosphere to convert it into α-crystalline silicon nitride.

この操作を行なうと、活性な炭素と一部非晶質な珪素の
蟹化物が反応し、炭化珪素が生成する。かくして炭素質
物質の量を適宜選択することにより、生成する炭化珪素
の量を制御することが出来る。
When this operation is performed, active carbon and partially amorphous silicon carbide react to form silicon carbide. Thus, by appropriately selecting the amount of carbonaceous material, the amount of silicon carbide produced can be controlled.

本発明に用いられるハロゲンを含む無機珪素化合物は、
5iC14の他、例えば5iHC11,5iH2CI□
The halogen-containing inorganic silicon compound used in the present invention is
In addition to 5iC14, for example, 5iHC11, 5iH2CI□
.

5iH3C:1 、 SiBr4 、5iHBr3 、
5iH2Br2.81H3Br 。
5iH3C:1, SiBr4, 5iHBr3,
5iH2Br2.81H3Br.

S1工、 、 Sin工3. SiH2工2.5iH1
■、 5iC12Br2゜5iC12工2等であり、こ
れらは常温でガス状のものもあるが、液状や固体状のも
のもあシ、これらは均一な反応を速やかに実施する為に
、例えば適当な間接加熱等の手段にIシ一旦ガス化せし
めて反応に供するのが適当である。
S1 engineering, , Sin engineering 3. SiH2 engineering 2.5iH1
■, 5iC12Br2゜5iC12Engineering2, etc. Some of these are gaseous at room temperature, but others are liquid or solid, and in order to quickly carry out a uniform reaction, It is appropriate to gasify the mixture by heating or other means and then use it for the reaction.

反応に用いられるアンモニアの量は、原料として用いら
れるハロゲンを含む無機珪素化合物に対し、モル比で0
.1〜6を採用するのが適当である。用いるアンモニア
の量が前記範囲に満たない場合には、ハロゲンを含む無
機珪素化合物の反応率が低く工業的でなく、逆に前記範
囲を超える場合には、ハロゲン化アンモニウムの固体が
析出し、反応操作上困難を伴なうのでイ0」れも好まし
くない。
The amount of ammonia used in the reaction is 0 molar ratio to the halogen-containing inorganic silicon compound used as a raw material.
.. It is appropriate to adopt numbers 1 to 6. If the amount of ammonia used is less than the above range, the reaction rate of the halogen-containing inorganic silicon compound will be low and unsuitable for industrial use.On the other hand, if it exceeds the above range, solid ammonium halide will precipitate and the reaction will be delayed. This is also undesirable because it is difficult to operate.

そしてこれら範囲のう°ち、前記モル比で0.5〜5を
採用する場合には、反応を効果的且工業的有利に行なえ
るので特に好ましい。
Among these ranges, a molar ratio of 0.5 to 5 is particularly preferred because the reaction can be carried out effectively and industrially advantageously.

次に本発明に用いられる炭素質物質としては、ハロゲン
を含む無機珪素化合物とアンモニアの反応によって非晶
質な珪素の蟹化物が生成される段階で分解して活性な炭
素を生成する物質である事が必要であシ、かかる炭素質
物質を用いない場合には、本発明の目的である高熱伝導
性と高絶縁性を廟する添加剤を得ることは困難である。
Next, the carbonaceous substance used in the present invention is a substance that decomposes to produce active carbon at the stage where amorphous silicon crab is produced by the reaction between a halogen-containing inorganic silicon compound and ammonia. However, if such a carbonaceous material is not used, it is difficult to obtain an additive that exhibits high thermal conductivity and high insulation properties, which are the objects of the present invention.

かかる炭素質物質としては、一般に含ハロゲン紀和若し
くは含ハロゲン不飽和炭化水素又は言ハロゲン芳香族炭
化水素のうち、何れもノ・ロゲン原子に対し、水素の数
が等しいか犬であるものを適宜一種若しくは二種以上混
合して用いることが出来る。
Such carbonaceous substances are generally selected from among halogen-containing dihydrated or halogen-containing unsaturated hydrocarbons, or halogen-containing aromatic hydrocarbons, in which the number of hydrogen atoms is equal to or equal to the number of halogen atoms. Alternatively, two or more types can be used in combination.

具体的には、ジクロルエチレン、塩化メチル。Specifically, dichloroethylene and methyl chloride.

塩化メチレン、ジクロルエタン、トリクロルエタン、塩
化ビニルが好適であり、炭化珪素への転化も制御し易い
ので、特に好ましい。その他の手段としては、少々操作
が煩雑となるが、非晶質な珪素の窒化物が生成する段階
でカーボンブラック粉の様な炭素そのものを反応系に吹
き込む等の手段も採用し得る。要するに本発明にあって
は、予め非晶質な珪素の窒化物を侍ておき、これに炭素
を混合したのでは、本発明の目的は達成されないのであ
る。
Methylene chloride, dichloroethane, trichloroethane, and vinyl chloride are suitable, and are particularly preferred because their conversion to silicon carbide is easy to control. As other means, although the operation is a little complicated, means such as blowing carbon itself such as carbon black powder into the reaction system at the stage of forming amorphous silicon nitride may also be adopted. In short, in the present invention, if an amorphous silicon nitride is prepared in advance and carbon is mixed therein, the object of the present invention cannot be achieved.

これら炭素質物質の使用量は、前記の如き炭化珪素の核
の大きさとこれを被°覆する窒化珪素の層の厚さが得ら
れるように選ばれる。即ち、炭素質物質を炭素に換算し
て珪素に対し、モル比で0.5〜1.2程度を採用する
のが適当である。
The amount of these carbonaceous substances to be used is selected so as to obtain the size of the silicon carbide core and the thickness of the silicon nitride layer covering it as described above. That is, it is appropriate to adopt a molar ratio of about 0.5 to 1.2 of the carbonaceous material to silicon in terms of carbon.

かくしてこれら原料は非酸化性雰囲気中で反応せしめら
れる。反応温度は400〜1700℃程度が採用され、
反応時間は0.1秒〜5時間程度を採用するのが一般的
であるが、かかる反応は1段で実施するよシ、2段に分
けて実施した方が、本発明の目的を完全且安定して達成
し得るので好ましい。即ち1段目としては前記の如き各
原料の配合割合にて非酸化性雰囲気下において温度80
0〜1200℃で0.1〜30秒程度反応全実施し、次
いで2段目として非ば化性雰囲気下において温度130
0〜1700℃にて0.3〜5時間程度焼成するのが適
当である。又第1段目で採用する温度と第2段目で採用
する温度差は、厳密には用いられる原料の種類や反応時
間等により決定されるが、一般に2段目の方が300〜
700℃程度高いことが望ましい。
These raw materials are then allowed to react in a non-oxidizing atmosphere. The reaction temperature is about 400-1700℃,
Generally, the reaction time is about 0.1 seconds to 5 hours, but it is better to carry out the reaction in two stages rather than in one stage to achieve the purpose of the present invention completely and efficiently. This is preferable because it can be achieved stably. That is, in the first stage, the mixing ratio of each raw material is as described above, and the temperature is 80°C in a non-oxidizing atmosphere.
The entire reaction was carried out at 0 to 1200°C for about 0.1 to 30 seconds, and then as a second stage, the temperature was increased to 130°C in a non-vaporizing atmosphere.
It is appropriate to bake at 0 to 1700°C for about 0.3 to 5 hours. The difference in temperature between the first stage and the second stage is strictly determined by the type of raw materials used, reaction time, etc., but generally the second stage is 300-300°C.
It is desirable that the temperature be as high as about 700°C.

かくすることによシ、本発明の目的が完全に達成され、
しかも炭化珪素は焼結体でなくても十分高熱伝導性を示
し、又窒化珪素も必ずしも焼結体になっている必要はな
く、十分な高絶縁性を呈することが可能となる。
Thus, the object of the present invention is fully achieved,
Furthermore, silicon carbide exhibits sufficiently high thermal conductivity even if it is not a sintered body, and silicon nitride does not necessarily have to be a sintered body, and can exhibit sufficiently high insulation properties.

本発明に用いられる非酸化性雰囲気としては、例えばア
ルゴン、窒素ヘリウム、水素等のガス気流を採用するの
が適当である。
As the non-oxidizing atmosphere used in the present invention, it is appropriate to employ, for example, a gas flow of argon, nitrogen helium, hydrogen, or the like.

次に本発明による添加剤は、これを樹脂と混付し、所望
の厚はと大きさ傾成形して各種電子制料基板として用い
られる。
Next, the additive according to the present invention is mixed with a resin, molded into a desired thickness and size, and used as various electronic control boards.

かかる樹脂としては、例えばシリコン樹脂。Such resins include, for example, silicone resins.

エポキシ樹脂、ポリイミド、 PTFFi 、  ポリ
フッ化ビニル、 FF1Pフルオルカーボン等の樹脂を
適宜採用することが出来る。
Resins such as epoxy resin, polyimide, PTFFi, polyvinyl fluoride, and FF1P fluorocarbon can be appropriately employed.

これら樹脂と祭加剤の使用割合は体積比で一般に4:1
〜1:4、好ましくは4:6〜3ニア程度を採用するの
が適当である。
The ratio of these resins and additives is generally 4:1 by volume.
It is appropriate to adopt a ratio of about 1:4 to 1:4, preferably about 4:6 to 3.

使用割合が前記範囲に満たない場合には、本発明の所期
の目的を十分達成し得す、逆に作J N己範囲を超える
場合には、基板としての強度が不十分となったり、亀裂
が入る等不都合が生ずる虞れがあるので何れも好ましく
ない。
If the usage ratio is less than the above range, the intended purpose of the present invention may not be fully achieved; on the other hand, if it exceeds the range, the strength of the substrate may be insufficient. Both are unfavorable since they may cause problems such as cracks.

本発明による添加剤は、単に炭化珪素を絶縁性樹脂で被
覆した様な場合と異なり、炭化珪素と窒化珪素との界面
において一棟の半導体的性質が生じ、高い電気抵抗を肩
する為、窒化珪素本来の高絶縁性と相俟って犬なる絶縁
効果を生ずる利点がある。
Unlike the case where silicon carbide is simply coated with an insulating resin, the additive according to the present invention has a semiconductor-like property at the interface between silicon carbide and silicon nitride, which shoulder high electrical resistance. Combined with silicon's inherent high insulating properties, it has the advantage of producing an excellent insulating effect.

次に本発明を実施例によシ説明するn 実施例1 外熱式流通型反応管と反応生成物捕集器とからなる装置
を用い、1000℃に保持した反応管上部から四塩化珪
素(キャリアガス:N2)1アンモニアガス、塩化メチ
レン(キャリアガス:N2)をモル比1 : 1.3 
: 0.95でそれぞれ別々の導入管よシ吹込み反応さ
せた。
Next, the present invention will be explained with reference to examples. Example 1 Using an apparatus consisting of an externally heated flow-through type reaction tube and a reaction product collector, silicon tetrachloride ( Carrier gas: N2) 1 ammonia gas, methylene chloride (carrier gas: N2) in a molar ratio of 1:1.3
: 0.95 and the reaction was carried out by blowing into separate introduction tubes.

捕集器(約100℃)に捕集された粉末状生成物’Kl
素雰囲気下でグラファイト製ルツボに移し、アルゴンガ
ス気流中1550℃で2時間の熱処理を行なった。
Powdered product 'Kl collected in collector (approximately 100°C)
It was transferred to a graphite crucible under an elementary atmosphere and heat-treated at 1550° C. for 2 hours in an argon gas stream.

得られた粉末の分析結果は、SiC含有率94.6チ、
Si3N4含有率4.8%であった。また、この粉末の
粒径は約0.5μであった。
The analysis results of the obtained powder showed that the SiC content was 94.6 cm,
The Si3N4 content was 4.8%. Moreover, the particle size of this powder was about 0.5μ.

上記粉末をエポキシ系樹脂に体積分率0.65で混合し
、シート状に成形した。シートの厚さ方向の熱伝導度は
0.13 all/cm −see ・℃、比抵抗lO
′。Ωの以上であった。
The above powder was mixed with an epoxy resin at a volume fraction of 0.65, and formed into a sheet. Thermal conductivity in the thickness direction of the sheet is 0.13 all/cm -see ℃, specific resistance lO
'. It was more than Ω.

実施例2 実施例1と同様な装置を用いて、塩化メチレンの代わシ
にジクロルエチレンを用い、吹込みガスのモル比を四塩
化珪素:アンモニア:ジクロルエチレン−1:1.3:
0.49とした以外は実施例1と同様な方法により粉末
を得た。得られた粉末は、sic含有率97.1%、 
E113N4 含有率24チであった。この粉末の粒径
は約1.0μであった。
Example 2 Using the same apparatus as in Example 1, dichloroethylene was used instead of methylene chloride, and the molar ratio of the blown gas was changed to silicon tetrachloride: ammonia: dichloroethylene - 1:1.3:
Powder was obtained in the same manner as in Example 1 except that the concentration was 0.49. The obtained powder had a SIC content of 97.1%,
The E113N4 content was 24%. The particle size of this powder was approximately 1.0μ.

上記粉末をシリコン系樹脂に体積分率0.7で混合し、
シート状に成形した。シートの厚さ方向の熱伝導度は0
.21 C117cm ・we ・℃、比抵抗1o10
Ω副以上であった。
The above powder is mixed with silicone resin at a volume fraction of 0.7,
It was formed into a sheet. Thermal conductivity in the thickness direction of the sheet is 0
.. 21 C117cm ・we ・℃, specific resistance 1o10
It was Ω sub or above.

比較例1 実施例1と同様な装置で、吹込みガスとして四塩化珪素
とアンモニアガスのみを用い、モル比1 二1.3で反
応させ非晶質窒化珪素粉末を得た後、この非晶質窒化珪
素粉末とカーボンブラックを珪素と炭素のモル比1 :
 0.95で望素雰囲気下で温容した後、実施例1と同
様な熱処理を行なった。
Comparative Example 1 Using only silicon tetrachloride and ammonia gas as blowing gases in the same apparatus as in Example 1, amorphous silicon nitride powder was obtained by reacting at a molar ratio of 12 to 1.3. The silicon nitride powder and carbon black have a molar ratio of silicon to carbon of 1:
After heating in a desired atmosphere at a temperature of 0.95%, the same heat treatment as in Example 1 was performed.

得られた粉末はsic含有率943%、Si3N4含有
率51%であシ、粒径は約04μであった。
The obtained powder had a SIC content of 943%, a Si3N4 content of 51%, and a particle size of about 0.4μ.

上記粉末をエポキシ系樹脂に体積分率0.65で混合し
シート状に成形した。シートの厚さ方向の熱伝導度は0
.15 Cat/cm−(8)・℃であったが、比抵抗
は4X10’Ωのと低い値で9あった。
The above powder was mixed with an epoxy resin at a volume fraction of 0.65 and molded into a sheet. Thermal conductivity in the thickness direction of the sheet is 0
.. 15 Cat/cm-(8).degree. C., but the specific resistance was 9, which was a low value of 4.times.10'.OMEGA.

この結果は、非晶質窒化珪素粉末とカーボンブラックの
反応によシ生成されたSiC粉末は良好な珪化珪素の被
覆層を有さない構造になっていることに由来するものと
思われる。
This result is thought to be due to the fact that the SiC powder produced by the reaction between the amorphous silicon nitride powder and carbon black has a structure that does not have a good silicon silicide coating layer.

Claims (1)

【特許請求の範囲】 1、 炭化珪素を核とし、該核ff1M化珪素で被覆さ
れた形態を有する炭化珪素と窒化珪素とが複合された結
晶粒子から成る電子材料基板添加剤。 2、 炭化珪素は平均粒径0,05〜10μを有する請
求の範囲(1〕の添加剤。 3、 窒化珪素は厚さ5 x 10”−’〜1μを有す
る請求の範囲(1)の添加剤。
[Claims] 1. An electronic material substrate additive consisting of crystal grains made of a composite of silicon carbide and silicon nitride, which have a silicon carbide core and are coated with ff1M silicon oxide. 2. The additive according to claim (1), in which silicon carbide has an average particle size of 0.05 to 10μ. 3. The additive according to claim (1), in which silicon nitride has a thickness of 5 x 10"-' to 1μ. agent.
JP57110692A 1982-06-29 1982-06-29 Electronic material substrate adding agent Pending JPS593810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110692A JPS593810A (en) 1982-06-29 1982-06-29 Electronic material substrate adding agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110692A JPS593810A (en) 1982-06-29 1982-06-29 Electronic material substrate adding agent

Publications (1)

Publication Number Publication Date
JPS593810A true JPS593810A (en) 1984-01-10

Family

ID=14542027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110692A Pending JPS593810A (en) 1982-06-29 1982-06-29 Electronic material substrate adding agent

Country Status (1)

Country Link
JP (1) JPS593810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253442A (en) * 1987-12-29 1989-10-09 Kuraray Co Ltd Gas barrier multilayer package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253442A (en) * 1987-12-29 1989-10-09 Kuraray Co Ltd Gas barrier multilayer package
JPH0586918B2 (en) * 1987-12-29 1993-12-14 Kuraray Co

Similar Documents

Publication Publication Date Title
US4961987A (en) Aluminum nitride sintered body with high thermal conductivity and process for producing same
CN109790027B (en) Method for producing spherical aluminum nitride powder
JP2856782B2 (en) Method of forming copper thin film by low temperature CVD
JPS5832073A (en) Sintered body
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JPS593810A (en) Electronic material substrate adding agent
JPS5832072A (en) Aluminum nitride sintered body and manufacture
JPH0329023B2 (en)
JPS6221764A (en) Manufacture of aluminum nitride
JP2000247740A (en) Graphite sheet having insulated surface and its production
JPS61270263A (en) Manufacture of high heat conductive aluminum nitride sintered body
JPS63295479A (en) Sintered aluminum nitride body and its production
JP2749139B2 (en) Pressurized conductive metal powder and method for producing the same
JPH0512300B2 (en)
JPH07149539A (en) Glass-ceramic composite and its production
JPH01133911A (en) Production of aluminum nitride powder
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JPH05347370A (en) Heat dissipation member
JPS5891058A (en) Manufacture of mixture of silicon nitride and silicon carbide
JPS60176913A (en) Insulating silicon carbide powder and its production
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JPS63222074A (en) Manufacture of aluminum nitride sintered body
KR20160109556A (en) (002) preferentially oriented aluminium nitride powders having plate shape and manufacturing method of the same
JPS61286287A (en) Method of treating surface of aluminum nitride base material
JPS61286267A (en) Manufacture of aluminum nitride base sintered body