JPS5937418B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS5937418B2
JPS5937418B2 JP2725382A JP2725382A JPS5937418B2 JP S5937418 B2 JPS5937418 B2 JP S5937418B2 JP 2725382 A JP2725382 A JP 2725382A JP 2725382 A JP2725382 A JP 2725382A JP S5937418 B2 JPS5937418 B2 JP S5937418B2
Authority
JP
Japan
Prior art keywords
compressor
pressure
refrigerant
flow rate
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2725382A
Other languages
Japanese (ja)
Other versions
JPS5812964A (en
Inventor
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2725382A priority Critical patent/JPS5937418B2/en
Publication of JPS5812964A publication Critical patent/JPS5812964A/en
Publication of JPS5937418B2 publication Critical patent/JPS5937418B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は、圧縮機、凝縮器、減圧装置、蒸発器等を順次
環状に連結して冷媒回路を構成した冷凍装置Oこ関し、
特に圧縮機の吐出側の圧力の上昇を抑制するものに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system O in which a refrigerant circuit is constructed by sequentially connecting a compressor, a condenser, a pressure reducing device, an evaporator, etc. in an annular manner.
In particular, it relates to something that suppresses a rise in pressure on the discharge side of a compressor.

従来、この種の冷凍装置では、運転中、凝縮器で、熱交
換用の吸気が温度上昇したり、該熱交換用ファンの回転
数が減少したりしていわゆる過負荷運転となり、凝縮器
の熱交換能力か低下して、冷媒の凝縮圧力か上昇すると
ともに、これに伴なって温度か上昇することかある。
Conventionally, in this type of refrigeration equipment, during operation, the temperature of the intake air for heat exchange increases in the condenser, and the rotation speed of the heat exchange fan decreases, resulting in so-called overload operation, which causes the condenser to overload. The heat exchange capacity decreases, the condensation pressure of the refrigerant increases, and the temperature may rise accordingly.

該凝縮圧力・温度が上昇すると凝縮器入口側Qこ直結す
る圧縮機の吐出口の圧力・温度か上昇し、圧縮器各部の
負担が増大するばかりか、圧縮機内の潤滑油が過熱され
、粘性変化を起こしたり劣化したりして潤滑性能が低下
することにより、圧縮機本体か焼損する等の不都合を生
ずる。
When the condensing pressure and temperature rise, the pressure and temperature at the discharge port of the compressor, which is directly connected to the condenser inlet Q, rises, which not only increases the load on each part of the compressor, but also overheats the lubricating oil in the compressor, causing it to become viscous. If the lubricating performance deteriorates due to changes or deterioration, problems such as burnout of the compressor body may occur.

このため、従来では圧縮機の吐出口圧力が設定値以下(
こ増大すると圧縮機の運転を停止する高圧カットオフ機
構を備えることにより上記不都合を防止しているが、か
かる防止対策を施すことにより運転成能な範囲が大幅に
制限されていた。
For this reason, in the past, the discharge port pressure of the compressor was lower than the set value (
Although this inconvenience has been prevented by providing a high-pressure cut-off mechanism that stops the operation of the compressor when the pressure increases, the range of possible operation has been significantly restricted by such preventive measures.

本発明は、上記難点を解消するものとして、圧縮機の出
口側の圧力の上昇を一定限度内Oこ抑制したまま運転継
続を可能とした冷凍装置を提供するものである。
The present invention solves the above-mentioned difficulties by providing a refrigeration system that can continue operating while suppressing the increase in pressure on the outlet side of the compressor to within a certain limit.

以下Qこ本発明の実施例を図面Qこ基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は圧縮機、2は凝縮器53は減圧装
置、4は蒸発器でこれらを順次環状に連結して冷媒回路
を構成している。
In FIG. 1, 1 is a compressor, 2 is a condenser 53, a pressure reducing device, and 4 is an evaporator, which are sequentially connected in a ring to form a refrigerant circuit.

上記基本的な回路構成の冷凍サイン)I/lこついて説
明すると、圧縮機1でほぼ断熱圧縮された冷媒は、凝縮
器2内で高熱源側空気と熱交換して凝縮され液冷媒とな
り、さらに減圧装置3でほぼ等エンタルピで絞り膨張さ
れ湿り蒸気となった後、蒸発器4で低熱源側空気と熱交
換して乾き蒸気にされ、再び圧縮機1cこ吸引される。
Refrigeration sign of the above basic circuit configuration) I/l To explain in detail, the refrigerant compressed almost adiabatically in the compressor 1 is condensed by exchanging heat with the air on the high heat source side in the condenser 2, and becomes liquid refrigerant. Further, the steam is compressed and expanded almost isenthalpically in the decompression device 3 to become wet steam, and then heat exchanged with the air on the low heat source side in the evaporator 4 to become dry steam, which is sucked into the compressor 1c again.

すなわち、低熱源側から熱量を吸熱し、これに圧縮機の
仕事量を加えた熱量を高熱源(こ放熱する構成となって
いる。
That is, the structure is such that heat is absorbed from the low heat source side, and the heat amount, which is the sum of the work of the compressor, is radiated from the high heat source.

次0こ、該基本的な冷凍サイクル回路Qこ付加される本
発明の詳細な説明する。
Next, a detailed explanation of the present invention will be given with respect to the basic refrigeration cycle circuit.

5は圧縮機1の出口側と入口側とを連結するバイパス通
路、6は流量制御手段で、該バイパス通路5Qこ介装さ
れた電磁弁等の流量制御弁である。
5 is a bypass passage connecting the outlet side and the inlet side of the compressor 1, and 6 is a flow rate control means, which is a flow rate control valve such as a solenoid valve installed in the bypass passage 5Q.

7は圧縮機1の出口側の圧力が所定以上となったことを
検出する検出手段で、凝縮器2の管壁に配設された温度
検知器である。
7 is a detection means for detecting that the pressure on the outlet side of the compressor 1 has exceeded a predetermined value, and is a temperature sensor disposed on the pipe wall of the condenser 2.

8は該温度検知器7からの検知信号を入力して、応答信
号を前記流量制御弁6Gこ伝達するマイクロコンピュー
タ等の演算部である。
Reference numeral 8 denotes a calculation section such as a microcomputer which inputs the detection signal from the temperature sensor 7 and transmits a response signal to the flow rate control valve 6G.

9は蒸発器4の出口と圧縮機1の入口間を接続する冷媒
通路内Qこ介装された阻止手段としての逆止弁であり、
圧縮機1の入口側から蒸発器4の出口側への逆流を防止
するよう(こ配設される。
9 is a check valve as a blocking means installed in the refrigerant passage Q connecting between the outlet of the evaporator 4 and the inlet of the compressor 1;
This is arranged to prevent backflow from the inlet side of the compressor 1 to the outlet side of the evaporator 4.

かかる構成の作動を第2図Gこ基づいて説明する。The operation of this configuration will be explained based on FIG. 2G.

冷凍装置運転中、圧縮機1の冷媒吐出圧力が、過負荷運
転となる凝縮圧力の限界値であるPH以下の設定値P1
(こ達すると、該吐出圧力P1Qこ対応して上昇する凝
縮温度を温度検知器7で検知し、該検知信号を演算部8
へ伝達する。
During operation of the refrigeration system, the refrigerant discharge pressure of the compressor 1 is a set value P1 below PH, which is the limit value of condensing pressure that causes overload operation.
(When this reaches this point, the temperature detector 7 detects the condensing temperature that increases correspondingly to the discharge pressure P1Q, and the detection signal is sent to the calculation unit 8.
Communicate to.

演算部8は該信号を入力すると、圧力P1以下の凝縮圧
力で閉状態曇こある制御弁6を開成するようm1Jtf
+する。
When the arithmetic unit 8 receives the signal, it sets m1Jtf to open the control valve 6 which is in a closed state at a condensing pressure lower than the pressure P1.
+

そして、制御弁6の開時、バイパス通路5には圧縮機1
の高圧の吐出側から低圧の吸入側へ冷媒が流れる。
When the control valve 6 is opened, the compressor 1 is connected to the bypass passage 5.
Refrigerant flows from the high pressure discharge side to the low pressure suction side.

このとき、圧縮機1の吐出口と蒸発器2の出口とを接続
する冷媒通路(こ介装した逆止弁9の働き(こより、バ
イパス通路5を流れる冷媒が蒸発器方向に逆流すること
はなく、圧縮機1に流入する。
At this time, the refrigerant passage connecting the discharge port of the compressor 1 and the outlet of the evaporator 2 (through the action of the check valve 9 installed therein), the refrigerant flowing through the bypass passage 5 is prevented from flowing back toward the evaporator. Instead, it flows into the compressor 1.

そして、流量制御弁6、バイパス通路5の通過抵抗は前
記基礎的な回路の通過抵抗に比べて無視できる程小さい
から、圧縮機1で圧縮された冷媒はバイパス通路5を循
環するだけで凝縮器2の方向には流れず、圧縮機1はい
わゆる9から運転“をしていることになる。
Since the passage resistance of the flow rate control valve 6 and the bypass passage 5 is negligibly small compared to the passage resistance of the basic circuit, the refrigerant compressed by the compressor 1 only needs to circulate through the bypass passage 5 and is then transferred to the condenser. The compressor 1 does not flow in the direction 2, and the compressor 1 is operating from the so-called 9.

ちなみ(こ、圧縮機の仕事を断熱圧縮とすると、該圧縮
仕事りは次式で示される。
By the way, if the work of the compressor is adiabatic compression, the compression work is expressed by the following formula.

”” (Vt Pt V2p2) °”(
1)−1 ここでに′、比熱比、pl:断熱圧縮開始時の圧力、p
2:断熱圧縮終了時の圧力、 vl::断熱圧縮開始時の比容積、 v2:断熱圧縮終了時の比容積 前記したようQこ流量制御弁6の開始のバイパス通路5
の通過抵抗を無視すると、Vl−V25p1”l)2で
あるからvlpl−v2p2となり、これを(1)弐Q
こ代入すると、圧縮仕事は零となる。
”” (Vt Pt V2p2) °”(
1)-1 where ′, specific heat ratio, pl: pressure at the start of adiabatic compression, p
2: Pressure at the end of adiabatic compression, vl: Specific volume at the start of adiabatic compression, v2: Specific volume at the end of adiabatic compression As described above, the bypass passage 5 at the start of the Q-flow control valve 6
If we ignore the passing resistance of
With this substitution, the compression work becomes zero.

ただし実際Oこは厳密な断熱圧縮ではないので圧縮機1
内部のシリンダからの熱損矢或いはピストンとシリンダ
間の摩擦損失が仕事として費やされる。
However, since this is not a strict adiabatic compression, the compressor 1
Heat loss from the internal cylinder or friction loss between the piston and cylinder is used as work.

こうして、流量制御弁6の開時、圧縮機1から凝縮器2
への冷媒供給が停止される一方、凝縮器2から減圧装置
3を経て蒸発器4へは冷媒が送出されるので、凝縮器2
内の冷媒量は減少し、凝縮圧力か降下する。
In this way, when the flow control valve 6 is opened, the compressor 1 to the condenser 2
While the refrigerant supply to the condenser 2 is stopped, the refrigerant is sent from the condenser 2 to the evaporator 4 via the pressure reducing device 3.
The amount of refrigerant in the tank decreases, and the condensing pressure drops.

そして、該圧力か図示した第2の設定値p2にまで降下
し、該圧力p2’こ対応した温度検知器7の検知信号か
演算部8に入力されると、演算部8は制御弁6を閉じる
応答信号を発生しバイパス通路5は閉成する。
Then, when the pressure drops to the second set value p2 shown in the figure and a detection signal from the temperature sensor 7 corresponding to the pressure p2' is input to the calculation unit 8, the calculation unit 8 controls the control valve 6. A closing response signal is generated and the bypass passage 5 is closed.

したかってバイパス通路5には冷媒か流れず、圧縮機1
から凝縮器2に流れて通常運転か再開されるから、凝縮
圧力は再び上昇する。
Therefore, no refrigerant flows into the bypass passage 5, and the compressor 1
Since the condensate flows to the condenser 2 and normal operation is restarted, the condensation pressure increases again.

そして凝縮圧力がp、に達すると再び制御弁は閉じられ
、以下、はぼ等間隔0こ制御弁の開閉が繰り返されるの
で凝縮圧カ一時間曲線は第2図のような鋸歯状折線とな
る。
Then, when the condensing pressure reaches p, the control valve is closed again, and since the opening and closing of the control valve is repeated at approximately equal intervals, the condensing pressure-hour curve becomes a sawtooth broken line as shown in Figure 2. .

このようにして、凝縮圧力即ち圧縮機の出口側圧力の上
昇が過負荷運転を生じることのない設定値以下Oこ抑制
され、たまま運転を継続することができ、また、この状
態で運転を継続できるから使用運転範囲が一段と拡大す
るものである。
In this way, the increase in condensing pressure, that is, the pressure on the outlet side of the compressor, is suppressed to a set value that does not cause overload operation, and operation can be continued. Since it can be continued, the operating range of use is further expanded.

次に、本発明の他の実施例を第3図に示し説明する。Next, another embodiment of the present invention is shown in FIG. 3 and will be described.

このものは第1図の実施例構成0こ加え、圧縮機の吐出
温度の上昇をも抑制制御できるようにしたものである。
In addition to the configuration of the embodiment shown in FIG. 1, this compressor can also suppress and control the rise in the discharge temperature of the compressor.

すなわち、本実施例では冷媒を圧縮機の吐出口から入口
側へ導くバイパス通路と凝縮器の出口側から圧縮機の入
口側へ導くバイパス通路との2個配設し、それぞれ凝縮
温度、圧縮機の吐出温度を検知して流量制御する構成と
したものである。
That is, in this embodiment, two bypass passages are provided, one for guiding the refrigerant from the discharge port of the compressor to the inlet side, and the other for guiding the refrigerant from the outlet side of the condenser to the inlet side of the compressor. The configuration is such that the flow rate is controlled by detecting the discharge temperature.

具体的には流量制御手段としての流量制御弁11の上流
側には圧縮機1の吐出口から分岐する前実施例同様のバ
イパス通路12と凝縮器2の出口側から分岐するバイパ
ス通路13とが接続され、それぞれ制御弁11の下流で
一本の共通なバイパス通路14に連通し、圧縮機1の入
口側に接続されている。
Specifically, on the upstream side of the flow rate control valve 11 as a flow rate control means, there are a bypass passage 12 similar to the previous embodiment that branches from the discharge port of the compressor 1 and a bypass passage 13 that branches from the outlet side of the condenser 2. They are connected to one common bypass passage 14 downstream of the control valve 11, and are connected to the inlet side of the compressor 1.

そして演算部15は、凝縮器2の圧力に対応した凝縮温
度を検知する温度検知器16と、圧縮機1の吐出口温度
を検知する温度検知器17との両方から入力され、それ
ぞれの検知信号に対応して制御弁を開閉操作しバイパス
通路12およびバイパス通路13の冷媒流量を制御する
ようになっている。
The calculation unit 15 receives input from both a temperature detector 16 that detects the condensing temperature corresponding to the pressure of the condenser 2 and a temperature detector 17 that detects the discharge port temperature of the compressor 1, and receives respective detection signals. The control valves are opened and closed in response to this, thereby controlling the flow rates of refrigerant in the bypass passages 12 and 13.

したかって、前実施例同様圧縮機の出口側圧力の設定値
以上の上昇で、温度検知器16、演算部15を介して制
御弁11が開閉しバイパス通路12 、14?こ冷媒を
流し、該吐出圧力の上昇を抑制する。
Therefore, as in the previous embodiment, when the pressure on the outlet side of the compressor rises above the set value, the control valve 11 opens and closes via the temperature detector 16 and the calculation section 15, and the bypass passages 12, 14? This refrigerant is caused to flow to suppress the increase in the discharge pressure.

同時に圧縮機1の吐出温度の設定値以上の上昇で温度検
知器17、演算部15を介して制御弁11か開閉し凝縮
器下流の冷却された液冷媒の一部かバイパス通路13,
14を介して再び圧縮機1で圧縮されるため、圧縮機1
の吐出口温度の上昇を確実に抑制することができ、圧縮
機の過熱による悪影響を回避できる。
At the same time, when the discharge temperature of the compressor 1 rises above the set value, the control valve 11 is opened and closed via the temperature detector 17 and the calculation unit 15, and a portion of the cooled liquid refrigerant downstream of the condenser is transferred to the bypass passage 13,
14 and is again compressed by the compressor 1, so the compressor 1
It is possible to reliably suppress the rise in the discharge port temperature of the compressor, thereby avoiding the adverse effects of overheating the compressor.

すなわち、前実施例の圧縮機吐出圧力の上昇を抑制する
構成としただけでも、該圧力上昇に伴なう温度上昇をあ
る程度抑制することはできるが本実施例は圧縮機の吐出
温度上昇もより確実に抑制することができるものである
In other words, even if the structure of the previous embodiment suppresses the rise in the compressor discharge pressure, the temperature rise accompanying the pressure rise can be suppressed to some extent, but in this embodiment, the rise in the compressor discharge temperature is further suppressed. This is something that can be reliably suppressed.

なお、以上の実施例において、流量制御弁を開閉弁とし
、該開閉の繰り返し操作により圧縮機の吐出圧力・温度
を設定範囲内に制御構成としだが流量匍肺]弁はこの他
、温度検知器の設定温度域で弁開度制御する絞り弁とし
てもよい。
In the above embodiment, the flow control valve is an on-off valve, and the discharge pressure and temperature of the compressor are controlled within a set range by repeated opening and closing operations. It may also be a throttle valve that controls the valve opening within the set temperature range.

この場合、例えば圧縮機の出口側の圧力制御では、制御
圧力は、第2図に示すような鋸歯状折線とはならず、比
較的フラットな直線状となる。
In this case, for example, when controlling the pressure on the outlet side of the compressor, the control pressure does not take the form of a sawtooth broken line as shown in FIG. 2, but takes the form of a relatively flat straight line.

本発明は以上のようOこ冷媒が圧縮機内を再循環するバ
イパス通路を配設し、かつ、該バイパス流量を制御する
流量制御手段を設け、この流量制御手段を圧縮機の出口
側の圧力Oこ応じて制御することOこより、圧縮機の出
口側の圧力の上昇か一定値内Oこ抑制されるので、圧縮
機の週負荷運転を引き起すことなく圧縮機の耐久性が向
上する。
As described above, the present invention provides a bypass passage for recirculating the refrigerant in the compressor, and also provides a flow rate control means for controlling the bypass flow rate, and controls the flow rate control means to control the pressure at the outlet side of the compressor. By controlling the pressure accordingly, the increase in the pressure on the outlet side of the compressor is suppressed within a certain value, so that the durability of the compressor is improved without causing weekly load operation of the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は本発明Oこ係る冷凍装置の実施例を
示す回路図、第2図は第1図の冷凍装置運転時の凝縮圧
カ一時間曲線図である。 図中、1は圧縮器、2は凝縮器、3は減圧装置、4は蒸
発器、5,12,13,14はバイパス通路、6,11
は流量制御弁、?、16,17は温度検知器、8,15
は演算部、9は逆止弁である。
1 and 3 are circuit diagrams showing an embodiment of the refrigeration system according to the present invention, and FIG. 2 is a condensing pressure curve diagram of the refrigeration system shown in FIG. 1 during operation. In the figure, 1 is a compressor, 2 is a condenser, 3 is a pressure reduction device, 4 is an evaporator, 5, 12, 13, 14 are bypass passages, 6, 11
Is the flow control valve? , 16, 17 are temperature detectors, 8, 15
9 is a calculation unit, and 9 is a check valve.

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮器、減圧装置、蒸発器を順次冷媒配管
Qこて環状に連結した冷凍装置において、上記圧縮機の
出口側の高圧冷媒を上記圧縮機の入口側に戻すバイパス
通路と、このバイパス通路に設けられ通路内の冷媒流量
を制御する流量制御手段と、上記バイパス通路より戻る
高圧冷媒が上記蒸発器側へ流れるのを阻止する阻止手段
と、上記圧縮機の出口側の圧力が所定以上になったこと
を検出する圧力検出手段とを備え、この検出手段からの
信号Oこ応じて上記流量制御手段を制御し上記バイパス
通路を介して上記圧縮機の高圧冷媒を入口側へ戻すよう
にしたことを特徴とする冷凍装置。 2 流量制御手段を、流量制御弁で構成したことを特徴
とする特許請求の範囲第1項記載の冷凍装置。 3 阻止手段を、逆止弁で構成したことを特徴とする特
許請求の範囲第1項記載の冷凍装置。
[Claims] 1. In a refrigeration system in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected in a ring shape with a refrigerant pipe Q, high-pressure refrigerant on the outlet side of the compressor is transferred to the inlet side of the compressor. a return bypass passage; a flow rate control means provided in the bypass passage for controlling the flow rate of refrigerant in the passage; a blocking means for preventing high-pressure refrigerant returning from the bypass passage from flowing toward the evaporator; pressure detection means for detecting that the pressure on the outlet side has exceeded a predetermined value; and in response to a signal from the detection means, the flow rate control means is controlled so that the high-pressure refrigerant of the compressor is supplied through the bypass passage. A refrigeration device characterized in that the water is returned to the inlet side. 2. The refrigeration system according to claim 1, wherein the flow rate control means is constituted by a flow rate control valve. 3. The refrigeration system according to claim 1, wherein the blocking means is comprised of a check valve.
JP2725382A 1982-02-22 1982-02-22 Refrigeration equipment Expired JPS5937418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2725382A JPS5937418B2 (en) 1982-02-22 1982-02-22 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2725382A JPS5937418B2 (en) 1982-02-22 1982-02-22 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5812964A JPS5812964A (en) 1983-01-25
JPS5937418B2 true JPS5937418B2 (en) 1984-09-10

Family

ID=12215910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2725382A Expired JPS5937418B2 (en) 1982-02-22 1982-02-22 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5937418B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128672B2 (en) 2006-05-09 2012-03-06 Thermotek, Inc. Wound care method and system with one or both of vacuum-light therapy and thermally augmented oxygenation

Also Published As

Publication number Publication date
JPS5812964A (en) 1983-01-25

Similar Documents

Publication Publication Date Title
EP1492986B1 (en) Injection of liquid and vapor refrigerant through economizer ports
EP1139039B1 (en) Economizer circuit enhancement
JP2006524313A (en) Vapor compression system with bypass / economizer circuit
JPS6039939B2 (en) heat pump equipment
JPH05223385A (en) Accumulation system of heat-pump and hot water
WO2023040210A1 (en) Refrigeration system
JPH04295566A (en) Engine-driven air-conditioning machine
JPH01239350A (en) Refrigerating cycle device
JPS5937418B2 (en) Refrigeration equipment
EP1065455A2 (en) Hot gas compressor bypass using oil separator circuit
JPS6357708B2 (en)
JPS5860169A (en) Refrigerator
JPH0212339B2 (en)
US3898862A (en) Economizer pressure regulating system
JPS6028935Y2 (en) Heat pump air conditioning system
JPS59106771A (en) High pressure valve
JPH0144796Y2 (en)
JPH0439578A (en) Engine-driven air-conditioner
JP3455811B2 (en) Gas-liquid mixing expansion valve
JPS5969665A (en) Hot-water supply device for heat pump
JPS62293066A (en) Engine drive type heat pump type air conditioner
JP2874975B2 (en) Air conditioner
JPH0134063Y2 (en)
JP4277114B2 (en) Engine-driven heat pump device
CN116481201A (en) Heat pump system and control method thereof