JPS5937200B2 - Full rotary cutting machine - Google Patents

Full rotary cutting machine

Info

Publication number
JPS5937200B2
JPS5937200B2 JP49034390A JP3439074A JPS5937200B2 JP S5937200 B2 JPS5937200 B2 JP S5937200B2 JP 49034390 A JP49034390 A JP 49034390A JP 3439074 A JP3439074 A JP 3439074A JP S5937200 B2 JPS5937200 B2 JP S5937200B2
Authority
JP
Japan
Prior art keywords
rotary blade
cutting
torque
paper
return device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49034390A
Other languages
Japanese (ja)
Other versions
JPS50128885A (en
Inventor
善利 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP49034390A priority Critical patent/JPS5937200B2/en
Publication of JPS50128885A publication Critical patent/JPS50128885A/ja
Publication of JPS5937200B2 publication Critical patent/JPS5937200B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Handling Of Sheets (AREA)

Description

【発明の詳細な説明】 従来固定刃と回転刃を有する紙、プラスチック其の他フ
ィルム状コイルを任意の長さに切断する刃物機構では、
回転刃の動力としてプランジャ−ソレノイド又はロータ
リーソレノイドを使用し、回転刃を一回転させることな
く、切断作業に必要な一定角のみ往復回転させ往回転で
コイルを切断し復回転で回転刃を始動位置まで復元させ
、コイルの通路を確保する機構であつた。
[Detailed Description of the Invention] Conventionally, a blade mechanism for cutting paper, plastic, and other film-like coils to arbitrary lengths has a fixed blade and a rotating blade.
A plunger solenoid or rotary solenoid is used as the power for the rotary blade, and without rotating the rotary blade once, it rotates back and forth only by a certain angle necessary for cutting work, cutting the coil in the forward rotation and moving the rotary blade to the starting position in the backward rotation. It was a mechanism to restore the coil to its original state and secure a passage for the coil.

この機構の欠点は送り速度の遅い場合は問題なく良好な
切断が可能であるが、普通に入手し得るプランジャ−又
はロータリーソレノイドの作動速度で印刷紙程度の紙を
切断した場合、事故無く切断出来る紙送り速度は最大3
m/mnまでである。これ以上の送り速度では第1〜3
図に示すごとく切断不能となる。第1図は回転刃1が始
動位置にあり、固定刃2の間に矢印の方向に進行する紙
3の適当な通路間隙を有する状態である。第3図はソレ
ノイドが稼動し、回転刃が一定角往回転し紙の切断を完
了し回転の終止点に来た状態である。紙3は切断完了後
も一定速度で矢印の方向に前進するため回転刃が矢印の
方向に復帰回転をする間に紙3は回転刃1の上に乗り上
げ、第2図の如く回転刃が復回転を完了し始動位置に復
元した時点では紙3は回転刃の上を通過し、次回の切断
は不可能となる。又この切断機構では回転刃1と固定刃
2とは一切断動作中往復二回摩擦するため短期間で摩耗
する。本発明は以上の欠点を排除し、回転刃が切断時と
同一方向に全回転し、紙送りを阻害することなく、しか
も一切断で一回のみ回転刃と固定刃を摩擦させ、摩耗量
を半減し、切断完了後回転刃は紙送りを妨げない始動位
置で停止し、高速紙送り切断が可能な装置である。更に
本発明においては紙切断時点を始動点の位置から限定し
、始動点より180を以上回転した位置で回転刃の復帰
用ばねから出る復帰トルクの最大な回転角を紙の切断時
に一致させ電磁クラツチの出力及び動力軸回転用モータ
ーのトルクを減少させ軽量小型、小消費電力で切断特性
を得る装置である。
The disadvantage of this mechanism is that when the feed speed is slow, it is possible to cut well without any problems, but when cutting paper equivalent to printing paper at the operating speed of a commonly available plunger or rotary solenoid, it can be cut without any accidents. Maximum paper feed speed is 3
up to m/mn. At higher feed speeds, the first to third
As shown in the figure, it becomes impossible to cut. FIG. 1 shows a state in which the rotary blade 1 is in the starting position and there is a suitable path gap between the fixed blades 2 for the paper 3 traveling in the direction of the arrow. FIG. 3 shows a state in which the solenoid is activated, the rotary blade rotates forward at a certain angle, completes cutting the paper, and reaches the end of rotation. Since the paper 3 moves forward in the direction of the arrow at a constant speed even after cutting is completed, the paper 3 rides on top of the rotary blade 1 while the rotary blade rotates back in the direction of the arrow, and the rotary blade returns as shown in Figure 2. When the rotation is completed and the paper 3 is restored to the starting position, the paper 3 passes over the rotary blade, and the next cutting becomes impossible. In addition, in this cutting mechanism, the rotary blade 1 and the fixed blade 2 rub against each other twice during one cutting operation, so they wear out in a short period of time. The present invention eliminates the above-mentioned drawbacks, the rotary blade rotates fully in the same direction as when cutting, does not impede paper feeding, and the rotary blade and fixed blade rub only once in each cutting, reducing the amount of wear. After cutting is completed, the rotary blade stops at a starting position that does not interfere with paper feeding, making it possible to feed and cut paper at high speed. Furthermore, in the present invention, the paper cutting point is limited from the position of the starting point, and the maximum rotation angle of the return torque generated from the return spring of the rotary blade is made to coincide with the time of cutting the paper at a position rotated more than 180 degrees from the starting point, and the electromagnetic This is a device that reduces the output of the clutch and the torque of the motor for rotating the power shaft to obtain cutting characteristics with light weight, small size, and low power consumption.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

第4図に本発明の装置の正面図、第5図に始動時点にお
ける回転刃、固定刃及び紙の関係を示す。
FIG. 4 is a front view of the apparatus of the present invention, and FIG. 5 shows the relationship among the rotary blade, fixed blade, and paper at the time of startup.

回転刃1は軸受4及び5で支えられ、左軸端には回転刃
1の回転軸心に対し偏心した位置にピン6を持つ。ピン
6には基盤7に一端を固定されたつる巻きばね8が取り
つけられ基盤の方向に引かれている。ピン6の位置はつ
る巻きばねが最短の長さに縮まつた時、第5図の如く回
転刃1が固定刃2との間に紙3の通路を十分確保出来る
始動点に止まるごとく取り付ける。ばね8の強度は回転
刃が無負荷の状態の場合は如何なる回転角度からも始動
点の位置まで復元するに必要十分なものを使用する。回
転刃1の右軸端には軟質磁石材料で製作したフランジカ
ツプリング9を固定する。カツプリング9の右面は摩擦
によるトルク伝達のための適当な凹凸加工又は摩擦板を
つける。カツプリング9の左面にはスリツプリング10
を取りつける。スリツプリング10の導電帯11は不導
性物質で製作されたスリツプリング10上に保持された
他の機構から絶縁されている。導電帯11はスリツプリ
ング円周面全周にはられるものではなく、電磁クラツチ
20により動力軸14から動力伝達を受けるべき角間の
みはられる。この角度は回転刃1が始動点から1800
以上回転し紙切断を完了するまでの回転角を含むもので
ある。スリツプリング10には二本のプラツシ12が接
触し、始動点ではスリツプリング10の導電帯11上の
始動端に接触し、二本のプラツシ12は電気的に導通さ
れている。この回路は後に説明する電磁コイル20の操
作回路につながる。紙切断を完了するまでスリツプリン
グ10が回転刃1と同時に回転するとスリツプリング1
0の不導体部分に接するためこの回路は切られる。カツ
プリング9に相対して、同じく端面に摩擦用加工又は摩
擦板を持つた軟質磁石材料で製作したフランジカツプリ
ング13を有する動力軸14があり、カツプリング13
は動力軸14と回転方向には固定され、軸方向には一定
距離の間、自由に滑るように取り付けてある。またカツ
プリング9とカツプリング13の中心には張出力を持つ
つる巻ばね15を内装し、カツプリング13をカツプリ
ング9から切りはなしている。動力軸14の右端面には
ベルトシーブ16が固定され、ベルト17により常時一
方向の回転としている。動力軸14の回転軸心はベアリ
ング18により回転刃1の回転軸心と同一線上になるよ
う保持されている。カツプリング9及び13の外周は基
盤7に固定された電磁コイル19の内径にはいつている
。電磁コイル19とカツプリング9,13はルーズな嵌
合となつていて、紙切断に必要な動力を伝達し得る電磁
クラツチ20を構成する。第6〜7図は電磁クラツチ操
作回路図を示す。第6図は指令回路、第7図は主回路で
ある、始動点では主回路の導電帯11とブラツシ12は
接続されている。他のスイツチは全部「切り」となつて
いる。切断開始時点で指令スイツチL1「入り」により
タイムスイツチTm「入り」、電磁スイツチX1 「入
り」、指令スイツチL1は直ちに「切り」となるが、タ
イムスイツチ回路により電磁スイツチX1は保持され、
主回路電磁スイツチX2及びマグネツトクラツチ用電磁
コイル19を励磁し主回路を構成する。主回路構成完了
後タイムスイツチTmは「切り」となり指令回路は始動
時の状態に返り、主回路は電磁スイツチX1が「切り」
となり電磁スイツチX2で回路をつくる。スリツプリン
グ10が回転し導電帯11とプラツシ12が「切り」に
なつた時点で電磁スイツチX2は「切り」となる。その
後復帰ばねによりスリツプリング10が始動点に復帰し
、導電帯11とプラツシ12が「入り」になり、主回路
を始動時の状況に復元し次の切断指令を待つ。本切断機
の各部品の作動の連携状況を第8〜11図で示す。各図
の左端は復帰用ばね8の作動状況、その右は回転刃1、
固定刃2及び紙3の切断動作状況、その右はスリツプリ
ング10の円周面を平面に展開して示してあり、導電帯
11とプラツシ12の関係位置を示す。右端はカツプリ
ング9,13、ばね15の作動状況を示す。第8図は始
動位置における状況を示す。導電帯11に二本のプラツ
シ12が接触し、導通されているが電磁スイツチX2が
開であるため電磁コイル19は励磁されず、カツプリン
グ9と13は分離され動力軸14の回転は回転刃1に伝
達されない。回転刃1はばね8により引かれて固定刃2
との間に紙3の十分な通路間隙を持つた状態で保持され
ている。第9図は電磁スイツチX2が「入り」となつた
状態を示す。プラツシ12は導電帯11を通り電磁コイ
ル19を励磁し、カツプリング9にカツプリング13を
吸着し、回転刃1に矢印の方向に動力伝達を開始する。
カツプリング13は復帰ばね8を引伸しながら始動点よ
り1800以上回転する。第10図は紙切断完了後導電
帯11がプラツシ12からはなれる直前の状態であり、
始動点より導電帯11がプラツシ12よりはなれるまで
は電磁クラツチ20により回転刃1の駆動が継続し、こ
れがはなれて第11図のごとく電磁クラツチ20が開い
た時点でも復帰ばね8による回転トルクのため回転は更
にすすみ第8図の位置で復帰ばね8の力で停止する。以
後切断指令により同様なサイクルを行なう。この間紙3
の進行方向と回転刃1の回転方向とが同一であるため紙
3の送り速度が回転刃1の速度よりかなり高速となるま
では切断事故は発生しない。実施例では回転刃1の刃先
回転半径1cTn、動力軸14の回転数200RPMで
紙送り速度を1m/Mnより13m/Mnまで変化させ
たが13m/Mnでも何ら問題なく切断可能であつた。
又刃の切断寿命は30万回の切断にたえ、従来の往復回
転刃の切断寿命の18万回を大巾に向上した。装置の無
負荷トルクをTOkg一儂、紙切断に要するトルクをT
8l<g一儂とし、復帰ばね8によるトルクをTθ、そ
の最大トルクをTOmとする。又電磁クラツチにより伝
達すべきトルクをTWl最大トルクをTwmとすると次
の関係がなりたつ。紙切断位置が始動点より1800ま
での範囲にある場合ラツチも動力用モーターも大きなも
のが必要となる。
The rotary blade 1 is supported by bearings 4 and 5, and has a pin 6 at the left shaft end at a position eccentric to the rotation axis of the rotary blade 1. A helical spring 8 whose one end is fixed to the base 7 is attached to the pin 6 and is pulled toward the base. The pin 6 is installed so that when the helical spring is compressed to its shortest length, the rotating blade 1 stops at a starting point where the paper 3 can pass sufficiently between the fixed blade 2 and the fixed blade 2, as shown in FIG. The strength of the spring 8 is necessary and sufficient to restore the rotary blade to the starting point position from any rotation angle when the rotary blade is in an unloaded state. A flange coupling 9 made of a soft magnetic material is fixed to the right shaft end of the rotary blade 1. The right side of the coupling ring 9 is provided with a suitable roughening process or a friction plate for torque transmission by friction. On the left side of the coupling ring 9 is a slip ring 10.
Attach. The conductive band 11 of the slip ring 10 is insulated from other features carried on the slip ring 10 which are made of non-conductive material. The conductive band 11 is not placed around the entire circumferential surface of the slip ring, but is placed only between the corners where power is to be transmitted from the power shaft 14 by the electromagnetic clutch 20. This angle is 1800 degrees from the starting point of rotary blade 1.
This includes the rotation angle until the paper cutting is completed. Two plastics 12 are in contact with the slip ring 10, and at the starting point they are in contact with the starting end on the conductive band 11 of the slip ring 10, so that the two plastics 12 are electrically connected. This circuit is connected to an operating circuit for the electromagnetic coil 20, which will be explained later. When the slip ring 10 rotates simultaneously with the rotary blade 1 until the paper cutting is completed, the slip ring 1
This circuit is cut because it touches the non-conductor part of 0. Opposed to the coupling ring 9 is a power shaft 14 having a flange coupling 13 made of a soft magnetic material with a friction plate or a friction plate on the end face.
is fixed to the power shaft 14 in the rotational direction, and is attached so that it can freely slide over a certain distance in the axial direction. Further, a helical spring 15 having a tensile force is installed in the center of the coupling 9 and the coupling 13, and the coupling 13 is separated from the coupling 9. A belt sheave 16 is fixed to the right end surface of the power shaft 14, and is always rotated in one direction by a belt 17. The rotational axis of the power shaft 14 is held by a bearing 18 so as to be aligned with the rotational axis of the rotary blade 1. The outer peripheries of the coupling rings 9 and 13 are aligned with the inner diameter of the electromagnetic coil 19 fixed to the base plate 7. The electromagnetic coil 19 and the coupling rings 9, 13 are loosely fitted and constitute an electromagnetic clutch 20 capable of transmitting the power necessary for cutting paper. 6-7 show electromagnetic clutch operating circuit diagrams. FIG. 6 shows the command circuit, and FIG. 7 shows the main circuit. At the starting point, the conductive band 11 and brush 12 of the main circuit are connected. All other switches are set to ``off.'' At the start of cutting, command switch L1 is turned on, time switch Tm is turned on, electromagnetic switch X1 is turned on, and command switch L1 is immediately turned off, but electromagnetic switch X1 is held by the time switch circuit.
The main circuit electromagnetic switch X2 and the magnetic clutch electromagnetic coil 19 are excited to form the main circuit. After the main circuit configuration is completed, the time switch Tm is turned off, the command circuit returns to the starting state, and the electromagnetic switch X1 is turned off in the main circuit.
Next, create a circuit using electromagnetic switch X2. When the slip ring 10 rotates and the conductive band 11 and plastics 12 are turned off, the electromagnetic switch X2 is turned off. Thereafter, the return spring returns the slip ring 10 to the starting point, the conductive band 11 and the plastic plug 12 are turned on, and the main circuit is restored to the state at the time of starting, waiting for the next disconnection command. Figures 8 to 11 show how the various parts of this cutting machine work together. The left end of each figure is the operating status of the return spring 8, the right side is the rotary blade 1,
The cutting operation of the fixed blade 2 and the paper 3 is shown on the right, with the circumferential surface of the slip ring 10 developed in a plane, and the relative positions of the conductive band 11 and the plastic 12 are shown. The right end shows the operating conditions of the coupling rings 9, 13 and the spring 15. FIG. 8 shows the situation in the starting position. The two plastics 12 are in contact with the conductive band 11 and conductive, but since the electromagnetic switch is not transmitted. Rotary blade 1 is pulled by spring 8 and fixed blade 2
The paper 3 is held with a sufficient passage gap between the paper 3 and the paper 3. FIG. 9 shows a state in which the electromagnetic switch X2 is turned on. The brush 12 passes through the conductive band 11, excites the electromagnetic coil 19, attracts the coupling 13 to the coupling 9, and starts transmitting power to the rotary blade 1 in the direction of the arrow.
The coupling ring 13 rotates over 1800 degrees from the starting point while stretching the return spring 8. FIG. 10 shows the state immediately before the conductive band 11 is separated from the plastic 12 after paper cutting is completed.
The rotary blade 1 continues to be driven by the electromagnetic clutch 20 from the starting point until the conductive band 11 is separated from the plastic 12, and even when the electromagnetic clutch 20 is separated and the electromagnetic clutch 20 is opened as shown in FIG. Therefore, the rotation proceeds further and is stopped by the force of the return spring 8 at the position shown in FIG. Thereafter, a similar cycle is performed by a cutting command. This interleaf 3
Since the traveling direction of the paper 3 and the rotating direction of the rotary blade 1 are the same, a cutting accident will not occur until the feeding speed of the paper 3 becomes considerably higher than the speed of the rotary blade 1. In the example, the paper feed speed was changed from 1 m/Mn to 13 m/Mn with the cutting edge rotation radius of the rotary blade 1 being 1 cTn and the rotation speed of the power shaft 14 being 200 RPM, and cutting was possible without any problems even at 13 m/Mn.
In addition, the cutting life of the blade is 300,000 cuts, which is a vast improvement over the 180,000 cutting life of conventional reciprocating rotary blades. The no-load torque of the device is TOkg, and the torque required for paper cutting is T.
It is assumed that 8l<g1, the torque by the return spring 8 is Tθ, and its maximum torque is TOm. Further, if the torque to be transmitted by the electromagnetic clutch is TWl, and the maximum torque is Twm, the following relationship holds true. If the paper cutting position is within a range of 1800 degrees from the starting point, both the latch and the power motor will need to be large.

紙切断位置が始動点より180なから360との間にあ
る場合回転角180合〜3601の範囲における最大伝
達トルクTwmを最小にするためにはTθ=TOmの位
置である。
When the paper cutting position is between 180 degrees and 360 degrees from the starting point, in order to minimize the maximum transmission torque Twm in the rotation angle range of 180 degrees to 3601 degrees, the position is Tθ=TOm.

この場合のすなわち紙切断位置が始動点より180θか
ら360ちの間にある場合は、伝達トルクは00より1
80のまでの回転では切断装置の無負荷トルクTOのほ
かに復帰装置による伝達トルクとは逆向きのトルクTθ
を加えたものを必要とする一方、180トを過ぎて後は
復帰装置によるトルクTθは伝達トルクと同方向となる
から伝達トルクTθは無負荷トルクTOと紙切断トルク
Tsを加えたトルクより復帰装置によるトルクTθだけ
小さいものでよいことになる。
In this case, that is, if the paper cutting position is between 180θ and 360 degrees from the starting point, the transmitted torque is between 00 and 1
At rotations up to 80°, in addition to the no-load torque TO of the cutting device, there is a torque Tθ in the opposite direction to the torque transmitted by the return device.
On the other hand, after 180 tons, the torque Tθ caused by the return device becomes in the same direction as the transmitted torque, so the transmitted torque Tθ is returned from the sum of the no-load torque TO and the paper cutting torque Ts. This means that the torque Tθ caused by the device only needs to be smaller.

前記実施例における復帰ばね8による復帰装置ではその
復帰トルクは0帰〜1800と、180で〜360帰の
各々の範囲では方向が逆で対称なトルク特性を有するこ
とになるので、0で〜180ルの範囲で復帰トルクTθ
が負荷となつた分だけ180範〜360トの範囲内では
負荷を軽減することになるのである。伝達トルクを最小
にするためには、回転刃0〜1800の間のTwmと回
転角180転〜360の範囲におけるTwmが同一であ
れば良い。すなわち TOm=%Ts前記0〜180
Oの回転角で切断する場合の最大伝達トルクTwm=T
O+Ts+TOmよりも、180ト〜360mの回転角
で切断する場合の最大伝達トルクTwm=TO+%Ts
が可なり小さいことが分る。
In the return device using the return spring 8 in the above embodiment, the return torque has opposite directions and symmetrical torque characteristics in the ranges of 0 return to 1800 and 180 to 360 return. Return torque Tθ within the range of
The load will be reduced within the range of 180 to 360 tons by the amount that becomes the load. In order to minimize the transmitted torque, it is sufficient that the Twm between the rotary blades 0 and 1800 and the Twm in the rotation angle range of 180 and 360 rotations are the same. That is, TOm=%Ts above 0-180
Maximum transmission torque Twm when cutting at a rotation angle of O = T
Maximum transmission torque Twm=TO+%Ts when cutting at a rotation angle of 180 to 360 m than O+Ts+TOm
It can be seen that it is quite small.

すなわち回転刃の回転方向への復帰装置よりのトルクが
最大となる位置を回転刃の切断位置とし、又其の位置で
の復帰装置よりのトルクを紙切断トルクの%にするよう
復帰ばねの張力を調整すればよい。
In other words, the position where the torque from the return device in the rotating direction of the rotary blade is maximum is the cutting position of the rotary blade, and the tension of the return spring is set so that the torque from the return device at that position is % of the paper cutting torque. Just adjust it.

前記実施例における実測値では空転トルクTo=0.4
kg一儂、切断トルクTs=8.4kg−へ最大復帰ト
ルク角1000と260゜であり最大復帰トルクT0m
=4.2kg一儂になるよう調整し、回転刃の切断位置
角を変化させて電磁クラツチの必要伝達トルクを測定し
た結果第1表に示す結果を得た。
The actual measurement value in the above example is idling torque To=0.4
kg 1, the cutting torque Ts = 8.4 kg-, the maximum return torque angle is 1000 and 260°, and the maximum return torque T0m
= 4.2 kg per unit, and the required transmission torque of the electromagnetic clutch was measured by changing the cutting position angle of the rotary blade. As a result, the results shown in Table 1 were obtained.

第1表に示される如く、回転刃の切断位置が復帰ばねの
トルク最大となる回転角260°に一致したとき電磁ク
ラツチの必要最大伝達トルクは最小となる。次に復帰ば
ねの最大トルク角と、回転刃の切断回転角を260°に
合せ復帰ばねの最大トルクを変化させて同一装置で紙を
切断した場合の電磁クラツチの必要最大トルクを測定し
た結果を第2表に示す。
As shown in Table 1, when the cutting position of the rotary blade coincides with the rotation angle of 260° at which the torque of the return spring is maximum, the required maximum transmission torque of the electromagnetic clutch becomes the minimum. Next, we measured the maximum torque angle of the return spring and the required maximum torque of the electromagnetic clutch when paper was cut with the same device by adjusting the cutting rotation angle of the rotary blade to 260° and changing the maximum torque of the return spring. Shown in Table 2.

第2表でわかるごとく、復帰ばね最大トルクT0m=%
T8=4.2kg−cの場合が電磁クラツチの必要最大
トルクを最小にしている。本発明において電磁クラツチ
の型式、この操作回路、復帰用つる巻ばねの型式、各部
品の配列等は必ずしも実施例の通りである必要はない。
As shown in Table 2, maximum return spring torque T0m=%
The case of T8=4.2 kg-c minimizes the required maximum torque of the electromagnetic clutch. In the present invention, the type of electromagnetic clutch, its operating circuit, the type of return spiral spring, the arrangement of each component, etc. do not necessarily have to be as in the embodiments.

本発明の装置の機能を妨げない限り、電磁クラツチは市
販の電磁摩擦クラツチ、粉末電磁クラツチその他の電磁
クラツチを用いても良く、回転刃の位置検出はスリツプ
リングとプラツシを用いなくてもタイムスイツチのみで
回転位置を規定して電磁クラツチを操作しても良い。ま
た動力軸はモーター直結でも差支えない。以上に述べる
ように本発明の装置ではばねによる復帰装置により、回
転刃の一回転の駆動のうち前半において復帰装置のばね
に変形を与え、後半においてばねの変形を開放すること
で紙切断に要する大きなトルクを削減する構造として伝
達トルクを最小にすることができ、そのため電磁クラツ
チおよび回転用モーターを小型化し、消費電力を減少す
ることができる。
As long as it does not interfere with the function of the device of the present invention, a commercially available electromagnetic friction clutch, powder electromagnetic clutch, or other electromagnetic clutch may be used as the electromagnetic clutch, and the position of the rotating blade can be detected without using a slip ring or a time switch. Alternatively, the electromagnetic clutch may be operated by specifying the rotational position using a handshake. Also, the power shaft may be directly connected to the motor. As described above, in the device of the present invention, the spring-based return device deforms the spring of the return device in the first half of one rotation of the rotary blade, and releases the deformation of the spring in the second half, which is necessary for paper cutting. As a structure that reduces large torque, the transmitted torque can be minimized, so that the electromagnetic clutch and rotation motor can be made smaller and the power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は従来の切断機の動作関係図、第4図は本発
明の一実施例の正面図、第5図は始動時点の関係図、第
6〜7図は操作回路図、第8〜11図は動作説明図であ
る。 1:回転刃、2:固定刃、3:紙、6:ピン、7:基盤
、8:ばね、9:カツプリング、10:スリツプリング
、11:導電帯、12:プラツシ、14:動力軸、15
:ばね、19:電磁コイル、20:電磁クラツチ、L1
:指令スイツチ、Tm:タイムスイツチ、X1 :電
磁スイツチ、X2:電磁スイツチ。
Figures 1 to 3 are operational relationship diagrams of a conventional cutting machine, Figure 4 is a front view of an embodiment of the present invention, Figure 5 is a relationship diagram at the time of startup, Figures 6 to 7 are operating circuit diagrams, 8 to 11 are operation explanatory diagrams. 1: Rotating blade, 2: Fixed blade, 3: Paper, 6: Pin, 7: Base, 8: Spring, 9: Coupling, 10: Slip ring, 11: Conductive band, 12: Plastic, 14: Power shaft, 15
: Spring, 19: Electromagnetic coil, 20: Electromagnetic clutch, L1
: Command switch, Tm: Time switch, X1: Electromagnetic switch, X2: Electromagnetic switch.

Claims (1)

【特許請求の範囲】 1 固定刃と回転刃との間を通過するフィルム状コイル
を任意の長さに切断する切断機において、常時一方向に
回転する動力軸より適宜マグネットクラッチを連結して
前記回転刃を始動位置より回転させる駆動装置と、前記
コイルを切断して前記始動位置より180゜以上回転後
一定回転位置において前記マグネットクラッチを開放す
る開閉器と、前記回転刃の軸に軸の一回転に伴つてばね
を連続的に変形させる構造によつて軸に負荷トルク変動
を与える復帰装置とより構成され、前記復帰装置におい
てばねの変形が最小となる位置を回転刃の始動位置とし
て前記マグネットクラッチ開放後も復帰装置により回転
刃を切断回転方向と同一方向に全回転させて前記始動位
置に復帰停止させ、高速走行コイルを切断することを特
徴とする全回転式切断機。 2 復帰装置として回転刃の軸心に対して偏心して回転
するピンと固定基盤とを緊縮性ばねで連結した構造とし
、回転刃の回転方向への復帰装置よりのトルクが最大と
なる位置を回転刃の切断位置とし、かつこのとき復帰装
置より回転刃が受けるトルクをコイル切断に要するトル
クのほぼ1/2に設定した特許請求の範囲第1項記載の
全回転式切断機。
[Scope of Claims] 1. In a cutting machine that cuts a film-like coil passing between a fixed blade and a rotary blade to a desired length, a magnetic clutch is connected as appropriate from a power shaft that always rotates in one direction to a drive device that rotates the rotary blade from a starting position; a switch that disconnects the coil and releases the magnetic clutch at a certain rotational position after rotating more than 180 degrees from the starting position; and a return device that applies load torque fluctuations to the shaft by a structure that continuously deforms a spring as it rotates, and the magnet is set at a position where the spring deformation is minimum in the return device as the starting position of the rotary blade. A fully rotary cutting machine characterized in that even after the clutch is released, the rotary blade is fully rotated in the same direction as the cutting rotation direction by a return device to return to the starting position and stop, thereby cutting the high-speed traveling coil. 2 The return device has a structure in which a pin that rotates eccentrically with respect to the axis of the rotary blade and a fixed base are connected by a tension spring, and the position where the torque from the return device in the rotational direction of the rotary blade is maximum is the position of the rotary blade. 2. The fully rotary cutting machine according to claim 1, wherein the cutting position is set to , and the torque applied to the rotary blade by the return device at this time is set to approximately 1/2 of the torque required for cutting the coil.
JP49034390A 1974-03-29 1974-03-29 Full rotary cutting machine Expired JPS5937200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49034390A JPS5937200B2 (en) 1974-03-29 1974-03-29 Full rotary cutting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49034390A JPS5937200B2 (en) 1974-03-29 1974-03-29 Full rotary cutting machine

Publications (2)

Publication Number Publication Date
JPS50128885A JPS50128885A (en) 1975-10-11
JPS5937200B2 true JPS5937200B2 (en) 1984-09-07

Family

ID=12412829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49034390A Expired JPS5937200B2 (en) 1974-03-29 1974-03-29 Full rotary cutting machine

Country Status (1)

Country Link
JP (1) JPS5937200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108092A (en) * 1984-11-01 1986-05-26 Nippon Kokan Kk <Nkk> Apparatus for boarding and leaving ship with gondola

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023072A (en) * 1983-07-19 1985-02-05 Nec Corp Facsimile apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4516863Y1 (en) * 1966-12-02 1970-07-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4516863Y1 (en) * 1966-12-02 1970-07-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108092A (en) * 1984-11-01 1986-05-26 Nippon Kokan Kk <Nkk> Apparatus for boarding and leaving ship with gondola

Also Published As

Publication number Publication date
JPS50128885A (en) 1975-10-11

Similar Documents

Publication Publication Date Title
JP4864582B2 (en) Automatic torque switching device
JPH01286750A (en) Generator for motorcar
JP2004204970A (en) Power transmitting mechanism
CA2459264A1 (en) Clutch and brake for a conveyor drive roll
JPS5937200B2 (en) Full rotary cutting machine
ES464857A1 (en) Electric coupling and brake motor
JPH0643829B2 (en) Reduction gear structure of starter with reduction gear
US1433562A (en) Ments
CN109236989A (en) A kind of electromagnetic clutch type overrunning belt pulley and starting-generating integrated motor
JPH01170723A (en) Drive device for auxiliary machinery of engine
JP4414913B2 (en) Engine starter and one-way clutch used therefor
GB1083686A (en) Driving mechanism
TW263540B (en) Driving apparatus for a sewing machine
SU1199300A1 (en) Vibration exciter
JPS6288875A (en) Transmission device in transmission pulley
SU127115A1 (en) Electromagnetic two-stage speed controller to spinning machine
JPS5823946A (en) Apparatus for pulling material of knitted fabric
KR0154961B1 (en) Magnetic switch
FR2250405A5 (en) Magnetic transmission has clutch for driving and for braking - each clutch having magnetic powder between an inductor and rotor
JPH04219552A (en) Transmission
JPH01138326A (en) Engine accessary driving gear
JP3030214U (en) Output booster
JPH0564394A (en) Vehicle power generator
JPH03144125A (en) Electromagnetic clutch
JPS57163179A (en) Apparatus for driving compressor used in automotive air conditioner