JPS5937146B2 - How to detect the level of molten steel in the mold - Google Patents

How to detect the level of molten steel in the mold

Info

Publication number
JPS5937146B2
JPS5937146B2 JP55094269A JP9426980A JPS5937146B2 JP S5937146 B2 JPS5937146 B2 JP S5937146B2 JP 55094269 A JP55094269 A JP 55094269A JP 9426980 A JP9426980 A JP 9426980A JP S5937146 B2 JPS5937146 B2 JP S5937146B2
Authority
JP
Japan
Prior art keywords
molten steel
electrode
flux
slag
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55094269A
Other languages
Japanese (ja)
Other versions
JPS5719136A (en
Inventor
良幸 神河
和義 年「うめ」
嘉孝 仁村
秀樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP55094269A priority Critical patent/JPS5937146B2/en
Priority to US06/280,494 priority patent/US4470446A/en
Priority to AU72660/81A priority patent/AU528599B2/en
Priority to FR8113457A priority patent/FR2486651A1/en
Priority to CA000381447A priority patent/CA1197591A/en
Priority to GB8121200A priority patent/GB2082777B/en
Publication of JPS5719136A publication Critical patent/JPS5719136A/en
Publication of JPS5937146B2 publication Critical patent/JPS5937146B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/241Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid for discrete levels
    • G01F23/242Mounting arrangements for electrodes

Description

【発明の詳細な説明】 本発明は、たとえば連続鋳造装置において、鋳型内の溶
鋼レベルを確実に検出する検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection method for reliably detecting the level of molten steel in a mold, for example in a continuous casting apparatus.

従来から連続鋳造装置における鋳型内の溶鋼レベルを連
続的に検出することは、対象物としての溶鋼が高温であ
ることから困難なものであつたが、この課題の−解決案
として、特公昭54一42848号公報に、鋳型の溶鋼
表面上に浮遊するフラックス下層部のスラグ内に電極を
挿入し、該電極挿入部における温度変化に伴う電気抵抗
変化を検出すると共に、該検出値が常に一定になるよう
に上記電極を上下に移動せしめて、その移動量を測定す
ることによつて鋳型内の溶鋼レベルを検出する方法が提
案されている。
Conventionally, it has been difficult to continuously detect the level of molten steel in the mold in continuous casting equipment because the molten steel as the object is at a high temperature. In Japanese Patent No. 142848, an electrode is inserted into the slag in the lower layer of flux floating on the surface of molten steel in a mold, and changes in electrical resistance due to temperature changes at the electrode insertion part are detected, and the detected value is always constant. A method has been proposed in which the level of molten steel in the mold is detected by moving the electrode up and down and measuring the amount of movement.

本発明は、特公昭54−42848号に開示されている
鋳型内溶鋼レベルの検出方法の改良に関するもので、こ
の検出方法をより実施化し易いものとして、かつより確
実に検出するものとして、上記フラックスとして断熱フ
ラックスを用いると共に、上記電極を挿入するスラグの
深さが常時3〜15mmの範囲内にあるように上記断熱
フラックスを溶鋼上に投入した状態で、上記スラグ内に
電極を常時滞在させて、その中で当該電極の抵抗値が一
定になるように上下動せしめ、該移動量により鋳型内溶
鋼レベルを検出するようにしたものである。
The present invention relates to an improvement of the method for detecting the level of molten steel in a mold disclosed in Japanese Patent Publication No. 54-42848. In addition to using a heat insulating flux as the electrode, the electrode is always kept in the slag with the heat insulating flux being poured onto the molten steel so that the depth of the slag into which the electrode is inserted is always within the range of 3 to 15 mm. The electrode is moved up and down so that its resistance value remains constant, and the level of molten steel in the mold is detected based on the amount of movement.

すなわち、フラックスにスラグ化し難い断熱フラックス
を用いることにより、溶鋼上にスラグと十分な層厚のフ
ラックス層を形成させて当該スラグおよびフラックス層
内に挿入する電極を十分保温するようにし、その結果電
極の先端部に発生し易い、いわゆるスラグベア−等によ
る電極の破損や異常化を防止する一方、上記スラグ層の
厚さを3mm以上形成して、電極の先端を常時スラグ内
に確実に滞在させると共に厚いスラグ層内の漸次変化す
る温度による電気抵抗変化を電極で正確に検出するよう
にし、該電極が検出領域外へ突出して振動するいわゆる
電極のハンチング現象を起した状態でその移動量の検出
を行わしめないようにして、検出精度を向上させると共
に、この検出方法を容易に実用化させることができるよ
うにしたものである。以下、本発明を図面に示す実施例
について詳細に説明する。
In other words, by using an insulating flux that is difficult to form into slag, a sufficiently thick flux layer is formed on the molten steel, and the slag and the electrode inserted into the flux layer are sufficiently insulated. The slag layer is formed with a thickness of 3 mm or more to ensure that the tip of the electrode remains in the slag at all times, while preventing the electrode from being damaged or becoming abnormal due to so-called slag bears, which are likely to occur at the tip of the slag. The change in electrical resistance caused by the gradually changing temperature within the thick slag layer is accurately detected using an electrode, and the amount of movement is detected when the electrode protrudes outside the detection area and vibrates, a so-called hunting phenomenon of the electrode. This method is designed to improve detection accuracy and to easily put this detection method into practical use. Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

第1図において、連続鋳造装置の鋳型1内には鋳造中溶
鋼2が投入されると共に、該溶鋼上に断熱フラツクスが
投入されて、従来周知の如く溶鋼2の上部には上記断熱
フラツクスが溶融したスラグ3とその上に断熱フラツク
ス4が層となつて存在する。
In FIG. 1, molten steel 2 is poured into a mold 1 of a continuous casting apparatus during casting, and a heat insulating flux is thrown on top of the molten steel. A layer of heat insulating flux 4 is present on the slag 3.

カーボン等の溶融点の高い材料を使つた棒状の電極5が
鋳型1の上部よりフラツクス4内に挿入されてその下端
をスラグ3内に滞在させると共に、該電極5はボールネ
ジで上下動するアームやドラムで巻取、引出するワイヤ
ー等よりなる機械的な昇降装置6を介して自在に上下に
移動できるように吊下される。
A rod-shaped electrode 5 made of a material with a high melting point such as carbon is inserted into the flux 4 from the upper part of the mold 1, and its lower end stays in the slag 3. It is suspended so that it can freely move up and down via a mechanical lifting device 6 made of a wire or the like that is wound up and pulled out on a drum.

該昇降装置6は、サーボモータ7を介して駆動され、そ
の正転又は逆転によつて電極を上下に移動する。また、
昇降装置6には直線型ポテンシヨメータ8を機械的に連
動するように設けて、上記電極5の変位が該ポテンシヨ
メータ8の出力として取り出せるようにする。上記電極
5には定電流発生器9より定電流を流して当該電極5と
溶鋼2間の抵抗を、たとえば電圧として、抵抗測定器1
0で取り出す。
The lifting device 6 is driven by a servo motor 7, and moves the electrodes up and down by rotating it forward or backward. Also,
A linear potentiometer 8 is mechanically interlocked with the lifting device 6 so that the displacement of the electrode 5 can be taken out as the output of the potentiometer 8. A constant current is passed through the electrode 5 from a constant current generator 9, and the resistance between the electrode 5 and the molten steel 2 is measured as a voltage, for example, using a resistance measuring device.
Take out at 0.

この抵抗測定器10の出力を、抵抗設定器11で予め設
定した一定の抵抗、または電圧と差動増巾器12で比較
して、両者の差値を電力増巾器13で上記サーボモータ
モの制御出力に転換し、該出力によリサーボモータ7の
駆動を制御して昇降装置6を上下動する。いいかえると
、鋳型1内の溶鋼2のレベルが変動して、抵抗測定器1
0の出力が変化すると、その出力と抵抗設定器11の設
定値の差によつて差動増巾器12の出力が出る間は、サ
ーボモータ7の駆動により昇降装置6を上下動させて、
電極5を常に該電極5と溶鋼2との間の抵抗が一定にな
る位置に移動させる。このような電極5の上下の移動を
ポテンシヨメータ8で測定して溶鋼2のレベルを検出す
る。上記抵抗測定器10の出力およびポテンシヨメータ
8の出力はレコーダ14で時々刻々記録される。たとえ
ば、第2図イ,口,ハは、夫々レコーダ14における抵
抗測定器10の出力の記録を示すもので、第2図イは抵
抗測定器の電圧出力vが計測時間t中大略一定であるこ
とを示す。また、第3図はレコーダ14におけるポテン
シヨメータ8による溶鋼上面と電極間の距離S′と抵抗
測定器10による溶鋼と電極間の抵抗値vの関係を示す
線図で、曲線Al,A2,A3は夫々溶鋼の湯温150
0℃においてスラグの深さすなわちスラグ層3の厚さが
311Lζ6m7!L.lO關の場合を示す。一般に電
極を滞在させるべきスラグ層3は、第3図に示す如く溶
鋼に面する高温部から、フラツクス層と接触する低温部
にわたつて展開される温度勾配に対応して一定の抵抗勾
配を持つものであり、したがつて電極と溶鋼間の抵抗値
によつてその間の距離を検出できるものである。このよ
うなレベルの検出に際して、スラグ層3は溶鋼の上面に
投入されるフラツクス4の溶融によつて形成されるが、
スラグ層はその各位置における夫々の抵抗値が確実に測
定できるようにその抵抗勾配がゆるやかに変化するに十
分な厚さを必要とする。
The output of this resistance measuring device 10 is compared with a constant resistance or voltage set in advance by a resistance setting device 11 using a differential amplifier 12, and the difference value between the two is used to control the servo motor using a power amplifier 13. The output is converted to an output, and the output controls the drive of the reservo motor 7 to move the lifting device 6 up and down. In other words, the level of molten steel 2 in the mold 1 fluctuates, and the resistance measuring device 1
When the output of 0 changes, the elevating device 6 is moved up and down by the drive of the servo motor 7 while the output of the differential amplifier 12 is output due to the difference between the output and the setting value of the resistance setting device 11.
The electrode 5 is always moved to a position where the resistance between the electrode 5 and the molten steel 2 is constant. Such vertical movement of the electrode 5 is measured by a potentiometer 8 to detect the level of the molten steel 2. The output of the resistance measuring device 10 and the output of the potentiometer 8 are recorded every moment by a recorder 14. For example, Figure 2 A, 2, and 3 respectively show the recording of the output of the resistance measuring device 10 in the recorder 14, and in Figure 2 A, the voltage output v of the resistance measuring device is approximately constant during the measurement time t. Show that. Further, FIG. 3 is a diagram showing the relationship between the distance S' between the top surface of molten steel and the electrode measured by the potentiometer 8 in the recorder 14 and the resistance value v between the molten steel and the electrode measured by the resistance measuring device 10, with curves Al, A2, A3 has a molten steel temperature of 150
At 0°C, the depth of the slag, that is, the thickness of the slag layer 3 is 311Lζ6m7! L. The case of lO relation is shown. Generally, the slag layer 3 in which the electrode is to stay has a certain resistance gradient corresponding to the temperature gradient that develops from the high temperature part facing the molten steel to the low temperature part contacting the flux layer, as shown in Fig. 3. Therefore, the distance between the electrode and the molten steel can be detected based on the resistance value between the electrode and the molten steel. When detecting such a level, the slag layer 3 is formed by melting the flux 4 thrown onto the top surface of the molten steel.
The slag layer needs to be thick enough so that its resistance gradient changes slowly so that the respective resistance value at each location can be reliably measured.

本発明者等は種々の実験を行つた結果、フラツクス4と
して断熱フラツクスを用いれば、容易に十分な厚さのス
ラグと電極に対する保温効果の良好なフラツクス層が形
成できると共に、該スラグ3の深さは常時3〜15能の
範囲内にあるようにすれば各位置における抵抗値が確実
に測定できることを見出した。断熱フラツクスは、たと
えば、SlO2:36.6%、CaO:34%、Al2
O3:5.5%、F:4.6%よりなり、従来のNa2
SiO3、CaF2を主成分とする溶融式フラツクスと
異なつてスラグ化し難いものであり、また、冷却すると
スラグヘアー(スラグの塊り)が生じ難いもので、溶鋼
上に投入するフラツクスの量に応じて十分な厚さのスラ
グ層が形成できるものである。また溶鋼上に断熱フラツ
クスを投入して溶鋼に近いフラツクスが溶融してスラグ
層が形成されると共にその上に溶融しないフラックス層
が形成されるために、該フラツクス層がスラグ層に対す
る保温効果を発揮してスラグ層の厚さや性状が安定する
一方、該フラツクス層を貫通してスラグ層内に挿入され
る電極もフラツクス層で保温されて急激に冷却されない
ので、電極に溶鋼やスラグの一部が付着していわゆるダ
ンゴを形成するなどの電極の測定精度や電極の性質に悪
影響を及ぼすようなことが避けられるものである。この
ようにして形成されたスラグ層の深さが余りにも浅い、
いいかえるとスラグ層の厚さが薄く、それが一定の限度
を越えた時にはその抵抗を電極で検出することが難しく
なる。第2図イは、電極で抵抗に対応する電圧を大略一
定のものとして検出できる正常な状態の→1で、スラグ
層が10m7L.フラツクス層が10+α關の場合を示
しており、また第2図口は、スラグ層とフラツクス層の
厚さが51L1前後の場合を示すもので、この時の抵抗
測定器の出力は約20mmの巾で上下に振動していわゆ
るハンチング現象を示しており、この状態ではスラグ層
は3m1以下で、電極がその抵抗値を一定に保つべく上
下に移動するとすぐに溶鋼内に突入して加熱されたり、
フラツクス層へ突出して急冷されたりしてもはやその検
出領域外にあるものと考えられる。この場合、第2図ハ
に示す如く断熱フラツクスを追加して溶鋼上に投入しそ
の結果スラグ層の厚さを増加すると、上記の如きハンチ
ング現象がなくなつて追従性の良好な第2図イの如き状
態に戻ることからも分る。また、第3図のA3の曲線に
示す如くスラグ層の厚さが3n以下になると、その抵抗
勾配が始めは大略水平にねて、フラツクス層の近傍で急
激に垂直に立ち上るような曲線になるので、電極がスラ
グ内で移動できる距離が短い上に電極の移動に応じて夫
々の位置での抵抗値を検出することが極めて難かしくな
ることが分る。いいかえると、第3図A,,A2に示す
如く、スラグ層の厚さが大きいと、その抵抗勾配もなだ
らかに変化する曲線となるので、電極の移動距離を長く
とることができる上に電極の夫々の位置に対応して異る
抵抗値をより確実により応答性よく検出することができ
るものであり、したがつて、その検出が容易で正確なも
のとなる。なお、スラグ層の厚さが1511以上になる
とフラツクスが必要以上に投入されたことになり、その
原単位としての経済性が悪くなるものである。
As a result of various experiments, the present inventors have found that by using an adiabatic flux as the flux 4, it is possible to easily form a flux layer with a sufficient thickness and a good heat retention effect for the electrodes, and the depth of the slag 3 can be easily formed. It has been found that the resistance value at each position can be reliably measured if the resistance is always within the range of 3 to 15 times. The adiabatic flux is, for example, SlO2: 36.6%, CaO: 34%, Al2
Consisting of O3: 5.5%, F: 4.6%, conventional Na2
Unlike molten fluxes whose main components are SiO3 and CaF2, it is difficult to turn into slag, and it is also difficult to form slag hair (clumps of slag) when cooled. A slag layer of sufficient thickness can be formed. In addition, when insulating flux is poured onto the molten steel, the flux close to the molten steel melts to form a slag layer, and an unmelted flux layer is formed on top of it, so the flux layer exerts a heat insulating effect on the slag layer. This stabilizes the thickness and properties of the slag layer, while the electrode that penetrates the flux layer and is inserted into the slag layer is also kept warm by the flux layer and does not cool down rapidly. This prevents adhesion and formation of so-called bumps that adversely affect the measurement accuracy and properties of the electrode. The depth of the slag layer formed in this way is too shallow;
In other words, the thickness of the slag layer is so thin that when it exceeds a certain limit, it becomes difficult to detect its resistance with electrodes. Figure 2A shows the normal state of →1 in which the voltage corresponding to the resistance can be detected by the electrodes as approximately constant, and the slag layer is 10m7L. The figure shows the case where the flux layer is about 10+α, and the opening in Figure 2 shows the case where the thickness of the slag layer and flux layer is around 51L1, and the output of the resistance measuring device at this time is about 20mm wide. In this state, the slag layer is less than 3 m1, and as soon as the electrode moves up and down to keep its resistance constant, it immediately plunges into the molten steel and is heated.
It is thought that it protrudes into the flux layer and is rapidly cooled, so that it is no longer in the detection area. In this case, if adiabatic flux is added and poured onto the molten steel as shown in Fig. 2C, and the thickness of the slag layer is increased as a result, the hunting phenomenon as described above disappears and the followability is improved as shown in Fig. 2. This can be seen from the fact that it returns to a state like this. Furthermore, as shown in the curve A3 in Figure 3, when the thickness of the slag layer becomes 3 nm or less, the resistance gradient initially becomes approximately horizontal, but suddenly becomes a curve that rises vertically near the flux layer. Therefore, it can be seen that the distance that the electrode can move within the slug is short, and that it becomes extremely difficult to detect the resistance value at each position as the electrode moves. In other words, as shown in Figure 3A and A2, when the thickness of the slag layer is large, the resistance gradient becomes a curve that changes smoothly, so the moving distance of the electrode can be increased, and the electrode It is possible to detect different resistance values corresponding to each position more reliably and with better responsiveness, and therefore the detection becomes easier and more accurate. Incidentally, if the thickness of the slag layer exceeds 1,511 mm, more flux than necessary is used, and the economical efficiency as a unit of flux becomes poor.

上記、実施例に示す如く本発明は、鋳型の溶鋼表面上に
浮遊するフラツクスの下層部スラグ内に電極を挿入して
、該電極挿入部における温度変化に伴う電気抵抗変化を
検出すると共に、該検出値が常に一定となるように上記
電極を上下に移動せしめて、該移動量を測定するように
してなる鋳型内溶鋼レベルの検出力法にして、上記フラ
ツクスとして断熱フラツクスを用いると共に、上記電極
を挿入するスラグの深さが常時3〜15m1の範囲内に
あるように上記断熱フラツクスを溶鋼上に投入するよう
にしたことを特徴とするものであり、さらに本発明の好
ましい実施態様としては、少くとも上記スラグ内を上下
動する電極がハンチング現象の振動を発生する時に、該
ハンチング現象を検出してこの時は上記スラグの深さが
3mm以下にあるとして上記範囲外としたことを特徴と
するものであり、このような簡単な工程で鋳型内溶鋼レ
ベルの検出を所期の如く容易かつ確実に実施化出来る頗
る秀れた利点を有するものである。
As shown in the above examples, the present invention inserts an electrode into the lower slag of flux floating on the surface of molten steel in a mold, detects changes in electrical resistance due to temperature changes at the electrode insertion part, and The detection power method for the level of molten steel in the mold is made by moving the electrode up and down and measuring the amount of movement so that the detected value is always constant, and using an adiabatic flux as the flux, The heat insulating flux is introduced onto the molten steel so that the depth of the slag into which the flux is inserted is always within the range of 3 to 15 m1, and a preferred embodiment of the present invention includes: At least when the electrode moving up and down in the slag generates vibration due to a hunting phenomenon, the hunting phenomenon is detected, and at this time, the depth of the slag is determined to be 3 mm or less and is determined to be outside the above range. This method has the outstanding advantage that the level of molten steel in the mold can be detected easily and reliably as expected through such a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる検出装置の概略の構成を示すプ
ロツク説明図、第2図イ,口,ハは第1図の装置で測定
した時間一電極の測定電圧線図、第3図は第1図の装置
で測定した電極の距離と抵抗関係線図である。 1・・・・・・鋳型、3・・・・・・スラグ、4・・・
・・・フラツクス、5・・・・・・電極、6・・・・・
・昇降装置、7・・・・・・サーボモータ、8・・・・
・・ポテンシヨメータ、10・・・・・・抵抗測定器。
Fig. 1 is an explanatory diagram showing a schematic configuration of the detection device used in the present invention, Fig. 2 A, C and C are time-electrode measurement voltage diagrams measured with the device of Fig. 1, and Fig. 3 is FIG. 2 is a diagram showing the relationship between electrode distance and resistance measured with the device shown in FIG. 1; 1...Mold, 3...Slag, 4...
...Flux, 5...Electrode, 6...
・Lifting device, 7... Servo motor, 8...
...Potentiometer, 10...Resistance measuring device.

Claims (1)

【特許請求の範囲】 1 鋳型の溶鋼表面上に浮遊するフラックスの下層部ス
ラグ内に電極を挿入して、該電極挿入部における温度変
化に伴う電気抵抗変化を検出すると共に、該検出値が常
に一定となるように上記電極を上下に移動せしめて、該
移動量を測定するようにしてなる鋳型内溶鋼レベルの検
出方法にして、上記フラックスとして断熱フラックスを
用いると共に、上記電極を挿入するスラグ層の厚さが常
時3〜15mmの範囲内にあるように上記断熱フラック
スを溶鋼上に投入するようにしたことを特徴とする鋳型
内溶鋼レベルの検出方法。 2 上記特許請求の範囲第1項記載の鋳型内溶鋼レベル
の検出方法にして、少くとも上記スラグ内を上下動する
電極がハンチング現象の振動を発生する時に、該ハンチ
ング現象を検出してこの時は上記スラグ層の厚さが3m
m以下にあるとしてハンチング現象がなくなるまで、溶
鋼上に上記断熱フラックスを投入するようにしたことを
特徴とするもの。
[Claims] 1. An electrode is inserted into the lower slag of flux floating on the surface of molten steel in a mold, and changes in electrical resistance due to temperature changes at the electrode insertion part are detected, and the detected value is always The method for detecting the level of molten steel in a mold comprises moving the electrode up and down so that the electrode remains constant and measuring the amount of movement, using an adiabatic flux as the flux, and a slag layer into which the electrode is inserted. A method for detecting the level of molten steel in a mold, characterized in that the heat insulating flux is poured onto the molten steel so that the thickness of the molten steel is always within the range of 3 to 15 mm. 2. In the method for detecting the level of molten steel in a mold as set forth in claim 1 above, at least when the electrode moving up and down in the slag generates vibrations due to the hunting phenomenon, the hunting phenomenon is detected. The thickness of the above slag layer is 3m
The heat insulating flux is poured onto the molten steel until the hunting phenomenon disappears, assuming that the flux is below m.
JP55094269A 1980-07-09 1980-07-09 How to detect the level of molten steel in the mold Expired JPS5937146B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP55094269A JPS5937146B2 (en) 1980-07-09 1980-07-09 How to detect the level of molten steel in the mold
US06/280,494 US4470446A (en) 1980-07-09 1981-07-06 Method and apparatus for detecting molten metal surface level in a mold
AU72660/81A AU528599B2 (en) 1980-07-09 1981-07-08 Level of molten metal
FR8113457A FR2486651A1 (en) 1980-07-09 1981-07-08 METHOD AND APPARATUS FOR DETECTING THE SURFACE LEVEL OF MOLTEN METAL IN A MOLD
CA000381447A CA1197591A (en) 1980-07-09 1981-07-09 Method and apparatus for detecting molten metal surface level in a mold
GB8121200A GB2082777B (en) 1980-07-09 1981-07-09 Detecting a molten metal surface level in a casting mould

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55094269A JPS5937146B2 (en) 1980-07-09 1980-07-09 How to detect the level of molten steel in the mold

Publications (2)

Publication Number Publication Date
JPS5719136A JPS5719136A (en) 1982-02-01
JPS5937146B2 true JPS5937146B2 (en) 1984-09-07

Family

ID=14105550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55094269A Expired JPS5937146B2 (en) 1980-07-09 1980-07-09 How to detect the level of molten steel in the mold

Country Status (1)

Country Link
JP (1) JPS5937146B2 (en)

Also Published As

Publication number Publication date
JPS5719136A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
US4186792A (en) Apparatus for monitoring and controlling the level of the molten metal in the mold of a continuous casting machine
US4843234A (en) Consumable electrode length monitor based on optical time domain reflectometry
JPH03180260A (en) Continuous measurement of thickness of liquid slag on surface of molten metal bath in metallurgical container
US4075414A (en) Apparatus for regulating the immersion depth of electrodes in electrode-melting furnaces
CA1197591A (en) Method and apparatus for detecting molten metal surface level in a mold
JPS5937146B2 (en) How to detect the level of molten steel in the mold
US4893895A (en) An improved encased high temperature optical fiber
US4219720A (en) Energy beam welding with filler material
US4418741A (en) Method of controlling relative movement between an ingot and a mold
JP4181374B2 (en) Method for measuring surface position of molten steel layer and / or thickness of slag layer, apparatus thereof and probe used therefor
JPH02117750A (en) Method for detecting molten metal surface level in metal strip continuous casting
US7180931B1 (en) Electrode immersion depth determination and control in electroslag remelting furnace
JPH0747199B2 (en) Continuous casting method and its mold
Satunkin et al. Determination of physical constants of the melt and the parameters of the control object concerning crystal growth from the melt
JPS60187455A (en) Detection of molten metal level in casting mold
JPS59111022A (en) Device and method of making sure position of surface of liquid of metallic solution
JP3096232B2 (en) Continuous casting method
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPS5912120Y2 (en) Molten steel level detection device in mold
JPH01166867A (en) Thin strip manufacturing device
JPH0513747B2 (en)
SU1276435A1 (en) Method and apparatus for controlling alignment of open-ended mould and support unit of secondary cooling zone
SU1154342A1 (en) Device for measuring temperature of molten metal at circulation vacuum processing
JPH0712874Y2 (en) Bottom electrode for DC arc furnace
JPS58210522A (en) Equipment for measuring molten metal level