JPS5936968A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS5936968A
JPS5936968A JP14615682A JP14615682A JPS5936968A JP S5936968 A JPS5936968 A JP S5936968A JP 14615682 A JP14615682 A JP 14615682A JP 14615682 A JP14615682 A JP 14615682A JP S5936968 A JPS5936968 A JP S5936968A
Authority
JP
Japan
Prior art keywords
input
signal
input signal
charge
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14615682A
Other languages
Japanese (ja)
Inventor
Masabumi Inmi
正文 員見
Toshinori Murata
村田 敏則
Yuji Ito
裕二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14615682A priority Critical patent/JPS5936968A/en
Priority to US06/525,696 priority patent/US4574384A/en
Publication of JPS5936968A publication Critical patent/JPS5936968A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/282Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements with charge storage in a depletion layer, i.e. charge coupled devices [CCD]
    • G11C19/285Peripheral circuits, e.g. for writing into the first stage; for reading-out of the last stage

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

PURPOSE:To enable to always input normal signal charges into a CCD even when the value of DC voltage of the input signal is out of standard by a method wherein the high level value of a signal charge input clock is changed corresponding to the uneven change of the value of DC voltage of the input signal. CONSTITUTION:The charge transfer device is composed of a semiconductor substrate 1 and the group of electrodes 13-22 insulated from this substrate. The signal charge formed in the semiconductor substrate is successively transferred to the longitudinal direction of channels by the multi phase voltage impressed on the electrodes. In the charge transfer device composed in this manner, a switch 54 is connected to the electrode 19, and then this switch is changed over to the upper side when the input signal Vin is at a high level and over to the lower side when it is at a low level. In case of changing the switch 54 over to the upper side, the value of the input clock voltage phi'G changes in proportion to the variation of levels of the input signal Vin by means of a transistor 50 controlled by the input signal Vin. Thereby, abnormal signal charge can be always inputted into the charge transfer device.

Description

【発明の詳細な説明】 本発明は入ν)信号直流゛電圧値の変動にかかわらず転
送すべき信号′電荷の飽オロ現象が生じないようにした
電荷転送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge transfer device which prevents saturation of the charge of a signal to be transferred regardless of fluctuations in the voltage value of an input DC signal.

周知の如く、CODは、半導体基板とこの基板に対して
絶縁きれた電極群を備え、これら電極に多相電圧を印加
することにより、前記半導体基板内に形成された電位井
戸に蓄積される信号電荷を順次チャンネルの長手方向に
転送する。
As is well known, COD includes a semiconductor substrate and a group of electrodes insulated from the substrate, and by applying multiphase voltages to these electrodes, a signal is accumulated in a potential well formed in the semiconductor substrate. Charge is transferred sequentially along the length of the channel.

従ってCCDは、アナログ信号の遅延線として信号処理
の分野で多くの用途に用いられている。
Therefore, CCDs are used in many applications in the field of signal processing as delay lines for analog signals.

CODへの電荷入力方法は神々あるが、第1〜6図に示
す電位平衡法が、比較的雑音が少ないため広く用いられ
ている( RCA  ReviewVoI 、 41 
、 pp 、 29〜56 、 March 1980
)。
There are many methods for inputting charge to the COD, but the potential balance method shown in Figures 1 to 6 is widely used because it has relatively little noise (RCA Review VoI, 41
, pp. 29-56, March 1980
).

まず第1〜6図により電位平衡法について説明する。第
1図において、1oはp形シリコン基板、12はn+形
拡散層、13〜22はゲート電極で一般にアルミニウム
又は多結晶シリコン等で形成され、11は酸化シリコン
層で、基板1oと電極群とを絶縁する。Vinは入力信
号、voo 、 VCCは直流バイアス電圧、φl、φ
2は市荷転送用クロック、SPはブンプリ/グクロック
、φGは信号電荷入力用クロックで、クロック周波数は
久方信号周波数に対して十分高い。第2図に、第1図に
示したφ1.φ2+SPIφG等各種クロックの振幅9
位相関係を示す。第6図は、第1図に示した各ゲート電
極13−22に、第2図に示した各クロックを印加した
ときの動作を説明する図である。
First, the potential balance method will be explained with reference to FIGS. 1 to 6. In FIG. 1, 1o is a p-type silicon substrate, 12 is an n+ type diffusion layer, 13 to 22 are gate electrodes generally made of aluminum or polycrystalline silicon, and 11 is a silicon oxide layer, which is connected to the substrate 1o and the electrode group. Insulate. Vin is the input signal, voo, VCC is the DC bias voltage, φl, φ
2 is a clock for transferring commercial goods, SP is a pump clock, and φG is a clock for signal charge input, and the clock frequency is sufficiently higher than the signal frequency. FIG. 2 shows the φ1. Amplitude of various clocks such as φ2 + SPIφG 9
Shows phase relationship. FIG. 6 is a diagram illustrating the operation when each clock shown in FIG. 2 is applied to each gate electrode 13-22 shown in FIG. 1.

第3図(a)は、第1図に示したCOD入力部の基板表
面付近の模式図、第6図(h)〜(d)は、第2図に示
す時刻t o = t 3におけるゲート電極13〜2
2下の基板内部のポテンシャル及び電荷の移動を示す。
FIG. 3(a) is a schematic diagram of the COD input section near the substrate surface shown in FIG. Electrodes 13-2
2 shows the potential and charge movement inside the substrate below.

時刻toにおいては、n十形拡散層12下の内部ポテン
シャルは、第3図(b)に一点鎖線で示すようになって
いる。時刻tlにおいて、サンプリングクロックSPの
電圧が高レベルVspuKすると、n十形拡散層12下
の内部ポテンシャルは第3図(1))に実線で示すよう
になり、ゲート電極1418、19で形成される電位井
戸に、ゲート電極18に印加される入力信号Vinの大
きさに応じた電荷が蓄えられる。時刻t2では、ゲート
電極19に印加される信号’?!i荷入力相入力用クロ
ック電圧がVG と々す、第3図(e)に示すように、
ゲート電lji、15.19.21)’?l’形成され
る電位井戸に、VG−Vir・に比例した信号電荷Qs
ig  がIN’fRされる。この信号’fii’、荷
Qs igは、以後、転送用クロックφlとφ2によっ
て、第3図(d)に示す様に順次転送されて行く。以上
述べた動作が反復されて、CCD内部へ、入力信号Vi
nに応じた信号電荷Qsigが順次入力される。
At time to, the internal potential under the n-dosed diffusion layer 12 is as shown by the dashed line in FIG. 3(b). At time tl, when the voltage of the sampling clock SP reaches a high level VspuK, the internal potential under the n-domain diffusion layer 12 becomes as shown by the solid line in FIG. Charges corresponding to the magnitude of the input signal Vin applied to the gate electrode 18 are stored in the potential well. At time t2, the signal '?' applied to the gate electrode 19. ! When the input clock voltage for the input phase reaches VG, as shown in Fig. 3(e),
Gate voltage lji, 15.19.21)'? A signal charge Qs proportional to VG-Vir is applied to the potential well l' formed.
ig is IN'fR. Thereafter, the signal 'fii' and the signal Qs ig are sequentially transferred as shown in FIG. 3(d) by the transfer clocks φl and φ2. The above-mentioned operations are repeated, and the input signal Vi is input into the CCD.
Signal charges Qsig corresponding to n are sequentially input.

第4図は、入力信号Vinと、信号電荷Qsigの関係
を示す図で、Vin > Vcの場合はQsig=0と
なり、■o≦Vin≦VGの場合は、QsigはVin
に対して直線的に変化する。またVin <VOの場合
には、QsigがCODの転送部における電位井戸の最
大電荷蓄積量に)axより大きくなり飽和する。第4図
に示すように、CCDを用いて信号処理を行う場合には
、一般にダイナミックレンジを確保するため、入力信号
の直流電圧値をVDCとして用いる。しかし例えばCO
Dを用いてテレビジョン信号の処理を行う場合を考える
と、テレビジョン信号はその絵柄の内界によって直流電
圧値が常に変化するため、第4図に破線で示すように、
信号電荷Qsigが飽和する可能性がある。この信号電
荷Qsigの飽和を防ぐためには入力信号の振幅を小さ
くする必要があるが、これは出力信号のS/N比劣化を
招くという問題がある。
FIG. 4 is a diagram showing the relationship between the input signal Vin and the signal charge Qsig. When Vin > Vc, Qsig = 0, and when o≦Vin≦VG, Qsig becomes Vin
changes linearly with respect to In addition, when Vin<VO, Qsig becomes larger than the maximum charge accumulation amount of the potential well in the transfer section of the COD) ax and becomes saturated. As shown in FIG. 4, when performing signal processing using a CCD, the DC voltage value of the input signal is generally used as VDC in order to ensure a dynamic range. However, for example, CO
Considering the case where a television signal is processed using D, the DC voltage value of the television signal constantly changes depending on the inner world of the picture, so as shown by the broken line in Fig. 4,
There is a possibility that the signal charge Qsig will be saturated. In order to prevent saturation of the signal charge Qsig, it is necessary to reduce the amplitude of the input signal, but this poses a problem of deteriorating the S/N ratio of the output signal.

本発明の目的は、上記従来技術の問題点を解消し、入力
信号の直流電圧値がずれても、CCIJ内部へ常に正常
な信号電荷を入力できるように17だ電荷転送装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a charge transfer device which solves the above-mentioned problems of the prior art and can always input a normal signal charge into the CCIJ even if the DC voltage value of the input signal deviates. be.

上記目的を達成するために本発明においてはイ百号′、
1(荷入力用クロックφGの高レベル値VGを、入力信
号Vinの直流電圧値の高低変化に対応して変化させる
こととした。
In order to achieve the above object, in the present invention,
1 (The high level value VG of the load input clock φG is changed in response to the change in level of the DC voltage value of the input signal Vin.

第5図は本発明一実施例要部回路図で、図中50はpn
p)ランジスタ、51は抵抗、52は可変抵抗、56は
コンデンサ、54は第2図に示したクロックφGにより
、高レベル時には上部接点に、低レベル時に(は下部接
点に(実際には駆動周波数が高いからトランジスタなど
を用いる)接続されるスイッチで、その他の符号は第1
図等と同様である。コンデンサ53は入力信号Vinの
交流成分の影響を除くだめのもので、可変抵抗52は入
力信号の直流電圧値がVDCのときに、スイッチ回路5
4の出力信号φG′の高レベル値がVaとなるように初
期調整される。
Fig. 5 is a circuit diagram of the main part of one embodiment of the present invention, and 50 in the figure is pn.
p) A transistor, 51 is a resistor, 52 is a variable resistor, 56 is a capacitor, and 54 is a clock φG shown in Fig. 2. When the level is high, it is connected to the upper contact, and when it is low level, it is connected to the lower contact (actually, the drive frequency The other symbols are the first
It is the same as the figure. The capacitor 53 is for removing the influence of the alternating current component of the input signal Vin, and the variable resistor 52 is for removing the influence of the alternating current component of the input signal Vin.
The initial adjustment is made so that the high level value of the output signal φG' of No. 4 becomes Va.

第6図は、入力信号Vinの直流電圧値が変化したとき
の実際の入力用クロックφcTの波形を示す図で、(a
)はVinの、(b)はφGの、(c)はφG’の波形
図である。クロックφg+の関レベル値は、入力信号V
inの直流電圧値がVDCのときにはvGであり、入力
信号Vinの直流電圧値がVI)C++と小さくなった
場合には、トランジスタ500ベース電圧が下がるため
、vGよりも小さい値vG”となる。すなわち実際に入
力ゲート19に印加されるクロックφG′の萬レベル値
は、入力信号Vinの直流電圧値に比例する。第5図か
られかるように、クロックφG+は、スイッチ回路54
により、クロックφGに同期したクロックとなる。
FIG. 6 is a diagram showing the waveform of the actual input clock φcT when the DC voltage value of the input signal Vin changes.
) is a waveform diagram of Vin, (b) is a waveform diagram of φG, and (c) is a waveform diagram of φG'. The function level value of the clock φg+ is the input signal V
When the DC voltage value of in is VDC, it is vG, and when the DC voltage value of input signal Vin becomes small to VI)C++, the base voltage of the transistor 500 decreases, so it becomes a value vG'' smaller than vG. That is, the level value of the clock φG' actually applied to the input gate 19 is proportional to the DC voltage value of the input signal Vin.As can be seen from FIG.
As a result, the clock becomes synchronized with the clock φG.

第7図は上記の如く入力信号Vinの直流電圧値がVD
C”にずれた(低下した)場合の本発明の効果を示す図
で、実線aは、第3図に示した従来通常の入力方法にお
ける入力信号Vinと信号電荷Qsigの関係を示し、
破線すは、本発明を実施した場合の関係を示す。従来の
入力方法では、Vin<Voの入力信号に対しては、信
号電荷Qsigは飽和した(実線)が、本発明によれば
クロックφG・の高レベル値もVGからVGl”にずれ
従って、信号電荷Qsigが飽和する点もVo’にずれ
るため、信号電荷Qsigは破線で示すようにp、旦和
しなくなる。
Figure 7 shows that the DC voltage value of the input signal Vin is VD as described above.
In this figure, the solid line a shows the relationship between the input signal Vin and the signal charge Qsig in the conventional conventional input method shown in FIG.
The dashed line indicates the relationship when the present invention is implemented. In the conventional input method, the signal charge Qsig is saturated (solid line) for an input signal of Vin<Vo, but according to the present invention, the high level value of the clock φG also shifts from VG to VGl'', so that the signal Since the point at which the charge Qsig is saturated also shifts to Vo', the signal charge Qsig no longer saturates by p, as shown by the broken line.

第8図は、入力信号Vinの直流電圧値がVDCからV
nCにずれた(上昇した)場合の本発明の効果を示す図
で、実線aは、第3図に示した従来通常の入力方法にお
ける入力信号VinとイH号電荷Qsigの関係を示し
、破線すは、本発明を実施した場合の関係を示す0従米
の入力方法では、V’in>Vcの入力信号に対しては
、信号電へ(Isigは飽和した(実&りが、本発明に
よればクロックφG′の島レベル値も、破線で示すよう
にVGからvG′にずれるため、Vin>Vcの入力信
号に対しても信号電荷Qsigは飽和しなくなる、以上
説明したように本発明によれば、入力信号の直流電圧値
が変動した場合にも、CCD内部へ常に正常な(飽和し
ていない)信号電荷を入力できるようになり、安定して
正常な動作を行う電荷転送装置が得られる。
FIG. 8 shows that the DC voltage value of the input signal Vin varies from VDC to VDC.
In this figure, the solid line a shows the relationship between the input signal Vin and the iH charge Qsig in the conventional normal input method shown in FIG. In the conventional input method, for an input signal of V'in>Vc, the signal voltage is saturated (Isig is saturated). According to the above, since the island level value of the clock φG' also shifts from VG to vG' as shown by the broken line, the signal charge Qsig will not be saturated even for an input signal of Vin>Vc.As explained above, the present invention According to the invention, even when the DC voltage value of the input signal fluctuates, a normal (non-saturated) signal charge can always be input into the CCD, and a charge transfer device that operates stably and normally can be obtained. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCCDの入力部構造図、第2図は第1図に示す
各クロックの位相関係図、第3図は従来の入力方法説明
図、第4図は従来の技術で信号電荷が飽和する場合を説
明する図、第5図は本発明一実施例の要部回路図、第6
図(a) 、 (b)(C)は、それぞれ本発明実施例
における、入力信号、入力用クロック、本発明に係る実
際に入力ゲートに印加される入力用クロックの波形図、
第7.8図は本発明の効果説明図である。 10・・・p形シリコン基板 12・・・n十形拡散層   13〜22・・・ゲート
電極φG、φG′・・・信号電荷入力用クロックVin
・・・入力信号   Q s i g・・・信号電荷躬
1 図 躬 2 閃 tot1″t273 第3 図 M4 図 第 5 図 @6霞 (α) 嶋7 閃 躬8図
Figure 1 is a structural diagram of the input section of the CCD, Figure 2 is a diagram of the phase relationship of each clock shown in Figure 1, Figure 3 is an explanatory diagram of the conventional input method, and Figure 4 is the signal charge saturated with the conventional technology. FIG. 5 is a circuit diagram of a main part of an embodiment of the present invention, and FIG.
Figures (a), (b), and (C) are waveform diagrams of input signals, input clocks, and input clocks actually applied to input gates according to the present invention, respectively, in the embodiment of the present invention.
FIG. 7.8 is an explanatory diagram of the effect of the present invention. 10...p-type silicon substrate 12...n-type diffusion layer 13-22...gate electrodes φG, φG'...clock Vin for signal charge input
...Input signal Q s i g... Signal charge 1 Fig. 2 Flash tot1''t273 Fig. 3 M4 Fig. 5 Fig. @6 Kasumi (α) Shima 7 Flash tot 8 Fig.

Claims (1)

【特許請求の範囲】[Claims] 入力拡散層と複数の入力ゲート電極からなる電荷注入部
を備え、入力ゲート電極中の1個に入力信号を印加し、
他の1個に入力用クロック電圧を印加[7、これら2個
のt極に印加される電圧の差に比例した信号電荷を順次
転送する電荷転送装置ηにおいて、hσ記大入力用クロ
ック電圧高レベル値を、前記入力信号の直流′醒圧値の
高低変化に対応して変化させるようにしたことを特徴と
する電荷転送装置。
It includes a charge injection part consisting of an input diffusion layer and a plurality of input gate electrodes, and applies an input signal to one of the input gate electrodes,
Applying an input clock voltage to the other one [7, In the charge transfer device η that sequentially transfers signal charges proportional to the difference between the voltages applied to these two t-poles, the hσ input clock voltage A charge transfer device characterized in that a level value is changed in response to a change in level of a DC voltage threshold value of the input signal.
JP14615682A 1982-08-25 1982-08-25 Charge transfer device Pending JPS5936968A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14615682A JPS5936968A (en) 1982-08-25 1982-08-25 Charge transfer device
US06/525,696 US4574384A (en) 1982-08-25 1983-08-23 Signal transfer system using a charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14615682A JPS5936968A (en) 1982-08-25 1982-08-25 Charge transfer device

Publications (1)

Publication Number Publication Date
JPS5936968A true JPS5936968A (en) 1984-02-29

Family

ID=15401395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14615682A Pending JPS5936968A (en) 1982-08-25 1982-08-25 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS5936968A (en)

Similar Documents

Publication Publication Date Title
US4093872A (en) Charge coupled device with input for direct injection of signal
US4686648A (en) Charge coupled device differencer
JP3887483B2 (en) MOS sample and hold circuit
US4156818A (en) Operating circuitry for semiconductor charge coupled devices
US4080581A (en) Charge transfer transversal filter
US4047051A (en) Method and apparatus for replicating a charge packet
JPS6065571A (en) Semiconductor device
US4574384A (en) Signal transfer system using a charge transfer device
US3935477A (en) Analog inverter for use in charge transfer apparatus
JPS5936968A (en) Charge transfer device
GB1596335A (en) Differential charge transfer device
US5087843A (en) Input circuit for ccd delay line
JPS5829634B2 (en) charge coupled device
US4360745A (en) Depletion capacitance compensator
JPS6352474B2 (en)
US4350902A (en) Input stage for a monolithically integrated charge transfer device which generates two complementary charge packets
JP2768736B2 (en) Charge transfer device
JPS5842630B2 (en) charge coupled device
US4140923A (en) Charge transfer output circuits
JP3024276B2 (en) Charge transfer element
JPS5824504Y2 (en) analog delay device
GB2025135A (en) A bulk-channel charge coupled device
JPH0427697B2 (en)
JPH0721960B2 (en) Television signal delay device
JPH05292406A (en) Charge transfer device