JPS5935501B2 - electron beam equipment - Google Patents

electron beam equipment

Info

Publication number
JPS5935501B2
JPS5935501B2 JP9373779A JP9373779A JPS5935501B2 JP S5935501 B2 JPS5935501 B2 JP S5935501B2 JP 9373779 A JP9373779 A JP 9373779A JP 9373779 A JP9373779 A JP 9373779A JP S5935501 B2 JPS5935501 B2 JP S5935501B2
Authority
JP
Japan
Prior art keywords
electron beam
aperture
electrode
diaphragm
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9373779A
Other languages
Japanese (ja)
Other versions
JPS5619856A (en
Inventor
玄也 松岡
章 柳沢
進 小笹
孜 菰田
茂 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP9373779A priority Critical patent/JPS5935501B2/en
Publication of JPS5619856A publication Critical patent/JPS5619856A/en
Publication of JPS5935501B2 publication Critical patent/JPS5935501B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、電子線を用いて試料の観察、電子感光材料の
感光を行なう電子線装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electron beam apparatus for observing a sample and exposing an electron-sensitive material using an electron beam.

電子線装置は電子線を用いて試料の観察、電子感光材料
の感光を行なう装置であるが、常に試料に電子線を照射
する必要はなく、時には電子線をしや断することがある
。その方法は電子線通路の近傍に設置した電極と通路に
設置した絞りを用いて行なわれる。電子線を試料に対し
てしや断する時は、上記電J 極に電圧を加え、電子線
の向きを変えて電子線が電極の下にある絞りを通過でき
ないようにする。
An electron beam device is a device that uses electron beams to observe samples and expose electron-sensitive materials, but it is not always necessary to irradiate the sample with the electron beam, and the electron beam may sometimes be interrupted. The method is carried out using an electrode placed near the electron beam path and a diaphragm placed in the path. When cutting off the electron beam to the sample, a voltage is applied to the J electrode to change the direction of the electron beam so that it cannot pass through the aperture located below the electrode.

第、図aは、このよ5な電子線装置の一つである電子線
描画装置の構造の一例を示したものである。図において
、1はフィラメント、2はウエネj ルト、3はアノー
ド、5は電子線径を縮小するためのレンズ系、6は電子
線をしや断するための電極、1は電子線をしや断するた
めの絞り、8は電子線を照射する試料である。4は電子
線の概略の経路を示す。
FIG. 1A shows an example of the structure of an electron beam lithography system, which is one of the five types of electron beam systems. In the figure, 1 is a filament, 2 is a magnet, 3 is an anode, 5 is a lens system for reducing the diameter of the electron beam, 6 is an electrode for cutting off the electron beam, and 1 is an electrode for cutting off the electron beam. A diaphragm 8 for cutting is a sample to which an electron beam is irradiated. 4 shows the approximate path of the electron beam.

この構造での電子線のしや断方法を第1図bを用いて説
明する。(図では、その説明のため絞り7と電極6の部
分2と外の構造を省略する。)しや断電極6に電圧を加
えない時には、電子線4(図では電子線の広がりを省略
し、中心線のみを表示)は絞り7を通過することができ
る。電極6に適当な電圧を加えると電子線は4′のよう
に偏向され、絞り7を通過することが出来ず、従つて第
1図aの8で示した試料への照射は行なわれない。この
方法での欠点は、電子線4rく絞り7を、あるいは絞り
7によつて後方散乱された電子線が通路の内壁9を照射
し、長時間にわたつて装置を使用しているとこれらが汚
れてくる点である。
A method of cutting the electron beam in this structure will be explained with reference to FIG. 1b. (In the figure, the aperture 7 and the structure outside part 2 of the electrode 6 are omitted for explanation.) When no voltage is applied to the thin-cut electrode 6, the electron beam 4 (the spread of the electron beam is omitted in the figure). , only the center line is shown) can pass through the aperture 7. When a suitable voltage is applied to the electrode 6, the electron beam is deflected as shown by 4' and cannot pass through the aperture 7, so that the sample indicated by 8 in FIG. 1a is not irradiated. The disadvantage of this method is that the electron beam 4r narrows the aperture 7 or the electron beam backscattered by the aperture 7 irradiates the inner wall 9 of the passage, and if the device is used for a long time, This is the point where it gets dirty.

これらの汚れは、通常導電性がなく、従つて装置の使用
中に帯電しやすく、帯電された電荷により正規の電子線
4の位置が変動してしまい、特に電子線装置の中でも1
μm以下の精度を目標とするような電子線描画装置にと
つて大きな問題となつてくる。本発明は、上記の点に着
目してなされたものであり、上記のような帯電による電
子線の位置変動を防止する如く構成した電子線装置を提
供することを目的とする。
These contaminants are usually non-conductive and therefore easily become charged during use of the device, and the position of the regular electron beam 4 fluctuates due to the charged charges.
This becomes a major problem for electron beam lithography systems that aim for accuracy of micrometers or less. The present invention has been made with attention to the above points, and an object of the present invention is to provide an electron beam device configured to prevent the positional fluctuation of an electron beam due to the above-mentioned charging.

以下、本発明を実施例を参照して詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第2図は、本発明の一実施例における絞り部分の構造を
説明する断面図である。図に示すように、絞り11によ
り絞り10でしや断され反射された電子線は、絞り10
と11との間のごくわずかの間にとじ込められ、電子線
通路の内壁9のごく一部分のみを照射することにより、
電子線により汚れる範囲をせばめることができる。
FIG. 2 is a sectional view illustrating the structure of the aperture portion in one embodiment of the present invention. As shown in the figure, the electron beam that is cut off and reflected by the diaphragm 11 is transmitted to the diaphragm 10.
and 11, and by irradiating only a small part of the inner wall 9 of the electron beam passage,
The area contaminated by the electron beam can be reduced.

即ち、電子線4は電極6の電圧が0Vのときは、絞り1
0を通過し12の方向へ向かい試料8を照射する。
That is, when the voltage of the electrode 6 is 0V, the electron beam 4
The sample 8 is irradiated after passing through 0 and heading in the direction of 12.

電極6に電圧を加えると、電子線の向きはまげられて4
′の方向となる。この電子線1は絞り10によつてしや
断される。絞り10によつて後方散乱された電子線4〃
は、絞り11によつてしや断され、絞り10と11の間
に閉じ込められてしまう。このため電子線通路の内壁9
が電子線によつて汚れることを防ぐことができ、長期に
わたつて電子線装置を使用しても帯電による正規の電子
線12の位置変動を生ずることはない。絞りの構造を検
討する際には絞りにあたつて反射する電子ビームの方向
が重要である。
When voltage is applied to electrode 6, the direction of the electron beam is bent and
′ direction. This electron beam 1 is cut off by a diaphragm 10. Electron beam 4 backscattered by the aperture 10
is cut off by the diaphragm 11 and trapped between the diaphragms 10 and 11. Therefore, the inner wall 9 of the electron beam passage
The electron beam 12 can be prevented from being contaminated by the electron beam, and even if the electron beam device is used for a long period of time, the position of the regular electron beam 12 will not change due to charging. When considering the structure of the aperture, the direction of the electron beam that hits the aperture and is reflected is important.

散乱した電子ビームの主なものはボールを壁に当てた場
合と同様に入射方向と垂直軸(電子光学軸)対称な方向
に反射する。特に電子線描画装置のような電子線装置で
は非常な高精度を要求されるので、このような主方向か
らずれた一部の電子ビームの散乱をも遮へいする必要が
ある。第2図に示した円錐形の構造を有するもの&ζそ
の円錐形状の斜面に電子線4′をあてて遮へいすること
により、効果的に電子線通路の内壁9に向けて電子線を
散乱させることが可能である。これによりしや断される
電子線1は絞り10と11の間に完全にとじ込められる
The main part of the scattered electron beam is reflected in a direction symmetrical to the direction of incidence and the vertical axis (electron optical axis), similar to when a ball hits a wall. Particularly in an electron beam device such as an electron beam lithography device, very high precision is required, so it is necessary to shield even the scattering of a part of the electron beam that deviates from the main direction. By shielding the electron beam 4' by applying it to the slope of the conical structure shown in FIG. 2 &ζ, the electron beam is effectively scattered toward the inner wall 9 of the electron beam passage. is possible. The electron beam 1 cut off by this is completely confined between the apertures 10 and 11.

なお、絞り10と11の間の電子線通路の内壁9及び絞
り10の電子線1によつて照射される個所は汚れてくる
がこれらは本来の電子線4に対してかくれているため帯
電による影響はほとんどない第3図はこのような絞りの
構造の大きさに関して第2図の例を参照して説明する図
である。
Note that the inner wall 9 of the electron beam passage between the apertures 10 and 11 and the parts of the aperture 10 that are irradiated by the electron beam 1 become dirty, but since these are hidden from the original electron beam 4, they are not affected by charging. There is almost no influence. FIG. 3 is a diagram illustrating the size of such a diaphragm structure with reference to the example of FIG. 2.

しや断電極6から絞り11までの距離をLb、しや断電
極6から絞り10までの距離をL1、しや断電極6から
絞り10の電子線が反射する面までの距離をLaとし、
絞り10,11の半径をそれぞれR1およびRとする。
また、パラメータAを次のように定義する。
Let Lb be the distance from the crimp electrode 6 to the aperture 11, L1 be the distance from the crimp electrode 6 to the aperture 10, and La be the distance from the crimp electrode 6 to the surface of the aperture 10 on which the electron beam is reflected.
Let R1 and R be the radius of the apertures 10 and 11, respectively.
Moreover, parameter A is defined as follows.

A=R1/L1ここで、Aはブランキングされた電子線
の電子光学軸に対する正接を意味している。
A=R1/L1 Here, A means the tangent of the blanked electron beam to the electron optical axis.

このとき絞り11の半径Rの最小値はブブンキングされ
た電子線を遮へいしない程度まで小さくできるので、R
>A−Lbの条件が決定される。
At this time, the minimum value of the radius R of the aperture 11 can be made small enough to not block the blasted electron beam, so R
>A-Lb condition is determined.

一方、絞り11の半径Rは、絞り10で反射した電子線
を絞り11により遮へい出来る範囲まで大きくできる。
On the other hand, the radius R of the aperture 11 can be increased to the extent that the electron beam reflected by the aperture 10 can be shielded by the aperture 11.

従つて、絞り11にあたる際の電子線の光学軸からの距
離は、ブランキングされてから絞り11に当たるまでの
電子線の光学軸に投影される走行長が、しや断電極6か
ら絞り10までの距離Laと絞り10から絞り11まで
の距離(La−Lb)の和(2La−Lb)であるから
、正接とかかる走行長を乗じた。A・(2La−Lb)
となる。よつて、絞り11の半径R&ζ絞り10が上記
の値まで許される。
Therefore, the distance from the optical axis of the electron beam when it hits the aperture 11 is such that the travel length projected on the optical axis of the electron beam from blanking until it hits the aperture 11 is the distance from the shriveled electrode 6 to the aperture 10. Since it is the sum (2La-Lb) of the distance La and the distance (La-Lb) from the aperture 10 to the aperture 11, it was multiplied by the tangent and the running length. A・(2La-Lb)
becomes. Therefore, the radius R of the diaphragm 11 and the ζ diaphragm 10 are allowed to reach the above values.

則ち、R<A・(2La−Lb) である。That is, R<A・(2La−Lb) It is.

従つて、許される絞り11の半径Rの範囲は、となる。Therefore, the permissible range of the radius R of the diaphragm 11 is as follows.

すなわち、上記条件を満足するように絞り11の半径R
を決めることにより、帯電による電子線の位置変動を防
止することができる。一例としてL1=100mJ!T
.La=11072Lb=98藺、R1=0.25uと
すると、Rの範囲は0.24577!1W<R<0.3
05藺となる。第4図は、本発明の効果の一例を示した
グラフである。横軸はしや断していた電子線を絞り10
を通して試料11に照射し始めてからの経温時間を示し
、縦軸はその間の電子線位置の変動量を示したものであ
る。実線aは従来の構造、点線bは第2図に示した本発
明の構造での結果である。
That is, the radius R of the aperture 11 is adjusted so as to satisfy the above conditions.
By determining this, it is possible to prevent positional fluctuations of the electron beam due to charging. As an example, L1=100mJ! T
.. If La=11072Lb=98藺 and R1=0.25u, the range of R is 0.24577!1W<R<0.3
It will be 05. FIG. 4 is a graph showing an example of the effect of the present invention. The horizontal axis narrows down the broken electron beam 10
The temperature elapsed time from the start of irradiation to the sample 11 through the rays is shown, and the vertical axis shows the amount of variation in the electron beam position during that time. The solid line a shows the results for the conventional structure, and the dotted line b shows the results for the structure of the present invention shown in FIG.

これからもわかるように従来は、10分以上にわたつて
約0.8μm近く位置変動があつたものが、本発明によ
る絞りを用いることにより変動量0.2μm以下整定時
間を約2分とすることが出来た。なお、本発明は上述し
た実施例における絞りの構造、配設箇所および具体的数
値等に限定されるものではなく、設定条件等により適宜
選択適用可能なものである。
As can be seen from this, conventionally the position fluctuated by about 0.8 μm over 10 minutes, but by using the aperture according to the present invention, the settling time can be reduced to less than 0.2 μm in about 2 minutes. was completed. Note that the present invention is not limited to the aperture structure, arrangement location, specific numerical values, etc. in the above-described embodiments, but can be appropriately selected and applied depending on setting conditions.

また、絞り10と11を一体化構造にして取り扱いを容
易にしても、本発明による効果は変らない。さらにまた
、本発明の適用は、電子線描画装置に限定されるもので
はなく、電子線をしや断する必要のある電子線応用の諸
装置に広く適用可能なものである。
Further, even if the apertures 10 and 11 are made into an integrated structure to facilitate handling, the effects of the present invention do not change. Furthermore, the application of the present invention is not limited to electron beam drawing apparatuses, but can be widely applied to various electron beam application apparatuses that require cutting off of electron beams.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよびbは従来の電子線装置の一例を説明する
図、第2図は本発明の一実施例を説明する図、第3図は
本発明における絞り構造の大きさについて説明する図、
および第4図は本発明による効果の一例を示す図である
。 1・・・・・・フィラメント、2・・・・・・ウエネル
ト、3・・・・・・アノード、4,4′,4〃,12・
・・・・・電子線、5・・・・・・レンズ系、6・・・
・・化や断電極、7,10,11・・・・・・絞り、8
・・・・・・試料、9・・・・・・電子線通路の内壁。
1A and 1B are diagrams illustrating an example of a conventional electron beam device, FIG. 2 is a diagram illustrating an embodiment of the present invention, and FIG. 3 is a diagram illustrating the size of the aperture structure in the present invention. ,
and FIG. 4 are diagrams showing an example of the effects of the present invention. 1... Filament, 2... Wehnelt, 3... Anode, 4, 4', 4〃, 12.
...Electron beam, 5...Lens system, 6...
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・』
...Sample, 9...Inner wall of electron beam passage.

Claims (1)

【特許請求の範囲】 1 陰極から放出される電子線を、該電子線の通路の近
傍に設置した電極と絞り部材を用いてしや断し得る手段
を具備し、該電子線を用いて試料の観察や電子感光材料
の感光等を行なう如く構成した電子線装置において、前
記絞り部材を前記電子線の通過し得る開孔部をその頂部
とする円錐部分を具備した構造となし、かつ前記電子線
通路の近傍にあつて前記絞り部材の前方に別の部材を相
対して設置して、前記しや断手段によつてしや断される
電子線を前記絞り部材と前記別の部材との間にとじ込め
得る如く構成したことを特徴とする電子線装置。 2 前記絞り部材および前記別の部材が、共に前記試料
に照射する電子線を通過せしめ得る開孔部を具備した形
状からなり、かつ前記別の部材の開孔部の径Rと前記絞
り部材の開孔部の径R_1とを次の関係式(L_b)/
(L_1)<R/(R_1)<(2L_a−L_b)/
(L_1)(上式中、L_aは前記電極から前記絞り部
材の電子線が反射する面までの距離、L_1は前記電極
から前記絞り部材までの距離、およびL_bは前記電極
から前記別の部材までの距離を示す。 )を満足するごとく構成したことを特徴とする特許請求
の範囲第1項記載の電子線装置。
[Claims] 1. A device comprising a means for cutting off an electron beam emitted from a cathode using an electrode and a diaphragm member installed near the path of the electron beam, and using the electron beam to In an electron beam apparatus configured to perform observation of electron beams, exposure of electrophotosensitive materials, etc., the aperture member has a structure including a conical portion having an aperture at the top thereof through which the electron beam can pass; Another member is installed in front of the diaphragm member in the vicinity of the wire path so that the electron beam shredded by the severing means is separated between the diaphragm member and the another member. 1. An electron beam device characterized in that it is configured such that it can be confined between two devices. 2. The diaphragm member and the other member both have a shape with an aperture through which the electron beam irradiated onto the sample can pass, and the diameter R of the aperture of the another member and the aperture of the diaphragm member are the same. The diameter R_1 of the opening and the following relational expression (L_b)/
(L_1)<R/(R_1)<(2L_a-L_b)/
(L_1) (In the above formula, L_a is the distance from the electrode to the surface of the aperture member on which the electron beam is reflected, L_1 is the distance from the electrode to the aperture member, and L_b is the distance from the electrode to the another member. 2. The electron beam apparatus according to claim 1, wherein the electron beam apparatus is configured to satisfy the following.
JP9373779A 1979-07-25 1979-07-25 electron beam equipment Expired JPS5935501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9373779A JPS5935501B2 (en) 1979-07-25 1979-07-25 electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9373779A JPS5935501B2 (en) 1979-07-25 1979-07-25 electron beam equipment

Publications (2)

Publication Number Publication Date
JPS5619856A JPS5619856A (en) 1981-02-24
JPS5935501B2 true JPS5935501B2 (en) 1984-08-29

Family

ID=14090714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9373779A Expired JPS5935501B2 (en) 1979-07-25 1979-07-25 electron beam equipment

Country Status (1)

Country Link
JP (1) JPS5935501B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152128A (en) * 1981-03-13 1982-09-20 Hitachi Ltd Electron beam drawing device
JP2618924B2 (en) * 1987-10-14 1997-06-11 三菱電機株式会社 Electron beam processing equipment
GB2341720A (en) * 1998-09-16 2000-03-22 Leica Microsys Lithography Ltd Electron beam aperture element with beam sheilding
JP4634161B2 (en) * 2005-01-26 2011-02-16 キヤノン株式会社 Charged beam exposure apparatus and device manufacturing method
JP2017135046A (en) * 2016-01-29 2017-08-03 株式会社荏原製作所 Inspection apparatus
EP3879557A1 (en) * 2020-03-09 2021-09-15 ASML Netherlands B.V. Aperture body, flood column and charged particle tool

Also Published As

Publication number Publication date
JPS5619856A (en) 1981-02-24

Similar Documents

Publication Publication Date Title
US9666405B1 (en) System for imaging a signal charged particle beam, method for imaging a signal charged particle beam, and charged particle beam device
JP2005276819A (en) Objective lens for charged particle beam device
EP0615123A4 (en) Method and apparatus for surface analysis.
EP1587128B1 (en) Apparatus and method for investigating or modifying a surface with a beam of charged particles
KR20170009972A (en) Electron beam imaging with dual wien-filter monochromator
US5780859A (en) Electrostatic-magnetic lens arrangement
JPS5935501B2 (en) electron beam equipment
JPH03108240A (en) Charged particle beam device
US6452173B1 (en) Charged particle apparatus
JPH05182625A (en) Objective lens
EP0790634B1 (en) Electrostatic-magnetic lens arrangement
JPH10312765A (en) Charged particle beam device and processing method for sample using charged particle beam
JP3266718B2 (en) Complex charged particle beam device
JP3409954B2 (en) Energy dispersive X-ray detector
JP4831604B2 (en) Radiation electron microscope for observation of insulator samples using obliquely charged neutralized electron irradiation method
CZ2019744A3 (en) Particle beam system and particle beam system operation procedure
JP2006172790A (en) Method and device of measuring surface charge distribution or surface potential distribution
JPH0587014B2 (en)
JP2583419B2 (en) Electronic beam irradiation device
JP2017211290A (en) X-ray irradiation device
JPH01118757A (en) Mask for surface analyzing device
JPH01132038A (en) Mass spectroscope
JPH0262815B2 (en)
JPS5878356A (en) Scanning electron microscope
JPS60100349A (en) Secondary electron detector