JP2006172790A - Method and device of measuring surface charge distribution or surface potential distribution - Google Patents

Method and device of measuring surface charge distribution or surface potential distribution Download PDF

Info

Publication number
JP2006172790A
JP2006172790A JP2004360996A JP2004360996A JP2006172790A JP 2006172790 A JP2006172790 A JP 2006172790A JP 2004360996 A JP2004360996 A JP 2004360996A JP 2004360996 A JP2004360996 A JP 2004360996A JP 2006172790 A JP2006172790 A JP 2006172790A
Authority
JP
Japan
Prior art keywords
sample
charged particle
distribution
particle beam
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360996A
Other languages
Japanese (ja)
Other versions
JP4619765B2 (en
Inventor
Hiroyuki Suhara
浩之 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004360996A priority Critical patent/JP4619765B2/en
Publication of JP2006172790A publication Critical patent/JP2006172790A/en
Application granted granted Critical
Publication of JP4619765B2 publication Critical patent/JP4619765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device to measure charge distribution or electric potential distribution occurring on the surface of dielectrics in a high resolution of micron order. <P>SOLUTION: This device is provided with a charged particle generating means 14 that generates charged particle beams for irradiating a test piece 23 having a surface charge distribution or a surface electric potential distribution, a scanning means 22 to scan on the test piece 23 by the charged particle beams from the charged particle generating means, a lens means 24 that converges the charged particle beams on the test piece 23, and a signal detecting means 13 that detects charged particles obtained from the surface of the test piece 23 by the irradiation of the charged particle beams by the scanning means 22. The lens means has at least one electrostatic lens means 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、試料表面の電荷分布または電位分布を測定する方法および装置に関する。   The present invention relates to a method and apparatus for measuring charge distribution or potential distribution on a sample surface.

電子ビームによる静電潜像の観察方法としては、電子ビーム照射による2次電子を検出する方式がある(例えば特許文献1および2)。この方式では、静電潜像が形成される試料としては、LSIチップや静電潜像を記憶・保持できる試料に限定されている。すなわち、暗減衰を生じる通常の感光体は、測定することができない。通常の誘電体は電荷を半永久的に保持することができるので、電荷分布を形成後、時間をかけて測定を行っても、測定結果に影響を与えることはない。しかしながら、感光体の場合は、抵抗値が無限大ではないので、電荷を長時間保持できず、暗減衰が生じ時間とともに表面電位が低下してしまう。感光体が電荷を保持できる時間は、暗室であってもせいぜい数十秒である。従って、帯電・露光後に電子顕微鏡(SEM)で観察しようとしても、その準備段階で静電潜像は消失してしまう。   As a method for observing an electrostatic latent image with an electron beam, there is a method of detecting secondary electrons by electron beam irradiation (for example, Patent Documents 1 and 2). In this method, the sample on which the electrostatic latent image is formed is limited to an LSI chip or a sample that can store and hold the electrostatic latent image. That is, a normal photoconductor that causes dark decay cannot be measured. Since a normal dielectric can hold a charge semipermanently, even if measurement is performed over time after forming a charge distribution, the measurement result is not affected. However, in the case of a photoconductor, since the resistance value is not infinite, the charge cannot be held for a long time, dark decay occurs, and the surface potential decreases with time. The time that the photoconductor can hold the charge is at most several tens of seconds even in the dark room. Therefore, even if an attempt is made to observe with an electron microscope (SEM) after charging and exposure, the electrostatic latent image disappears in the preparation stage.

そこで、本発明者は、暗減衰を有する感光体試料であっても静電潜像を測定することのできる測定方式を提案した(例えば特許文献3乃至6)。感光体試料では、その試料表面に電位分布または電荷分布があると、空間に表面電荷分布に応じた電界分布が形成される。電荷密度が相対的に高い領域では、荷電粒子ビームの照射による2次電子に試料から離れる方向への力が働くような電界強度を生じることから、2次電子は検出器に達するが、電荷密度が相対的に低い領域では、逆に試料に引き戻す方向への力が働くような電界強度を生じるため、発生した2次電子はこの電界によって引き戻され、検出器に到達する量が減少する。従って、表面電荷分布に応じたコントラスト像を検出することができる。
特開平3−29867号公報 特開平3−49143号公報 特開2003−295696号公報 特開2003−305881号公報 特開2004−233261号公報 特開2004−251800号公報
In view of this, the present inventor has proposed a measurement method capable of measuring an electrostatic latent image even with a photoconductor sample having dark decay (for example, Patent Documents 3 to 6). In the photoreceptor sample, if there is a potential distribution or a charge distribution on the sample surface, an electric field distribution corresponding to the surface charge distribution is formed in the space. In the region where the charge density is relatively high, the secondary electrons reach the detector because the secondary electrons generated by the irradiation of the charged particle beam generate an electric field strength that acts in the direction away from the sample. On the other hand, in the region where is relatively low, an electric field strength is generated so that a force in the direction of pulling back to the sample acts, so that the generated secondary electrons are pulled back by this electric field and the amount reaching the detector is reduced. Therefore, a contrast image corresponding to the surface charge distribution can be detected.
JP-A-3-29867 Japanese Patent Laid-Open No. 3-49143 JP 2003-295696 A JP 2003-305881 A Japanese Patent Laid-Open No. 2004-233261 JP 2004-251800 A

通常のSEMでは、対物レンズとして、収差補正の良好な磁界レンズを使うことが一般的である。通常のSEMによる試料観察の場合、試料の表面電位は、0Vあるいは0Vに近いため、発生した2次電子は、引き込み電圧により、検出器に問題なく到達することができる。   In a normal SEM, it is common to use a magnetic lens with good aberration correction as an objective lens. In the case of sample observation by a normal SEM, since the surface potential of the sample is 0 V or close to 0 V, the generated secondary electrons can reach the detector by the drawing voltage without any problem.

しかしながら、試料の表面に電位あるいは電荷があり、その電位の大きさが電子のエネルギに比べて無視できない程度に大きい場合には、相対的には、クーロン反発力の影響を与えることから、その場合、電子光学系側に押し戻す力が大きくなることを意味するので、放出電子のうち、電子光学系の電磁対物レンズの射出開口部に戻ってしまう成分が増大するおそれがある。   However, if there is a potential or electric charge on the surface of the sample and the magnitude of the potential is so large that it cannot be ignored compared to the energy of the electrons, it is relatively affected by the Coulomb repulsive force. This means that the force to push back to the electron optical system side is increased, and thus the component of the emitted electrons that returns to the exit opening of the electromagnetic objective lens of the electron optical system may increase.

本来、検出器に到達すべき2次電子あるいは1次の反転電子が、電子光学系の電磁対物レンズの射出開口部に戻ってしまうと、検出器による検出ができなくなり、電荷密度の高い領域が電荷密度の低い領域であると誤認してしまい、ノイズの発生要因となる可能性がある。従って、電子光学系の射出開口部への電子逆戻り発生現象を抑制することにより、S/N比を向上することができ、これにより電荷分布または電位分布の高分解能での計測が可能となる。   Originally, if secondary electrons or primary inverted electrons that should reach the detector return to the exit aperture of the electromagnetic objective lens of the electron optical system, they cannot be detected by the detector, and there is a region with a high charge density. It may be misunderstood that the region has a low charge density, which may cause noise. Therefore, the S / N ratio can be improved by suppressing the phenomenon of electron return to the exit opening of the electron optical system, thereby enabling measurement of charge distribution or potential distribution with high resolution.

そこで、本発明の目的は、従来技術ではきわめて困難であった、誘電体の表面に生じている電荷分布あるいは電位分布をミクロンオーダーの高分解能で計測する装置を提供することにあり、また感光体上の静電潜像を高分解能で測定する装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for measuring charge distribution or potential distribution generated on the surface of a dielectric with high resolution on the order of microns, which has been extremely difficult with the prior art. An object of the present invention is to provide an apparatus for measuring the above electrostatic latent image with high resolution.

なお、ここで述べる表面電荷は、厳密には、電荷は試料内に空間的に散らばっていることは周知の通りである。このため、表面電荷とは、電荷分布状態が、厚さ方向に比べて、面上に大きく分布している状態を指す。また、電荷は、電子だけでなく、イオンも含める。   It is well known that the surface charges described here are strictly scattered in the sample. For this reason, the surface charge refers to a state in which the charge distribution state is largely distributed on the surface as compared with the thickness direction. Further, the charge includes not only electrons but also ions.

また表面に導電部があり、この導電部に電圧が印加されて、それにより、試料表面あるいはその近傍が電位分布を生じている状態であってもよい。   Further, there may be a state in which there is a conductive portion on the surface and a voltage is applied to the conductive portion, thereby causing a potential distribution on the sample surface or its vicinity.

請求項1に記載の発明は、表面電荷分布または表面電位分布を有する試料を荷電粒子ビームで走査し、該荷電粒子ビームの走査によって得られる検出信号に基づいて前記試料の電荷分布または電位分布の状態を測定する方法において、前記荷電粒子ビームの光学系に該荷電粒子ビームを前記試料上に集束させる静電レンズを用いたことを特徴とする。   According to the first aspect of the present invention, a sample having a surface charge distribution or a surface potential distribution is scanned with a charged particle beam, and the charge distribution or potential distribution of the sample is detected based on a detection signal obtained by scanning the charged particle beam. In the method for measuring a state, an electrostatic lens for focusing the charged particle beam on the sample is used in the optical system of the charged particle beam.

請求項2に記載の発明は、表面電荷分布または表面電位分布を有する試料を照射する荷電粒子ビームを発生させる荷電粒子発生手段と、該荷電粒子発生手段からの荷電粒子ビームで前記試料上を走査する走査手段と、前記荷電粒子ビームを前記試料上に集束させるレンズ手段と、前記走査手段による荷電粒子ビームの照射によって前記試料の表面から得られる荷電粒子を検出する信号検出手段とを備え、前記レンズ手段が少なくとも一つの静電レンズ手段を有することを特徴とする。   According to a second aspect of the present invention, charged particle generating means for generating a charged particle beam for irradiating a sample having a surface charge distribution or a surface potential distribution, and scanning the sample with the charged particle beam from the charged particle generating means. Scanning means, lens means for focusing the charged particle beam on the sample, and signal detection means for detecting charged particles obtained from the surface of the sample by irradiation of the charged particle beam by the scanning means, The lens means has at least one electrostatic lens means.

請求項3に記載の発明は、請求項2に記載の発明において、前記静電レンズ手段が前記荷電粒子ビームの光学系の対物レンズであることを特徴とする。   The invention described in claim 3 is the invention described in claim 2, wherein the electrostatic lens means is an objective lens of the optical system of the charged particle beam.

請求項4に記載の発明は、請求項3に記載の発明において、前記静電対物レンズが減速型静電対物レンズであることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the electrostatic objective lens is a decelerating electrostatic objective lens.

請求項5に記載の発明は、請求項3に記載の発明において、前記荷電粒子発生手段は前記試料を照射する荷電粒子ビームのための電子銃を有し、前記走査手段は、前記静電対物レンズと前記電子銃との間に該電子銃からの荷電粒子ビームを走査するために配置された偏向手段を有することを特徴とする。   The invention according to claim 5 is the invention according to claim 3, wherein the charged particle generating means has an electron gun for a charged particle beam for irradiating the sample, and the scanning means is the electrostatic objective. A deflecting means is provided between the lens and the electron gun for scanning a charged particle beam from the electron gun.

請求項6に記載の発明は、前記荷電粒子ビームの光学系の射出開口部が、前記試料からの電子が試料側に引き戻される方向の電界ベクトルを有することを特徴とする。   The invention according to claim 6 is characterized in that an exit opening of the charged particle beam optical system has an electric field vector in a direction in which electrons from the sample are pulled back to the sample side.

請求項7に記載の発明は、請求項2に記載の発明において、前記荷電粒子ビームの光学系の射出開口部の周辺近傍に、電子衝突時に放出電子が発生する部材を配置したことを特徴とする。   The invention according to claim 7 is characterized in that, in the invention according to claim 2, a member for generating emitted electrons at the time of an electron collision is arranged in the vicinity of the periphery of the exit opening of the optical system of the charged particle beam. To do.

請求項8に記載の発明は、請求項2に記載の発明において、前記信号検出手段が、前記走査手段による前記試料の表面の2次元的な走査により該試料表面に入射する荷電粒子のうち、その入射速度ベクトルの前記試料表面における法線方向の成分が反転した荷電粒子を検出して検出信号を得ることを特徴とする。   The invention according to an eighth aspect is the invention according to the second aspect, wherein the signal detection means includes, among charged particles incident on the sample surface by two-dimensional scanning of the surface of the sample by the scanning means. A detection signal is obtained by detecting charged particles whose normal velocity component on the sample surface of the incident velocity vector is inverted.

請求項9に記載の発明は、請求項2乃至8のいずれか一項に記載の測定装置と、前記試料として感光体に荷電粒子を照射することで該感光体上にほぼ均一に帯電電荷を生成する手段と、該生成手段により帯電した前記感光体を選択的に露光するための光学系手段とを備え、該光学系手段による露光後に前記測定装置により前記感光体の表面を電子ビームで走査し、該走査で得られる検出信号により、前記感光体表面の静電潜像分布を測定することを特徴とする。   According to a ninth aspect of the present invention, there is provided the measurement apparatus according to any one of the second to eighth aspects of the invention, and the charged particles are substantially uniformly charged on the photosensitive member by irradiating the photosensitive member with charged particles as the sample. Generating means and optical system means for selectively exposing the photoconductor charged by the generating means, and scanning the surface of the photoconductor with an electron beam by the measuring device after exposure by the optical system means The electrostatic latent image distribution on the surface of the photosensitive member is measured by a detection signal obtained by the scanning.

請求項10に記載の発明は、請求項2乃至9のいずれか一項に記載の測定装置を用いて、前記試料の厚さ方向にかかる電界強度が30V/μm以上でありかつ40V/μm以下の条件下で、前記試料に電荷を10−8クーロン/mm2以上照射したときに、耐絶縁領域が99%以上である試料からなる潜像担持体であることを特徴とする。 The invention according to claim 10 is the measurement apparatus according to any one of claims 2 to 9, wherein the electric field strength in the thickness direction of the sample is 30 V / μm or more and 40 V / μm or less. When the sample is irradiated with charges of 10 −8 coulomb / mm 2 or more under the above conditions, it is a latent image carrier made of a sample having an insulation resistance region of 99% or more.

請求項1に記載の発明によれば、荷電粒子の光学系で荷電粒子ビームを集束させるレンズに静電レンズを用いることにより、荷電粒子が荷電粒子光学系に戻ることを防止することができるので、従来は困難であった、表面電荷分布または表面電位分布の測定を高精度に測定することができる。   According to the first aspect of the present invention, it is possible to prevent the charged particles from returning to the charged particle optical system by using the electrostatic lens as the lens for focusing the charged particle beam in the charged particle optical system. Thus, it is possible to measure the surface charge distribution or the surface potential distribution, which has been difficult in the past, with high accuracy.

請求項2に記載の発明によれば、荷電粒子ビームを集束させるレンズ手段として、少なくとも一つの静電レンズ手段を用いることにより、荷電粒子が荷電粒子光学系に戻ることを防止することができるので、従来は困難であった、表面電荷分布または表面電位分布の測定を高精度に測定する装置を提供することができる。   According to the second aspect of the present invention, it is possible to prevent the charged particles from returning to the charged particle optical system by using at least one electrostatic lens means as the lens means for focusing the charged particle beam. Thus, it is possible to provide an apparatus for measuring surface charge distribution or surface potential distribution with high accuracy, which has been difficult in the past.

請求項3に記載の発明によれば、対物レンズを静電レンズ手段で構成することにより、2次電子の検出感度を上げることができる。   According to the third aspect of the present invention, the detection sensitivity of secondary electrons can be increased by configuring the objective lens with electrostatic lens means.

請求項4に記載の発明によれば、静電対物レンズにマイナスの電圧を印加して、減速型静電対物レンズとすることにより、等電位面が染み出す方向、すなわち荷電粒子光学系鏡筒から放出する方向への作用力が働くことから、信号検出手段へ向かうべき検出電子の荷電粒子光学系への進入を抑制することができる。   According to the fourth aspect of the present invention, a negative voltage is applied to the electrostatic objective lens to form a decelerating electrostatic objective lens, whereby the equipotential surface oozes out, that is, a charged particle optical system lens barrel. Since the acting force in the direction in which the light is emitted from the device acts, detection electrons to be directed to the signal detection means can be prevented from entering the charged particle optical system.

請求項5に記載の発明によれば、静電対物レンズ手段と電子銃との間に荷電粒子ビームを走査するための偏向手段を配置することで、静電対物レンズと荷電粒子ビームの射出開口とを、接近させることができ、その結果、検出荷電粒子の荷電粒子光学系への進入を抑制することができる。   According to the fifth aspect of the present invention, the deflecting means for scanning the charged particle beam is disposed between the electrostatic objective lens means and the electron gun, so that the exit aperture of the electrostatic objective lens and the charged particle beam is provided. As a result, it is possible to prevent the detected charged particles from entering the charged particle optical system.

請求項6に記載の発明によれば、例えば減速型静電対物レンズを荷電粒子ビームの射出開口部の付近に配置することにより、電子が試料側に引き戻される方向の電界ベクトルを射出開口部に形成することができ、検出電子の荷電粒子光学系への進入を抑制することができる。   According to the sixth aspect of the present invention, for example, by placing a decelerating electrostatic objective lens in the vicinity of the exit opening of the charged particle beam, an electric field vector in a direction in which electrons are pulled back to the sample side is provided in the exit opening. The detection electrons can be prevented from entering the charged particle optical system.

請求項7に記載の発明によれば、荷電粒子ビームが荷電粒子光学系より射出する荷電粒子ビームの射出開口部の周辺近傍に、電子衝突時に放出電子が発生する部材を配置することにより、効率よく電子を検出することが可能となる。   According to the seventh aspect of the present invention, by arranging a member that generates emitted electrons at the time of an electron collision in the vicinity of the periphery of the exit opening of the charged particle beam from which the charged particle beam is emitted from the charged particle optical system. It is possible to detect electrons well.

請求項8に記載の発明によれば、試料に入射する荷電粒子の試料垂直方向の速度ベクトルが反転するような状態が存在する条件下で荷電粒子ビームを走査し、その反転粒子を計測することにより、従来はきわめて困難であった電位分布測定が、ミクロンオーダーの高分解能で測定することができる装置を提供することができる。   According to the invention described in claim 8, the charged particle beam is scanned under the condition that the velocity vector in the sample vertical direction of the charged particle incident on the sample is reversed, and the inverted particle is measured. Thus, it is possible to provide an apparatus capable of measuring potential distribution, which has been extremely difficult in the past, with high resolution on the order of microns.

1次反転粒子の場合は、エネルギの電子軌道方向の分布が非常に少ないので、従来方式では2次電子が射出開口に進入する割合が非常に高くなってしまうが、この2次電子の進入を阻止できる点で、静電対物レンズを用いる本発明が特に有効である。   In the case of primary inversion particles, the distribution of energy in the direction of the electron orbit is very small. Therefore, in the conventional method, the rate of secondary electrons entering the exit aperture becomes very high. The present invention using an electrostatic objective lens is particularly effective in that it can be blocked.

請求項9に記載の発明によれば、静電潜像の形成に必要な帯電手段と露光手段とを設けることにより、リアルタイム測定が可能となり、時間とともに表面電荷量が減衰する感光体の静電潜像をミクロンオーダーの高分解能で測定することが可能となる。   According to the ninth aspect of the present invention, by providing the charging means and the exposure means necessary for forming the electrostatic latent image, real-time measurement becomes possible, and the electrostatic charge of the photoreceptor whose surface charge amount attenuates with time. It becomes possible to measure the latent image with a high resolution on the order of microns.

また、感光体の静電潜像を測定して、その情報を画像形成装置の設計にフィードバックすることにより、作像のための各工程のプロセスクォリティが向上するため、高画質、高耐久、高安定、省エネルギ化が実現できる。   In addition, by measuring the electrostatic latent image on the photoconductor and feeding back the information to the design of the image forming apparatus, the process quality of each process for image formation is improved. Stable and energy saving can be realized.

請求項10に記載の発明によれば、荷電粒子の照射によって得られる2次電子又は3次以上の高次電子の電子信号を検出することにより、正常な箇所と電気的破壊が発生している箇所とを識別することが可能となる。また電荷リーク箇所を特定して、品質を評価することにより、高耐久かつ高画質を実現する感光体を提供することができる。   According to the tenth aspect of the present invention, a normal location and electrical breakdown are generated by detecting an electronic signal of secondary electrons or tertiary electrons obtained by irradiation of charged particles. It is possible to identify the location. In addition, by identifying the charge leak location and evaluating the quality, it is possible to provide a photoreceptor that achieves high durability and high image quality.

以下、本発明の特徴を図示の実施例に沿って詳細に説明する。   The features of the present invention will be described in detail below with reference to the illustrated embodiments.

図1に本発明に係る測定方法を実施するのに好適な測定装置の実施例を示す。   FIG. 1 shows an embodiment of a measuring apparatus suitable for carrying out the measuring method according to the present invention.

本発明に係る測定装置10は、ケーシング10aと、該ケーシング内に真空下で収納され、荷電粒子ビームを照射する荷電粒子照射部11と、試料設置部12と、1次反転荷電粒子や2次電子などを検出する荷電粒子捕獲器からなる信号検出手段13とを備える。   The measuring apparatus 10 according to the present invention includes a casing 10a, a charged particle irradiation unit 11 that is accommodated in a vacuum in the casing, and irradiates a charged particle beam, a sample setting unit 12, a primary inverted charged particle, and a secondary And signal detection means 13 comprising a charged particle trap for detecting electrons and the like.

ここでいう、荷電粒子とは、電子ビームあるいはイオンビームなど電界や磁界の影響を受ける粒子を指す。以下、電子ビームを照射する実施例で説明する。   As used herein, charged particles refer to particles that are affected by an electric or magnetic field, such as an electron beam or an ion beam. Hereinafter, an example in which an electron beam is irradiated will be described.

荷電粒子照射部すなわち電子ビーム照射部11は、電子ビーム発生手段である電子銃14と、強電界を発生させて、この電界の働きにより、エミッタ先端から電子を放出させるための引き出し電極15と、電子に所望のエネルギを与えるための加速電極16とを有し、電子銃14からの電子ビームは、引き出し電極15および加速電極16を経て電子光学系17に放出される。この放出された電子ビームを受ける電子光学系17は、図示の例では、電子ビームを集束させるためのコンデンサレンズ(静電レンズ)18と、電子ビームをON/OFFさせるためのビームブランキング電極からなるビームブランカ19と、電子ビームの照射電流を制御するための可動絞りであるアパーチャ20と、非点補正のためのスティングメータ21と、該スティングメータを通過した電子ビームを走査させるための偏向電極からなる走査レンズ22と、該走査レンズを経た電子ビームを試料設置部12上の試料23上に集光させるための静電レンズからなる対物レンズ24とを有する。これらレンズ等の各光学系要素には、図示しない駆動用電源が接続されている。また、電子光学系17の射出開口25が形成されたビーム射出開口部材26に近接して、試料設置部12の側に開口25に整合する開口27aを有する放出電子発生部材27が配置されている。   The charged particle irradiation unit, that is, the electron beam irradiation unit 11 includes an electron gun 14 which is an electron beam generating unit, a lead electrode 15 for generating a strong electric field and emitting electrons from the tip of the emitter by the action of the electric field, The electron beam is emitted from the electron gun 14 to the electron optical system 17 through the extraction electrode 15 and the acceleration electrode 16. In the illustrated example, the electron optical system 17 that receives the emitted electron beam includes a condenser lens (electrostatic lens) 18 that focuses the electron beam and a beam blanking electrode that turns the electron beam on and off. A beam blanker 19, an aperture 20 that is a movable diaphragm for controlling the irradiation current of the electron beam, a sting meter 21 for astigmatism correction, and a deflection electrode for scanning the electron beam that has passed through the sting meter And an objective lens 24 composed of an electrostatic lens for condensing the electron beam that has passed through the scanning lens onto the sample 23 on the sample setting unit 12. A driving power supply (not shown) is connected to each optical system element such as the lens. In addition, an emission electron generating member 27 having an opening 27a aligned with the opening 25 is disposed on the side of the sample placement portion 12 in the vicinity of the beam emitting opening member 26 in which the emission opening 25 of the electron optical system 17 is formed. .

図1に示す例では、測定装置10の電子光学系17の電子レンズ18、24には、静電レンズが用いられているが、コンデンサレンズ18は従来と同様な磁界レンズを用いることができる。   In the example shown in FIG. 1, electrostatic lenses are used for the electron lenses 18 and 24 of the electron optical system 17 of the measuring apparatus 10, but a magnetic lens similar to the conventional one can be used for the condenser lens 18.

この静電レンズと磁界レンズについて説明するに、電子レンズには、静電レンズと磁界レンズとがある。磁界レンズとは、磁場により電子線を集束させるレンズであり、コイルを巻いたソレノイド磁石に電流を流すことによって発生する磁場により電子線を曲げる。コイルへの電流を変えると発生する磁場が変わり、焦点距離や倍率が変わる。電磁レンズとか磁場レンズと呼ぶこともあり、前記した従来の装置では、対物レンズにも、この磁界レンズが用いられていた。   The electrostatic lens and the magnetic lens will be described. The electronic lens includes an electrostatic lens and a magnetic lens. A magnetic lens is a lens that focuses an electron beam by a magnetic field, and bends the electron beam by a magnetic field generated by passing a current through a solenoid magnet wound with a coil. Changing the current to the coil changes the generated magnetic field, changing the focal length and magnification. Sometimes called an electromagnetic lens or a magnetic lens, the above-described conventional apparatus uses this magnetic lens as an objective lens.

これに対し、静電レンズとは、ここでは静電界により電子線を集束させるレンズを指す。磁界型レンズより収差が大きいデメリットがあり、走査電子顕微鏡としては、対物レンズとして磁界レンズを用いるほうが一般的であるが、電位分布を測定する本発明ではあえて静電レンズを用いている。   On the other hand, the electrostatic lens here refers to a lens that focuses an electron beam by an electrostatic field. There is a disadvantage that the aberration is larger than that of a magnetic lens, and as a scanning electron microscope, a magnetic lens is generally used as an objective lens. However, in the present invention for measuring a potential distribution, an electrostatic lens is used.

この静電レンズで構成された対物レンズすなわち静電対物レンズ24は、基本的に、ビームが通過する中心に開口が形成された3枚の導電性円板24a、24b、24cで構成されており、上下の円板24a、24cは接地されている。中央の円板24bに電圧を印加することで電界が発生し、電子ビームが通ると電気的な力を受けて電子のコースが変わることで、静電レンズが形成される。   The objective lens constituted by this electrostatic lens, that is, the electrostatic objective lens 24, basically comprises three conductive discs 24a, 24b, and 24c each having an opening formed at the center through which the beam passes. The upper and lower disks 24a and 24c are grounded. By applying a voltage to the central disk 24b, an electric field is generated, and when an electron beam passes, an electric force is received to change the course of electrons, thereby forming an electrostatic lens.

この静電対物レンズ24は、偏向電極すなわち走査レンズ22を静電対物レンズ24と電子銃14との間に配置することにより、電子光学系17のビーム射出開口25の近傍に配置することができる。   The electrostatic objective lens 24 can be disposed in the vicinity of the beam exit aperture 25 of the electron optical system 17 by disposing the deflection electrode, that is, the scanning lens 22 between the electrostatic objective lens 24 and the electron gun 14. .

静電対物レンズの中央の円板24bの電圧はプラス電圧およびマイナス電圧のいずれであっても、凸レンズとしての効果をもたらす。プラス電圧を印加すると入射電子は加速するため、加速型静電対物レンズとなり、マイナス電圧を印加すると入射電子は減速するため、減速型静電対物レンズとなる。作動距離など条件でも変わるが、例えば加速電圧Vbが1kVの場合、減速型対物レンズでは−200〜−700V程度の電圧が中央の円板24bに印加される。加速型対物レンズの場合は、+1000〜2000V程度の電圧が中央の円板24bに印加される。一般的に、加速型対物レンズの方が収差が小さいが、2次電子が引っ張られる可能性がある。そのため、プラスの電圧を印加すると電子が電子光学系鏡筒に入り込む方向に力が働き、マイナスの電圧を印加すると、電子光学系鏡筒から放出する方向(等電位面が染み出す方向)に力が働く。従って、マイナスの電圧を静電対物レンズ24の円板24bに印加する静電対物レンズにより、電子光学系射出開口25への電子の進入を抑制する効果が働くことになる。   Regardless of whether the voltage of the central disk 24b of the electrostatic objective lens is a positive voltage or a negative voltage, an effect as a convex lens is brought about. When a positive voltage is applied, incident electrons are accelerated, so that an accelerated electrostatic objective lens is formed. When a negative voltage is applied, incident electrons are decelerated, so that a decelerated electrostatic objective lens is obtained. For example, when the acceleration voltage Vb is 1 kV, a voltage of about −200 to −700 V is applied to the central disk 24 b in the deceleration objective lens, although it varies depending on conditions such as the working distance. In the case of an acceleration type objective lens, a voltage of about +1000 to 2000 V is applied to the central disk 24b. In general, an accelerating objective lens has a smaller aberration, but secondary electrons may be pulled. Therefore, when a positive voltage is applied, a force acts in the direction in which the electrons enter the electron optical system barrel, and when a negative voltage is applied, a force is exerted in the direction from which the electron optical system barrel emits (the direction in which the equipotential surface oozes out). Work. Accordingly, the electrostatic objective lens that applies a negative voltage to the disc 24b of the electrostatic objective lens 24 has an effect of suppressing the entry of electrons into the electron optical system exit aperture 25.

なお、イオンビームの場合には、電子銃14の代わりに液体金属イオン銃などを用いる。この場合、試料23への入射荷電粒子がプラスイオンであれば、このプラスイオンに対して静電対物レンズ24は逆の働きとなり、プラス電圧で減速型静電対物レンズ、マイナス電圧で加速型静電対物レンズとなる。   In the case of an ion beam, a liquid metal ion gun or the like is used instead of the electron gun 14. In this case, if the charged particles incident on the sample 23 are positive ions, the electrostatic objective lens 24 works in reverse to the positive ions. It becomes an electric objective lens.

2次電子や1次反転電子などを検出する信号検出手段13を構成する荷電粒子捕獲器として、シンチレータや光電子増倍管などの検出器が用いられる。通常、シンチレータは、引き込み電圧10kV程度の高電圧を印加されることにより、荷電粒子を捕獲する。   A detector such as a scintillator or a photomultiplier tube is used as the charged particle trap constituting the signal detection means 13 for detecting secondary electrons, primary inversion electrons, and the like. Usually, a scintillator captures charged particles when a high voltage of about 10 kV is applied to the scintillator.

ビームの射出開口25の周辺に配置された放出電子発生部材27は、該部材に電子が衝突したときに2次電子を放出しやすいアルミ、銅、金などの金属部材であり、接地されていることが望ましい。   The emission electron generating member 27 disposed around the beam emission opening 25 is a metal member such as aluminum, copper, or gold that easily emits secondary electrons when electrons collide with the member, and is grounded. It is desirable.

図1には、ビーム射出開口部材26とは別に、電子が発生し易い専用の導電部材を放出電子発生部材27として配置した例を示したが、ビーム射出開口部材26と放出電子発生部材27とを図3に示すように共用させることができる。   FIG. 1 shows an example in which a dedicated conductive member that easily generates electrons is arranged as the emitted electron generating member 27 in addition to the beam emitting aperture member 26. However, the beam emitting aperture member 26, the emitted electron generating member 27, Can be shared as shown in FIG.

本発明に係る測定装置10の動作を以下に説明する。   The operation of the measuring apparatus 10 according to the present invention will be described below.

荷電粒子照射部11から電子光学系17の射出開口25を経て電子ビームが試料設置部12上に配置された試料23に衝突すると、該試料から2次電子が発生する。電子ビームの照射を受ける試料23の表面に電位分布あるいは電荷分布があると、空間に表面電荷分布に応じた電界分布が形成される。電荷密度が相対的に高い領域では、荷電粒子ビームの照射による2次電子に試料23から離れる方向への力が働くような電界強度が生じる。そのため、電荷密度が高い領域からの2次電子は検出器13に達する。これに対し、電荷密度が相対的に低い領域では、逆に試料23に引き戻す方向への力が働くような電界強度を生じるため、この電荷密度が低い領域で発生した2次電子は、この電界によって引き戻され、検出器13に到達する量が減少する。従って、従来よく知られているように、検出器である信号検出手段13からの信号処理によって、試料23上の表面電荷分布に応じたコントラスト像を検出することができる。   When the electron beam collides with the sample 23 disposed on the sample setting unit 12 from the charged particle irradiation unit 11 through the emission opening 25 of the electron optical system 17, secondary electrons are generated from the sample. If there is a potential distribution or a charge distribution on the surface of the sample 23 that is irradiated with the electron beam, an electric field distribution corresponding to the surface charge distribution is formed in the space. In a region where the charge density is relatively high, an electric field strength is generated such that a force in a direction away from the sample 23 acts on the secondary electrons by irradiation with the charged particle beam. Therefore, secondary electrons from the region having a high charge density reach the detector 13. On the other hand, in the region where the charge density is relatively low, an electric field strength is generated so that a force in the direction of pulling back to the sample 23 is generated. Therefore, the secondary electrons generated in the region where the charge density is low The amount reaching the detector 13 is reduced. Therefore, as is well known in the art, a contrast image corresponding to the surface charge distribution on the sample 23 can be detected by signal processing from the signal detection means 13 as a detector.

この電荷密度と電子の動きとの関係を図2に沿って説明する。図2(a)は、荷電粒子捕獲器である検出器13と、試料23との間の空間における電位分布を、等高線表示で説明図的に示したものである。試料23の表面は、光減衰により電位が減衰した部分を除いては、負極性に一様に帯電した状態であり、検出器13には正極性の電位が与えられているから、実線で示す電位等高線群においては、試料23の表面から検出器13に近づくに従い電位が高くなる。   The relationship between the charge density and the movement of electrons will be described with reference to FIG. FIG. 2A illustrates the potential distribution in the space between the detector 13 which is a charged particle trap and the sample 23 in an explanatory diagram with contour lines. The surface of the sample 23 is uniformly charged to a negative polarity except for a portion where the potential is attenuated by light attenuation, and a positive potential is applied to the detector 13, which is indicated by a solid line. In the potential contour line group, the potential increases as it approaches the detector 13 from the surface of the sample 23.

従って、試料23における負極性に均一帯電している部分である図中の点Q1や点Q2で発生した2次電子el1、el2は、検出器13の正電位に引かれ、矢印G1や矢印G2で示すように変位し、検出器13に捕獲される。   Accordingly, the secondary electrons el1 and el2 generated at the points Q1 and Q2 in the drawing, which are parts of the sample 23 that are uniformly charged to the negative polarity, are attracted to the positive potential of the detector 13, and the arrows G1 and G2 And is captured by the detector 13.

他方、図2(a)において、点Q3は、光照射されて負電位が減衰した部分であり、点Q3の近傍では電位等高線の配列は破線で示すように、この部分の電位分布では点Q3に近いほど電位が高くなっている。換言すると、点Q3の近傍で発生した2次電子el3には、矢印G3で示すように、試料23側に拘束する電気力が作用する。このため2次電子el3は、破線の電位等高線の示すポテンシャルの穴に捕獲され、検出器13に向って移動しない。図2(b)は、前記したポテンシャルの穴を模式的に示している。   On the other hand, in FIG. 2A, a point Q3 is a portion where the negative potential is attenuated by light irradiation, and the arrangement of potential contour lines is indicated by a broken line in the vicinity of the point Q3. The closer to, the higher the potential. In other words, the secondary electron el3 generated in the vicinity of the point Q3 is acted on by the electric force restrained on the sample 23 side as indicated by the arrow G3. For this reason, the secondary electron el3 is trapped in the potential hole indicated by the broken line potential contour and does not move toward the detector 13. FIG. 2B schematically shows the above-described potential holes.

試料23の表面に電位あるいは電荷があり、その電位の大きさが電子のエネルギに比べて無視できない程度、例えば表面電位がマイナス数百Vからマイナス千V程度である場合には、検出器すなわち荷電粒子捕獲器13の引き込み電圧による電界強度よりも大きい電界を生じて、試料23で発生した2次電子を含む試料23からの全放出電子のうち、電子光学系開口である射出開口25に向かう2次電子の割合が増大する。   When there is a potential or charge on the surface of the sample 23 and the magnitude of the potential is not negligible compared to the energy of electrons, for example, when the surface potential is about minus several hundreds of volts to minus 1,000 volts, An electric field larger than the electric field strength due to the pull-in voltage of the particle trap 13 is generated, and 2 of the total emitted electrons from the sample 23 including secondary electrons generated in the sample 23 are directed to the emission opening 25 which is an electron optical system opening. The proportion of secondary electrons increases.

ここで、本発明に係る測定装置10では、前記したように、静電対物レンズ24にマイナスの電圧が印加されていると、図3に示すように、電子光学系鏡筒である電子光学系17の射出開口25から試料23側に湧き出る方向に等電位面28が生じる。このためビーム射出開口25の近傍では、電子銃14側に電界ベクトル29が生じることから、電子は、電子光学系開口25内へ進入しにくくなる。この結果、検出電子は、電子光学系開口25を避けるように進んで、周辺の導電部である放出電子発生部材27に衝突すると、そこで新たな放出電子(n次電子)が発生する。n次電子は、試料23と離れており、数十eVの小さいエネルギであるため、検出器13に引き込まれる。   Here, in the measuring apparatus 10 according to the present invention, as described above, when a negative voltage is applied to the electrostatic objective lens 24, as shown in FIG. 3, the electron optical system which is an electron optical system barrel is used. An equipotential surface 28 is generated in the direction of springing out from the 17 injection openings 25 toward the sample 23. For this reason, an electric field vector 29 is generated on the electron gun 14 side in the vicinity of the beam exit aperture 25, so that electrons do not easily enter the electron optical system aperture 25. As a result, the detected electrons proceed so as to avoid the electron optical system opening 25 and collide with the emitted electron generating member 27 which is a peripheral conductive portion, so that new emitted electrons (n-th order electrons) are generated there. Since the n-order electrons are separated from the sample 23 and have a small energy of several tens of eV, they are drawn into the detector 13.

そのため、マイナスの電圧を印加する静電対物レンズ24により、電子光学系開口25への2次電子のような電子の進入を抑制する効果が働くことになる。   Therefore, the electrostatic objective lens 24 to which a negative voltage is applied has an effect of suppressing the entry of electrons such as secondary electrons into the electron optical system aperture 25.

従って、本発明に係る測定装置10によれば、静電対物レンズ24により、電子光学系17の射出開口25への電子の逆戻り発生現象を抑制することができることから、S/N比を向上することができ、これにより、試料23上の電荷分布を高分解能で計測することが可能となる。   Therefore, according to the measuring apparatus 10 according to the present invention, the electrostatic objective lens 24 can suppress the phenomenon of electrons returning to the exit aperture 25 of the electron optical system 17, thereby improving the S / N ratio. Thus, the charge distribution on the sample 23 can be measured with high resolution.

ビーム射出開口部材26とは別に、電子が発生し易い専用の導電部材を放出電子発生部材27として配置する場合、図4に示すように、放出電子発生部材27は、放出電子が、検出器13に到達しやすいように、検出器13の側に傾けて設けることができる。   When a dedicated conductive member that easily generates electrons is disposed as the emitted electron generating member 27 separately from the beam emitting aperture member 26, as shown in FIG. 4, the emitted electron generating member 27 includes the detector 13 that emits electrons. So that it can be easily inclined to the detector 13 side.

なお、図4に示す例では、後述する図6に示す例におけると同様に、試料設置部12は、一対の導電体12a、12c間に絶縁体12bを介在させた積層構造を有し、試料23が載る一方の導電体12aには調整可能な印加電圧Vgが印加され、他方の導電体12bが接地(GND)されている。   In the example shown in FIG. 4, as in the example shown in FIG. 6 to be described later, the sample mounting portion 12 has a laminated structure in which an insulator 12b is interposed between a pair of conductors 12a and 12c. An adjustable applied voltage Vg is applied to one conductor 12a on which 23 is mounted, and the other conductor 12b is grounded (GND).

次ぎに、電位分布のプロファイルをより高精度に計測する測定のモデルを図5に示す。電子ビームの加速電圧をVb、試料23の電位ポテンシャルをVp(<0)とする。但し、入射荷電粒子が電子あるいはマイナスイオンの場合、Vp<0であるが、入射荷電粒子がプラスイオンの場合、Vp>0となる。   Next, FIG. 5 shows a measurement model for measuring the potential distribution profile with higher accuracy. The acceleration voltage of the electron beam is Vb, and the potential of the sample 23 is Vp (<0). However, when the incident charged particles are electrons or negative ions, Vp <0. However, when the incident charged particles are positive ions, Vp> 0.

入射電子は、当初は加速電圧Vbに相当する速度で試料23へ向けて移動するが、試料23の表面に接近するに従い、試料電荷のクーロン反発の影響を受けて速度が変化する。この場合、一般的に以下のような現象が起こる。   Incident electrons initially move toward the sample 23 at a speed corresponding to the acceleration voltage Vb, but as the sample 23 approaches the surface of the sample 23, the speed changes due to the influence of Coulomb repulsion of the sample charge. In this case, the following phenomenon generally occurs.

Vb>−Vp(図5(a))の場合、電子は、速度は減速されるものの、試料23に到達する。   In the case of Vb> −Vp (FIG. 5A), the electrons reach the sample 23 although the speed is reduced.

Vb<−Vp(図5(b))の場合、照射電子の速度は試料23の電位ポテンシャルの影響を受けて、徐々に減速し、試料23に到達する前に速度が零となって、反対方向に進み照射電子が試料23に到達することなく検出器13に到達する。ここでは、1次反転荷電粒子、特に電子の場合を1次反転電子と呼ぶことにする。   In the case of Vb <−Vp (FIG. 5B), the speed of the irradiated electrons is affected by the potential potential of the sample 23, and gradually decelerates. The irradiation electrons travel in the direction and reach the detector 13 without reaching the sample 23. Here, the case of primary inversion charged particles, particularly electrons, will be referred to as primary inversion electrons.

このことから、試料23の表面を入射電子で走査し、これら反転電子を検出器13で検出できる構成とすることにより、試料23の電位ポテンシャル分布Vp(x)を計測することが可能となる。   Therefore, the potential potential distribution Vp (x) of the sample 23 can be measured by scanning the surface of the sample 23 with the incident electrons and detecting the inverted electrons with the detector 13.

試料23に正電位ポテンシャル(Vp>0)が与えられる場合には、ガリウムなどプラスのイオンや陽子を入射すればよい。   When a positive potential (Vp> 0) is given to the sample 23, positive ions such as gallium and protons may be incident.

すなわち、次式(1)を満足する条件で、荷電粒子の加速電圧Vbを試料に走査させることにより、入射する荷電粒子の試料垂直方向の速度ベクトルが、反転する状態が存在し、その反転した1次反転荷電粒子を検出することにより、試料の表面電位分布を測定することが可能となる。   That is, when the sample is scanned with the acceleration voltage Vb of the charged particle under the condition satisfying the following expression (1), there is a state in which the velocity vector in the sample vertical direction of the incident charged particle is inverted, and the inversion is performed. By detecting primary inversion charged particles, the surface potential distribution of the sample can be measured.

加速電圧Vb<Max|Vp(x)| …(1)
従って、本発明に係る測定装置10によれば、試料23の表面を入射電子で走査し、これらの反転電子を検出器13で検出することにより、試料23の電位ポテンシャル分布Vp(x)を正確に計測することが可能となる。
Acceleration voltage Vb <Max | Vp (x) | (1)
Therefore, according to the measuring apparatus 10 according to the present invention, the surface of the sample 23 is scanned with the incident electrons, and these inverted electrons are detected by the detector 13, whereby the potential potential distribution Vp (x) of the sample 23 is accurately determined. It becomes possible to measure.

図6に示すように、試料設置部12を図4に示した例におけると同様、一対の導電体12a、12c間に絶縁体12bを介在させた積層構造とすることができる。試料23が載る一方の導電体12aには調整可能な印加電圧Vgが印加され、他方の導電体12bが接地(GND)されている。このような積層構造の試料設置部12を用いることにより、一方の導電体12aを介して試料23の下部に電圧を印加することができるので、試料23の表面電位分布Vpにバイアスを付与することができ、また導電体12aへの印加電圧Vgの調整により、このバイアス成分が調整成分となる。   As shown in FIG. 6, similarly to the example shown in FIG. 4, the sample placement unit 12 can have a laminated structure in which an insulator 12b is interposed between a pair of conductors 12a and 12c. An adjustable applied voltage Vg is applied to one conductor 12a on which the sample 23 is placed, and the other conductor 12b is grounded (GND). Since the voltage can be applied to the lower portion of the sample 23 through the one conductor 12a by using the sample mounting portion 12 having such a laminated structure, a bias is applied to the surface potential distribution Vp of the sample 23. The bias component becomes an adjustment component by adjusting the voltage Vg applied to the conductor 12a.

図7(a)は、試料23の表面の電荷分布によって生じた表面電位分布Vs(x)の一例を示す。ここで、表面電位分布Vs(x)は、便宜上、電荷分布を有する誘電体試料の反対面すなわち裏面が接地(GND)状態での表面の電位分布を指す。   FIG. 7A shows an example of the surface potential distribution Vs (x) generated by the charge distribution on the surface of the sample 23. Here, for the sake of convenience, the surface potential distribution Vs (x) refers to the surface potential distribution when the opposite surface of the dielectric sample having the charge distribution, that is, the back surface is grounded (GND).

図7(a)のグラフの特性線から明らかなように、中心(X=0)電位が約−520Vであり、中心から外側に向かうに従って、電位がマイナス方向に大きくなり、中心から半径が0.1mmを越える周辺領域の電位は約−830V程度になっている。   As is apparent from the characteristic line of the graph in FIG. 7A, the center (X = 0) potential is about −520 V, and the potential increases in the negative direction from the center toward the outside, and the radius from the center is 0. The potential in the peripheral region exceeding 1 mm is about -830V.

図7(b)および図7(c)は、それぞれ試料23を2次元的に走査したときに検出器13の検出信号により得られた画像である。白い部分は検出量が大きく、黒い部分は検出量が少ないことを表す。   FIGS. 7B and 7C are images obtained by the detection signal of the detector 13 when the sample 23 is scanned two-dimensionally. A white portion indicates a large detection amount, and a black portion indicates a small detection amount.

電子の加速電圧Vbが600Vの場合には、図7(b)に示す測定結果が得られた。この場合、検出信号量に差のある白部と黒部の境界は、Vs(x)=−600Vをスレッシュレベル電位(Vth)とする等高線で示されることから、このコントラスト像をVth=−600Vのコントラスト像と表現することができる。図7(c)は、Vb=750Vで得られた測定結果を示す。加速電圧Vbが750Vの場合、図7(b)に示したVb=600Vの場合に比べて、入射電子速度が早い分、試料23に到達する可能性が高くなり、入射電子の速度が反転する領域が減る結果、黒い部分が増える。このため、図7(c)に示すVth=−750Vのコントラスト像が得られた。すなわち、境界を示すスレッシュレベル電位と、電子の加速電圧の符号を反転させた値とが等しい(Vth=−Vb)関係が成立する。   When the electron acceleration voltage Vb was 600 V, the measurement result shown in FIG. 7B was obtained. In this case, the boundary between the white portion and the black portion having a difference in the detection signal amount is indicated by a contour line with Vs (x) = − 600 V as a threshold level potential (Vth). Therefore, this contrast image is represented by Vth = −600 V. It can be expressed as a contrast image. FIG. 7 (c) shows the measurement result obtained at Vb = 750V. When the acceleration voltage Vb is 750 V, the incident electron velocity is higher than that in the case of Vb = 600 V shown in FIG. 7B, so that the possibility of reaching the sample 23 is increased, and the velocity of the incident electrons is reversed. As a result of the reduction of the area, the black part increases. Therefore, a contrast image of Vth = −750 V shown in FIG. 7C was obtained. In other words, the threshold level potential indicating the boundary and the value obtained by inverting the sign of the electron acceleration voltage are equal (Vth = −Vb).

周辺の電場環境や試料電位状態の影響で、Vth=−Vbが成立しない場合には、電子光学系17および検出器13等の静電場環境をあらかじめ計算しておき、それをもとに補正することにより、実際の電位分布の高精度測定を実現することができる。   When Vth = −Vb does not hold due to the influence of the surrounding electric field environment and the sample potential state, the electrostatic field environment of the electron optical system 17 and the detector 13 is calculated in advance and corrected based on it. As a result, high-precision measurement of the actual potential distribution can be realized.

1次電子が試料23に衝突して発生する2次電子は、エネルギや放出方向に分布があるので、一部の2次電子が射出開口25に進入し、検出器13に到達できないにすぎないが、1次反転電子の場合は、エネルギの電子軌道方向の分布が非常に少ないので、従来方式では2次電子が射出開口25に進入する割合が非常に高くなる。そのような点で、射出開口25への進入を確実に阻止する静電対物レンズ24を用いる本発明が特に有効である。   Since the secondary electrons generated when the primary electrons collide with the sample 23 are distributed in the energy and emission direction, only a part of the secondary electrons enter the emission opening 25 and cannot reach the detector 13. However, in the case of primary inversion electrons, the distribution of energy in the electron trajectory direction is very small. Therefore, in the conventional method, the ratio of secondary electrons entering the exit aperture 25 is very high. In this respect, the present invention using the electrostatic objective lens 24 that reliably prevents entry into the exit opening 25 is particularly effective.

荷電粒子が正の電荷である場合、表面電位分布を得るために1次反転荷電粒子を検出するときは、検出器13の引き込み電圧は負にすることが望ましい。   When the charged particles have a positive charge, it is desirable to make the pull-in voltage of the detector 13 negative when detecting the primary inversion charged particles in order to obtain the surface potential distribution.

図8は感光体試料に静電潜像を形成し、これを測定する方法を実施する装置100を示す。なお、図1に示した測定装置10と同一の機能部分には、同一の参照符号が付されている。   FIG. 8 shows an apparatus 100 that implements a method for forming and measuring an electrostatic latent image on a photoreceptor sample. The same functional parts as those of the measuring apparatus 10 shown in FIG. 1 are denoted by the same reference numerals.

接地された試料設置部12上の感光体試料123の構成は、図示しないが従来よく知られているように、導電性支持体の上に電荷発生層(CGL)および電荷輸送層(CTL)が順次積層されて構成されている。前記電荷輸送層(CTL)の表面が電荷によって帯電している状態で、感光体試料123が露光されると、電荷発生層(CGL)を構成する電荷発生材料(CGM)によって、光が吸収される。この光の吸収により、電荷発生層(CGL)には、正負両極性の一対のチャージキャリアが発生する。この一対のキャリアは、電界によってその一方が電荷輸送層(CTL)に、また他方が前記導電性支持体にそれぞれ移動することにより、それぞれに注入される。電荷輸送層(CTL)に注入されたキャリアは電界によって電荷輸送層(CTL)中を該電荷輸送層(CTL)の表面まで移動し、該電荷輸送層(CTL)の表面すなわち感光体表面の電荷と結合することにより、この表面電荷を消去する。これにより、感光体表面に残存する電荷との関係で、感光体試料123の表面に電荷分布すなわち静電潜像が形成される。   Although not shown, the structure of the photoconductor sample 123 on the grounded sample setting unit 12 includes a charge generation layer (CGL) and a charge transport layer (CTL) on a conductive support, as is well known. It is constructed by sequentially laminating. When the photoreceptor sample 123 is exposed in a state where the surface of the charge transport layer (CTL) is charged by electric charge, light is absorbed by the charge generation material (CGM) constituting the charge generation layer (CGL). The This light absorption generates a pair of positive and negative charge carriers in the charge generation layer (CGL). One of the pair of carriers is injected into the charge transport layer (CTL) by the electric field, and the other is moved to the conductive support by the electric field. Carriers injected into the charge transport layer (CTL) move in the charge transport layer (CTL) to the surface of the charge transport layer (CTL) by an electric field, and charge on the surface of the charge transport layer (CTL), that is, the surface of the photoreceptor. This surface charge is eliminated by combining with. As a result, a charge distribution, that is, an electrostatic latent image is formed on the surface of the photoreceptor sample 123 in relation to the charge remaining on the photoreceptor surface.

このような特性を有する感光体試料123の表面を一様に帯電させるために、本発明に係る装置100の試料設置部12上に、感光体試料123が配置され、荷電粒子照射部11から電子光学系17を経て電子ビームが照射される。   In order to uniformly charge the surface of the photoconductor sample 123 having such characteristics, the photoconductor sample 123 is arranged on the sample setting unit 12 of the apparatus 100 according to the present invention, and the charged particle irradiation unit 11 supplies the electrons. An electron beam is irradiated through the optical system 17.

前記装置100の荷電粒子照射部11および電子光学系17を有する荷電粒子照射系は、基本的に、図1に示した測定装置10のそれと同様であるが、図面の簡素化のために、図8に示す例では、荷電粒子照射部11の引き出し電極15および加速電極16が省略されており、これに代えて電子ビームを観測するビームモニタ101が電子銃14の出力部に設けられている。また、放出電子発生部材27が省略されているが、放出電子発生部材27をビーム射出開口部材26と一体にあるいはこれと別体に設けることができる。   The charged particle irradiation system including the charged particle irradiation unit 11 and the electron optical system 17 of the apparatus 100 is basically the same as that of the measurement apparatus 10 shown in FIG. 1, but for simplification of the drawing, FIG. In the example shown in FIG. 8, the extraction electrode 15 and the acceleration electrode 16 of the charged particle irradiation unit 11 are omitted, and a beam monitor 101 for observing an electron beam is provided at the output unit of the electron gun 14 instead. Although the emitted electron generating member 27 is omitted, the emitted electron generating member 27 can be provided integrally with or separately from the beam emitting aperture member 26.

荷電粒子照射部11から感光体試料123に照射するための電子ビームの加速電圧Vbは、2次電子放出比δが1となる加速電圧より高い加速電圧に設定することにより、感光体試料123への入射電子量が、該感光体試料から放出される放出電子量より上回るために、該試料に電子を蓄積することができる。従って、2次電子放出比δが1となる加速電圧Vbで加速された電子ビームを用いて感光体試料123の表面を一様に走査することにより、感光体試料123の表面を一様にマイナスに帯電させることができる。この加速電圧と照射時間とを適切に設定することにより、感光体試料123の表面に所望の帯電電位を形成することができる。   The acceleration voltage Vb of the electron beam for irradiating the photoconductor sample 123 from the charged particle irradiation unit 11 is set to an acceleration voltage higher than the acceleration voltage at which the secondary electron emission ratio δ becomes 1, whereby the photoconductor sample 123 is applied. Since the amount of incident electrons exceeds the amount of emitted electrons emitted from the photoconductor sample, electrons can be accumulated in the sample. Accordingly, by uniformly scanning the surface of the photoconductor sample 123 using an electron beam accelerated by an acceleration voltage Vb at which the secondary electron emission ratio δ is 1, the surface of the photoconductor sample 123 is uniformly minus. Can be charged. By appropriately setting the acceleration voltage and the irradiation time, a desired charging potential can be formed on the surface of the photoreceptor sample 123.

感光体試料123を帯電させるために、別の帯電手段として、接触帯電や注入帯電及びイオン照射帯電を用いることができる。   In order to charge the photoconductor sample 123, contact charging, injection charging, and ion irradiation charging can be used as another charging means.

次ぎに、表面が均一に帯電した感光体試料123に露光光学系により、選択的な露光を行う。露光光学系は、所望のビーム径及びビームプロファイルを形成するように調整されている。   Next, selective exposure is performed on the photoconductor sample 123 whose surface is uniformly charged by an exposure optical system. The exposure optical system is adjusted so as to form a desired beam diameter and beam profile.

露光光学系を構成する露光部30は、荷電粒子照射部11、試料設置部12、検出器13および電子光学系17を真空下で密封可能のケーシング10a内に収容されている。露光部30は、感光体が感度を示す波長を射出するレーザ・ダイオード(LD)のような光源31と、該光源からの発散光を平行光束に変換するコリーメートレンズ32と、平行光束の口径を所望の値に絞るアパーチャ33と、該アパーチャを経た平行光束を感光体試料123上に収束するための結像レンズ群34a、34b、34cとを有し、感光体試料123上に所望のビーム径およびビームプロファイルを生成することができる。また、LD制御部35による光源31の制御により、適切な露光時間、露光エネルギを感光体試料123上に照射できる。この照射で、例えばラインのパターンを形成するために、露光部30の光学系にガルバノミラーやポリゴンミラーを用いたスキャニング機構を付けても良い。スキャニング機構を付けることにより、感光ドラムのような筒状感光体の母線方向に対して、ラインパターンを含めた任意の潜像パターンを形成することができる。すなわち、感光体試料123の形状は、平面の他、前記したような筒状の曲面であっても良い。   The exposure unit 30 constituting the exposure optical system is housed in a casing 10a that can seal the charged particle irradiation unit 11, the sample setting unit 12, the detector 13, and the electron optical system 17 under vacuum. The exposure unit 30 includes a light source 31 such as a laser diode (LD) that emits a wavelength at which the photosensitive member exhibits sensitivity, a collimate lens 32 that converts the divergent light from the light source into a parallel light beam, and the aperture of the parallel light beam. And an imaging lens group 34 a, 34 b, 34 c for converging the parallel light flux that has passed through the aperture onto the photoconductor sample 123, and a desired beam on the photoconductor sample 123. Diameter and beam profiles can be generated. Further, by controlling the light source 31 by the LD control unit 35, it is possible to irradiate the photoconductor sample 123 with an appropriate exposure time and exposure energy. For example, in order to form a line pattern by this irradiation, a scanning mechanism using a galvano mirror or a polygon mirror may be attached to the optical system of the exposure unit 30. By adding a scanning mechanism, an arbitrary latent image pattern including a line pattern can be formed in the generatrix direction of a cylindrical photoreceptor such as a photosensitive drum. That is, the shape of the photoconductor sample 123 may be a cylindrical curved surface as described above in addition to a flat surface.

前記した露光部30による感光体試料123への選択露光により、感光体試料123の表面に静電潜像を形成することができる。   An electrostatic latent image can be formed on the surface of the photoconductor sample 123 by selective exposure of the photoconductor sample 123 by the exposure unit 30 described above.

このようにして得られた感光体試料123上の静電潜像を、前記したと同様に、電子光学系17からの電子ビーム照射によって得られる2次電子あるいは1次反転電子を検出する検出器13からの検出信号によって、測定することが可能となる。この静電潜像の測定では、電子ビームの加速電圧Vbは、2次電子放出比δが1に等しくなる加速電圧に設定される。   A detector for detecting secondary electrons or primary inversion electrons obtained by irradiating the electrostatic latent image on the photoreceptor sample 123 thus obtained by electron beam irradiation from the electron optical system 17 in the same manner as described above. The detection signal from 13 can be measured. In this electrostatic latent image measurement, the acceleration voltage Vb of the electron beam is set to an acceleration voltage at which the secondary electron emission ratio δ is equal to 1.

図8に示す装置100では、検出器13からの検出信号が検出部36を経て信号処理部37に出力され、この信号処理部37で所定の処理を受けて測定結果出力部38に出力される。また、ケーシング10a内には、測定終了後に感光体試料123の表面に残留する電荷を除去するための発光ダイオードのような残留電荷除去用光源40が配置されており、この光源40を制御するLED制御部41、走査レンズ22を制御する荷電粒子制御部41、試料設置部12の移動を制御する試料台制御部42および前記したLD制御部35は、ホストコンピュータ43の制御下で動作する。   In the apparatus 100 shown in FIG. 8, the detection signal from the detector 13 is output to the signal processing unit 37 through the detection unit 36, is subjected to predetermined processing by the signal processing unit 37, and is output to the measurement result output unit 38. . Further, a residual charge removing light source 40 such as a light emitting diode for removing the charge remaining on the surface of the photoconductor sample 123 after the measurement is completed is disposed in the casing 10a, and an LED for controlling the light source 40 The control unit 41, the charged particle control unit 41 that controls the scanning lens 22, the sample stage control unit 42 that controls the movement of the sample setting unit 12, and the LD control unit 35 described above operate under the control of the host computer 43.

また、本発明の応用として、次ぎに述べるように、感光体の電荷リーク箇所を特定して、品質を評価することができる。   Further, as an application of the present invention, as will be described below, the charge leak portion of the photoreceptor can be specified and the quality can be evaluated.

前述した通り、試料の表面を帯電させることで、該試料の厚さ方向に電界強度を与えることができる。電界強度は、10V/μm以上が望ましい。電界強度が極端に小さいと静電破壊を起こさないし、また起こすような試料だと、試料全体が静電破壊を起こしていまい、その結果評価しにくい恐れがある。従って、10V/μm程度の電界強度で静電破壊を起こすことのない試料についての品質評価が行える。   As described above, by charging the surface of the sample, electric field strength can be applied in the thickness direction of the sample. The electric field strength is desirably 10 V / μm or more. If the electric field strength is extremely small, electrostatic breakdown does not occur, and if the sample causes such damage, the entire sample may cause electrostatic breakdown, and as a result, it may be difficult to evaluate. Therefore, it is possible to evaluate the quality of a sample that does not cause electrostatic breakdown with an electric field strength of about 10 V / μm.

絶縁体試料として、潜像担持体である感光体の耐絶縁性を評価する実施例について以下に説明する。   An example of evaluating the insulation resistance of a photoreceptor as a latent image carrier as an insulator sample will be described below.

感光体の膜厚dが30μmであり、その帯電電位Vが−900Vであるとすると、感光体の厚さ方向にかかる電界強度の絶対値Eは、次式(2)で示される。   Assuming that the film thickness d of the photosensitive member is 30 μm and the charging potential V is −900 V, the absolute value E of the electric field strength applied in the thickness direction of the photosensitive member is expressed by the following equation (2).

E=V/D=30V/μm …(2)
電荷リークは、感光体の最も弱いところから発生し、電荷リークによって生じる正孔が感光体の表面にまで達する。そうすると、この正孔が感光体表面のマイナス電荷と相殺されて、表面に前記したと同様に、電荷分布が起きる。
E = V / D = 30V / μm (2)
The charge leak occurs from the weakest part of the photoconductor, and the holes generated by the charge leak reach the surface of the photoconductor. Then, the positive holes cancel out the negative charges on the surface of the photoreceptor, and a charge distribution occurs on the surface as described above.

この電荷分布を荷電粒子照射部11および電子光学系17からの前記した電子ビームで走査し、その2次電子あるいはn次電子を検出器13で検出することにより、前記感光体の静電破壊を起こした電荷リーク箇所をミクロンオーダーで特定することが出来る。   This charge distribution is scanned with the electron beam from the charged particle irradiation unit 11 and the electron optical system 17 and the secondary electrons or n-order electrons are detected by the detector 13, thereby electrostatic discharge of the photosensitive member is prevented. It is possible to specify the generated charge leak location on the micron order.

感光体試料に照射する総電荷量は、単位面積あたりで考えると10−8C/ mm2以上であることが望ましい。総電荷Cmは、次式(3)で示すとおり、照射電流A、照射面積Sおよび照射時間tで決まる。 The total amount of charge applied to the photoreceptor sample is preferably 10 −8 C / mm 2 or more when considered per unit area. The total charge Cm is determined by the irradiation current A, the irradiation area S, and the irradiation time t as shown in the following equation (3).

Cm=A×T/S …(3)
例えば、照射電流が5×10−10A、照射面積が1mm2、照射時間が20秒とすることができる。照射面積の増大に比例して、照射時間は長くすると良い。照射電流量を大きくすればそれだけ短い時間で済む。照射時間を長くするなどして、試料に照射する総電荷量を増やすと、それだけ電荷リーク箇所は顕著に現れてくる。
Cm = A × T / S (3)
For example, the irradiation current can be 5 × 10 −10 A, the irradiation area can be 1 mm 2 , and the irradiation time can be 20 seconds. The irradiation time should be longer in proportion to the increase in irradiation area. If the amount of irradiation current is increased, a shorter time is required. When the total charge amount irradiated to the sample is increased by extending the irradiation time or the like, the portion of the charge leak becomes conspicuous accordingly.

例えば、照射電流が10−9A、照射面積が1mm2で、5分間照射すると、総電荷量は3×10−7C/mm2であり、多少時間はかかるが、異常箇所が存在する感光体があれば、正常品との差異がはっきりする。 For example, when the irradiation current is 10 −9 A and the irradiation area is 1 mm 2 and irradiation is performed for 5 minutes, the total charge amount is 3 × 10 −7 C / mm 2 , and although it takes some time, there is a photosensitivity in which an abnormal part exists. If there is a body, the difference from the normal product becomes clear.

感光体に要求される絶縁耐圧は通常30V/μm以上であり、高いものだと40V/μm程度を要求される。この条件下で、電荷リーク領域が1%以下であることが望ましい。1%以下であれば、出力画像に地汚れとして目立たなくなることがわかっている。従って、望ましい潜像担持体の条件としては、絶縁耐圧が30V/μm以上でありかつ40V/μm以下の条件下で、試料に対して電子を10−8C/mm2以上照射したときに、破壊されていない耐絶縁領域が99%以上あることと言える。 The withstand voltage required for the photoreceptor is usually 30 V / μm or more, and if it is high, about 40 V / μm is required. Under this condition, the charge leakage region is desirably 1% or less. If it is 1% or less, it is known that the output image is not noticeable as background stains. Therefore, as a preferable condition of the latent image carrier, when the withstand voltage is 30 V / μm or more and 40 V / μm or less, the sample is irradiated with electrons of 10 −8 C / mm 2 or more. It can be said that 99% or more of the insulation-resistant regions are not destroyed.

図9は、照射電流Aが10−9A、照射面積Sが1.47mm2で、潜像担持体に対して照射時間tが4分間の条件で帯電さたときの測定結果である。この場合、照射された電荷密度Cmは、次式(4)に示される。 FIG. 9 shows the measurement results when the irradiation current A is 10 −9 A, the irradiation area S is 1.47 mm 2 , and the latent image carrier is charged under the irradiation time t of 4 minutes. In this case, the irradiated charge density Cm is expressed by the following equation (4).

Cm=At/S=1.6×10−7C/mm2 …(4)
このときの電荷リークが発生している領域の面積率が小さいほど、耐絶縁性が高いと言える。図9(a)は、電荷リーク面積比が1.2%の例を示す画像結果であり、耐絶縁領域が88.8%であることから、地汚れが発生しやすい悪いサンプルであると言える。他方、図9(b)は電荷リーク面積比が0.4%の例を示す画像結果であり、ホールサイズが小さく良品と言える。
Cm = At / S = 1.6 × 10 −7 C / mm 2 (4)
It can be said that the smaller the area ratio of the region where the charge leakage occurs, the higher the insulation resistance. FIG. 9A is an image result showing an example in which the charge leakage area ratio is 1.2%, and since the insulation-resistant region is 88.8%, it can be said that the sample is a bad sample in which background contamination is likely to occur. . On the other hand, FIG. 9B is an image result showing an example in which the charge leak area ratio is 0.4%, and it can be said that the hole size is small and the product is good.

このように、本発明に係る装置10または100を用いることにより、試料の耐絶縁性を評価することができる。   Thus, the insulation resistance of a sample can be evaluated by using the apparatus 10 or 100 according to the present invention.

図10に、感光体試料の耐絶縁性を評価するための電荷リーク面積算出のフローを示す。図10に示すように、例えば図1の測定装置10または図8に示す測定装置100で、荷電粒子照射部11からの電子ビームを電子光学系17を経て試料設置部12の試料12、123に照射し、その表面の走査によって該表面を所定の電荷量で均一に帯電させる(ステップS1)
その後、ステップS1での帯電による絶縁破壊箇所を観察するために、荷電粒子照射部11から電子光学系17を経る電子ビームで前記表面を走査し、この走査による2次電子を検出器13で検出する(ステップS2)。
FIG. 10 shows a flow for calculating the charge leak area for evaluating the insulation resistance of the photoreceptor sample. As shown in FIG. 10, for example, in the measuring device 10 of FIG. 1 or the measuring device 100 shown in FIG. 8, the electron beam from the charged particle irradiation unit 11 passes through the electron optical system 17 to the samples 12 and 123 of the sample setting unit 12. Irradiate and scan the surface to uniformly charge the surface with a predetermined charge amount (step S1)
Thereafter, in order to observe the location of dielectric breakdown due to charging in step S1, the surface is scanned with an electron beam that passes through the electron optical system 17 from the charged particle irradiation unit 11, and secondary electrons by this scanning are detected by the detector 13. (Step S2).

検出器13で検出された検出信号は信号処理部37で2次元マッピング処理を受ける(ステップS3)。   The detection signal detected by the detector 13 is subjected to a two-dimensional mapping process by the signal processing unit 37 (step S3).

信号処理部37は、さらに、マッピング処理を施した情報に2値化処理を施す(ステップS4)。続いて、信号処理部37は、この2値化処理を施されたデータから荷電リークを生じた箇所を特定し(ステップS5)、特定されたリーク箇所の面積を算出し(ステップS6)、その結果を測定結果出力部38に出力し(ステップS7)、該出力部に結果を表示させる。   The signal processing unit 37 further performs binarization processing on the information subjected to the mapping processing (step S4). Subsequently, the signal processing unit 37 identifies the location where the charge leak has occurred from the binarized data (step S5), calculates the area of the identified leak location (step S6), and The result is output to the measurement result output unit 38 (step S7), and the result is displayed on the output unit.

本発明によれば、前記したように、荷電粒子の光学系で荷電粒子ビームを集束させるレンズに静電レンズを用いることにより、荷電粒子が荷電粒子光学系に戻ることを防止することができるので、従来は困難であった、表面電荷分布または表面電位分布の測定を高精度に測定することができる。   According to the present invention, as described above, it is possible to prevent the charged particles from returning to the charged particle optical system by using the electrostatic lens as the lens for focusing the charged particle beam in the charged particle optical system. Thus, it is possible to measure the surface charge distribution or the surface potential distribution, which has been difficult in the past, with high accuracy.

本発明に係る測定装置の実施例を模式的に示す光学配置図である。It is an optical arrangement | positioning figure which shows typically the Example of the measuring apparatus which concerns on this invention. 測定原理を示す説明図であり、図2(a)は電位の等高線上で電子の軌道を示す説明図であり、図2(b)は試料の電荷密度分布を示すグラフである。FIG. 2A is an explanatory diagram showing a measurement principle, FIG. 2A is an explanatory diagram showing an electron trajectory on a potential contour line, and FIG. 2B is a graph showing a charge density distribution of a sample. 図1に示した測定装置の射出開口近傍における電位を模式的に示す説明図である。It is explanatory drawing which shows typically the electric potential in the injection opening vicinity of the measuring apparatus shown in FIG. 図1に示した測定装置の変形例を示す図3と同様な図面である。FIG. 4 is a view similar to FIG. 3 showing a modification of the measuring apparatus shown in FIG. 1. 図3に示した測定装置の測定モデルを示し、図5(a)および図5(b)はそれぞれ荷電粒子の加速電圧Vbと試料23の電位ポテンシャルVpとの関係の場合分けを示す図面である。3 shows a measurement model of the measurement apparatus shown in FIG. 3, and FIG. 5A and FIG. 5B are diagrams showing case classification of the relationship between the acceleration voltage Vb of the charged particle and the potential potential Vp of the sample 23, respectively. . 図1に示した測定装置のさらに他の変形例を示す図3と同様な図面である。FIG. 6 is a view similar to FIG. 3 showing still another modification of the measuring apparatus shown in FIG. 1. 電位分布密度と検出信号との関係を示す説明図であり、図7(a)は試料表面の電位分布を示すグラフであり、図7(b)および図7(c)は2次元的な走査によって得られる信号のそれぞれスレッシュ電位を異にしたコントラスト像を示す図面である。FIG. 7A is an explanatory diagram showing the relationship between the potential distribution density and the detection signal, FIG. 7A is a graph showing the potential distribution on the sample surface, and FIGS. 7B and 7C are two-dimensional scans. 5 is a diagram showing contrast images with different threshold potentials of signals obtained by the above method. 本発明に係る測定装置の他の実施例を模式的に示す図1と同様な図面である。It is drawing similar to FIG. 1 which shows typically the other Example of the measuring apparatus which concerns on this invention. 図9(a)および図9(b)は、それぞれ試料の耐絶縁性を評価するため電荷リーク測定結果を示す図面である。FIG. 9A and FIG. 9B are diagrams showing the results of charge leak measurement in order to evaluate the insulation resistance of each sample. 耐絶縁性評価のための荷電リーク測定手順を示すフローチャートである。It is a flowchart which shows the charge leak measurement procedure for insulation resistance evaluation.

符号の説明Explanation of symbols

10、100 測定装置
11 荷電粒子照射部
13 (信号検出手段)検出器
14 (荷電粒子発生手段)電子銃
17 (荷電粒子ビームの光学系)電子光学系
22 (走査手段)走査レンズ
23、123 試料
24 (集束レンズ手段)静電対物レンズ
25 射出開口
27 放出電子発生部材
DESCRIPTION OF SYMBOLS 10,100 Measuring apparatus 11 Charged particle irradiation part 13 (Signal detection means) Detector 14 (Charged particle generation means) Electron gun 17 (Optical system of charged particle beam) Electron optical system 22 (Scanning means) Scanning lens 23, 123 Sample 24 (Focusing lens means) Electrostatic objective lens 25 Ejection aperture 27 Emission electron generating member

Claims (10)

表面電荷分布または表面電位分布を有する試料を荷電粒子ビームで走査し、該荷電粒子ビームの走査によって得られる検出信号に基づいて前記試料の電荷分布または電位分布の状態を測定する方法において、前記荷電粒子ビームの光学系に該荷電粒子ビームを前記試料上に集束させる静電レンズを用いたことを特徴とする表面電荷分布または表面電位分布の測定方法。   In the method of scanning a sample having a surface charge distribution or a surface potential distribution with a charged particle beam, and measuring the charge distribution or potential distribution state of the sample based on a detection signal obtained by scanning the charged particle beam, the charging A method of measuring a surface charge distribution or a surface potential distribution, wherein an electrostatic lens for focusing the charged particle beam on the sample is used in a particle beam optical system. 表面電荷分布または表面電位分布を有する試料を照射する荷電粒子ビームを発生させる荷電粒子発生手段と、該荷電粒子発生手段からの荷電粒子ビームで前記試料上を走査する走査手段と、前記荷電粒子ビームを前記試料上に集束させるレンズ手段と、前記走査手段による荷電粒子ビームの走査によって得られる荷電粒子を検出する信号検出手段とを備え、前記レンズ手段は少なくとも一つの静電レンズ手段を有することを特徴とする表面電荷分布または表面電位分布の測定装置。   Charged particle generating means for generating a charged particle beam for irradiating a sample having a surface charge distribution or surface potential distribution, scanning means for scanning the sample with a charged particle beam from the charged particle generating means, and the charged particle beam Lens means for focusing the sample on the sample, and signal detection means for detecting charged particles obtained by scanning the charged particle beam by the scanning means, and the lens means has at least one electrostatic lens means. A device for measuring surface charge distribution or surface potential distribution. 前記静電レンズ手段は、前記荷電粒子ビームの光学系の対物レンズであることを特徴とする請求項2記載の表面電荷分布または表面電位分布の測定装置。   3. The surface charge distribution or surface potential distribution measuring device according to claim 2, wherein the electrostatic lens means is an objective lens of an optical system of the charged particle beam. 前記静電対物レンズは、減速型静電対物レンズであることを特徴とする請求項3記載の表面電荷分布または表面電位分布の測定装置。   4. The surface charge distribution or surface potential distribution measuring apparatus according to claim 3, wherein the electrostatic objective lens is a decelerating electrostatic objective lens. 前記荷電粒子発生手段は前記試料を照射する荷電粒子ビームのための電子銃を有し、前記走査手段は、前記静電対物レンズと前記電子銃との間に該電子銃からの荷電粒子ビームを走査するために配置された偏向手段を有することを特徴とする請求項3記載の表面電位分布の測定装置。   The charged particle generating means has an electron gun for a charged particle beam that irradiates the sample, and the scanning means emits a charged particle beam from the electron gun between the electrostatic objective lens and the electron gun. 4. The surface potential distribution measuring device according to claim 3, further comprising a deflecting unit arranged for scanning. 前記荷電粒子ビームの光学系の射出開口部は、前記試料からの電子が試料側に引き戻される方向の電界ベクトルを有することを特徴とする請求項2記載の表面電荷分布または表面電位分布の測定装置。   3. The surface charge distribution or surface potential distribution measuring apparatus according to claim 2, wherein the exit aperture of the charged particle beam optical system has an electric field vector in a direction in which electrons from the sample are pulled back to the sample side. . 前記荷電粒子ビームの光学系の射出開口部の周辺近傍に、電子衝突時に放出電子が発生する部材を配置したことを特徴とする請求項2記載の表面電荷分布または表面電位分布の測定装置。   3. The apparatus for measuring surface charge distribution or surface potential distribution according to claim 2, wherein a member for generating emitted electrons at the time of electron collision is disposed in the vicinity of the periphery of the exit opening of the charged particle beam optical system. 前記信号検出手段は、前記走査手段による前記試料の表面の2次元的な走査により該試料表面に入射する荷電粒子のうち、その入射速度ベクトルの前記試料表面における法線方向の成分が反転した荷電粒子を検出して検出信号を得ることを特徴とする請求項2記載の表面電荷分布または表面電位分布の測定装置。   The signal detection means is a charge in which the normal direction component of the incident velocity vector on the sample surface is reversed among charged particles incident on the sample surface by two-dimensional scanning of the sample surface by the scanning means. 3. The surface charge distribution or surface potential distribution measuring apparatus according to claim 2, wherein a detection signal is obtained by detecting particles. 請求項2乃至8のいずれか一項に記載の測定装置と、前記試料として感光体に荷電粒子を照射することで該感光体上にほぼ均一に帯電電荷を生成する手段と、該生成手段により帯電した前記感光体を選択的に露光するための光学系手段とを備え、該光学系手段による露光後に前記測定装置により前記感光体の表面を電子ビームで走査し、該走査で得られる検出信号により、前記感光体表面の静電潜像分布を測定することを特徴とする感光体静電潜像の測定装置。   A measuring apparatus according to any one of claims 2 to 8, means for generating charged charges substantially uniformly on the photosensitive member by irradiating the photosensitive member with charged particles as the sample, and the generating means An optical system means for selectively exposing the charged photoconductor, and after the exposure by the optical system means, the measurement device scans the surface of the photoconductor with an electron beam, and a detection signal obtained by the scanning And measuring the electrostatic latent image distribution on the surface of the photoconductor. 請求項2乃至9のいずれか一項に記載の測定装置を用いて、前記試料の厚さ方向にかかる電界強度が30V/μm以上でありかつ40V/μm以下の条件下で、前記試料に電荷を10−8クーロン/mm2以上照射したときに、耐絶縁領域が99%以上であることを特徴とする試料からなる潜像担持体。 Using the measuring apparatus according to any one of claims 2 to 9, a charge is applied to the sample under a condition where the electric field strength applied in the thickness direction of the sample is 30 V / μm or more and 40 V / μm or less. A latent image carrier made of a sample, characterized by having an insulation resistance region of 99% or more when irradiated with 10 −8 coulomb / mm 2 or more.
JP2004360996A 2004-12-14 2004-12-14 Method and apparatus for measuring surface charge distribution or surface potential distribution Expired - Fee Related JP4619765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360996A JP4619765B2 (en) 2004-12-14 2004-12-14 Method and apparatus for measuring surface charge distribution or surface potential distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360996A JP4619765B2 (en) 2004-12-14 2004-12-14 Method and apparatus for measuring surface charge distribution or surface potential distribution

Publications (2)

Publication Number Publication Date
JP2006172790A true JP2006172790A (en) 2006-06-29
JP4619765B2 JP4619765B2 (en) 2011-01-26

Family

ID=36673319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360996A Expired - Fee Related JP4619765B2 (en) 2004-12-14 2004-12-14 Method and apparatus for measuring surface charge distribution or surface potential distribution

Country Status (1)

Country Link
JP (1) JP4619765B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076099A (en) * 2006-09-19 2008-04-03 Ricoh Co Ltd Measuring method of surface potential distribution, measuring device of surface potential, measuring device of photoreceptor electrostatic latent image, latent image carrier, and image forming device
JP2008096347A (en) * 2006-10-13 2008-04-24 Ricoh Co Ltd Method and device for measuring surface potential distribution
JP2009063764A (en) * 2007-09-05 2009-03-26 Ricoh Co Ltd Measuring device for photoreceptor electrostatic latent image, image forming apparatus, and measuring method for photoreceptor electrostatic latent image
US7612570B2 (en) 2006-08-30 2009-11-03 Ricoh Company, Limited Surface-potential distribution measuring apparatus, image carrier, and image forming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489222B (en) 2012-02-16 2015-06-21 Nuflare Technology Inc Electron beam rendering device and electron beam rendering method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315782A (en) * 1988-06-16 1989-12-20 Canon Inc Image forming device
JPH025337A (en) * 1988-03-09 1990-01-10 Seiko Instr Inc Charged particle beam device and sample observing method thereby
JPH11260306A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Electron beam inspection apparatus and method therefor, apparatus applying charged particle beam and method therefor
JP2000323538A (en) * 1999-03-05 2000-11-24 Toshiba Corp Method and system for board inspecting
JP2004014485A (en) * 2002-06-12 2004-01-15 Hitachi High-Technologies Corp Wafer defect inspection method and wafer defect inspection device
JP2004233261A (en) * 2003-01-31 2004-08-19 Ricoh Co Ltd Electrostatic latent image observation method and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025337A (en) * 1988-03-09 1990-01-10 Seiko Instr Inc Charged particle beam device and sample observing method thereby
JPH01315782A (en) * 1988-06-16 1989-12-20 Canon Inc Image forming device
JPH11260306A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Electron beam inspection apparatus and method therefor, apparatus applying charged particle beam and method therefor
JP2000323538A (en) * 1999-03-05 2000-11-24 Toshiba Corp Method and system for board inspecting
JP2004014485A (en) * 2002-06-12 2004-01-15 Hitachi High-Technologies Corp Wafer defect inspection method and wafer defect inspection device
JP2004233261A (en) * 2003-01-31 2004-08-19 Ricoh Co Ltd Electrostatic latent image observation method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612570B2 (en) 2006-08-30 2009-11-03 Ricoh Company, Limited Surface-potential distribution measuring apparatus, image carrier, and image forming apparatus
JP2008076099A (en) * 2006-09-19 2008-04-03 Ricoh Co Ltd Measuring method of surface potential distribution, measuring device of surface potential, measuring device of photoreceptor electrostatic latent image, latent image carrier, and image forming device
JP2008096347A (en) * 2006-10-13 2008-04-24 Ricoh Co Ltd Method and device for measuring surface potential distribution
JP2009063764A (en) * 2007-09-05 2009-03-26 Ricoh Co Ltd Measuring device for photoreceptor electrostatic latent image, image forming apparatus, and measuring method for photoreceptor electrostatic latent image

Also Published As

Publication number Publication date
JP4619765B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP2919170B2 (en) Scanning electron microscope
JP3786875B2 (en) Objective lens for charged particle beam devices
US6627884B2 (en) Simultaneous flooding and inspection for charge control in an electron beam inspection machine
JP5262322B2 (en) Electrostatic latent image evaluation apparatus, electrostatic latent image evaluation method, electrophotographic photosensitive member, and image forming apparatus
US7400839B2 (en) Method and device for measuring surface potential distribution, method and device for measuring insulation resistance, electrostatic latent image measurement device, and charging device
JP5086671B2 (en) Electrostatic latent image evaluation method / electrostatic latent image evaluation apparatus
US8314627B2 (en) Latent-image measuring device and latent-image carrier
JP4500646B2 (en) Sample observation method and electron microscope
JP2008135343A (en) Charged particle beam device, scanning electron microscope, and testpiece observation method
JP5176328B2 (en) Electrostatic characteristic measuring method and electrostatic characteristic measuring apparatus
JP2004251800A (en) Method and instrument for measuring surface charge distribution
JP4344909B2 (en) Electrostatic latent image measuring apparatus and electrostatic latent image measuring method
JP4619765B2 (en) Method and apparatus for measuring surface charge distribution or surface potential distribution
JP4438439B2 (en) Surface charge distribution measuring method and apparatus, and photoreceptor electrostatic latent image distribution measuring method and apparatus
JP5091081B2 (en) Method and apparatus for measuring surface charge distribution
JP5116134B2 (en) Surface potential distribution measuring apparatus, latent image carrier and image forming apparatus
JP5374816B2 (en) Electrostatic latent image measuring device, latent image carrier, and image forming apparatus
JP2002025492A (en) Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror
JP2006010430A (en) Surface potential distribution measuring method and measuring device
JP5369369B2 (en) Surface potential distribution measuring method, surface potential measuring device, photoconductor electrostatic latent image measuring device, latent image carrier, and image forming apparatus
US20050211898A1 (en) Device for measuring the emission of x rays produced by an object exposed to an electron beam
JP5072081B2 (en) Photoconductor electrostatic latent image measuring device, image forming apparatus, and photoconductor electrostatic latent image measuring method
KR20190102080A (en) Extractor electrode for electron source
JP2008026496A (en) Apparatus for measuring electrostatic latent image, method for measuring electrostatic latent image, program, and apparatus for measuring latent image diameter
JP2006084434A (en) Method of measuring insulation resistance, apparatus, and latent image carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4619765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees