JPS593543Y2 - boiling cooled electromagnet - Google Patents

boiling cooled electromagnet

Info

Publication number
JPS593543Y2
JPS593543Y2 JP10499278U JP10499278U JPS593543Y2 JP S593543 Y2 JPS593543 Y2 JP S593543Y2 JP 10499278 U JP10499278 U JP 10499278U JP 10499278 U JP10499278 U JP 10499278U JP S593543 Y2 JPS593543 Y2 JP S593543Y2
Authority
JP
Japan
Prior art keywords
coil
tank body
cooling
cooling tank
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10499278U
Other languages
Japanese (ja)
Other versions
JPS5522167U (en
Inventor
卓弥 鴨志田
伸 熊沢
粛 梅森
Original Assignee
日本国有鉄道
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国有鉄道 filed Critical 日本国有鉄道
Priority to JP10499278U priority Critical patent/JPS593543Y2/en
Publication of JPS5522167U publication Critical patent/JPS5522167U/ja
Application granted granted Critical
Publication of JPS593543Y2 publication Critical patent/JPS593543Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Linear Motors (AREA)

Description

【考案の詳細な説明】 この考案は、同期式リニアモータにおける移動体側界磁
として用いられる界磁用電磁石に関し、特に、電磁石を
構成するコイルを構成する素線の全てを効率良く冷却す
るための構造を備えた沸騰冷却式電磁石の改良に関する
[Detailed description of the invention] This invention relates to a field electromagnet used as a field on the moving body side of a synchronous linear motor, and is particularly concerned with a field electromagnet that is used as a field magnet on the moving body side of a synchronous linear motor. This invention relates to improvements in boiling-cooled electromagnets having a structure.

先に本願考案者等により提案した特願昭52−1099
41号に開示される沸騰冷却式の電磁石においては、環
状冷却槽体に収納される環状コイルは、冷却槽体の長手
方向軸線とコイルの長手方向軸線が一致するように収納
配置された上下に対称構造を有したものであるため、冷
却媒体に生ずる気泡を集めるための空隙部は、おもにコ
イル側辺とこれに対向する冷却槽体内壁との間に形成さ
れているので、コイルの発生熱量が増し、したがって気
泡の発生量が増加し上部に気体領域が生ずるため、コイ
ルの上辺部が気体領域にさらされることとなって冷却効
率の異る部分を生じるという問題が見いだされた。
Patent application 1982-1099 previously proposed by the inventor of the present application, etc.
In the boiling cooling type electromagnet disclosed in No. 41, the annular coil housed in the annular cooling tank body is arranged in upper and lower positions such that the longitudinal axis of the cooling tank body and the longitudinal axis of the coil coincide. Since it has a symmetrical structure, the voids for collecting air bubbles generated in the cooling medium are mainly formed between the coil side and the opposing inner wall of the cooling tank, which reduces the amount of heat generated by the coil. The problem was discovered that the upper side of the coil is exposed to the gas region, resulting in areas with different cooling efficiencies.

この考案はかかる点に着目しこれを改良したもので環状
コイル外表面と冷却槽体の内壁面との間に冷却媒体流路
が形成されるように環状の沸騰冷却槽体によってコイル
を取囲むと共に鉄心を嵌装してなる沸騰冷却式電磁石に
おいて、環状コイルの長手方向軸線を環状冷却槽体の長
手方向軸線に対し下方に偏移せしめて環状コイルと冷却
槽本体内に上下非対称に収納配置せしめた構造により、
コイルにふれることなく冷却槽体内に冷却媒体の気化で
生ずる気泡で作られる気体領域が形成されるようにした
沸騰冷却式電磁石である。
This invention focuses on this point and is an improvement on it, in which the coil is surrounded by an annular boiling cooling tank body so that a cooling medium flow path is formed between the outer surface of the annular coil and the inner wall surface of the cooling tank body. In a boiling-cooled electromagnet in which an iron core is fitted together with the annular coil, the longitudinal axis of the annular coil is shifted downward with respect to the longitudinal axis of the annular cooling tank body, and the annular coil and the cooling tank body are housed vertically asymmetrically. Due to the tight structure,
This is a boiling cooling type electromagnet in which a gas region is created by air bubbles generated by vaporization of the cooling medium inside the cooling tank without touching the coil.

以下に図面を参照して、この考案の望ましい実施例を説
明する。
Preferred embodiments of this invention will be described below with reference to the drawings.

第1図は、この考案を長手方向の断面で表わしたもので
、第1図のA−A’からみた断面斜視図を第2図に示す
FIG. 1 shows this invention in longitudinal section, and FIG. 2 is a perspective sectional view taken along line AA' in FIG.

第1,2図において、電磁石は、環状の冷却槽体1,1
′、冷却槽体1,1′内に収納された環状のコイル2,
2′、冷却槽体1,1′の上槽部4を嵌装する所定ギャ
ップをもって対向する磁極部5,5′を有する鉄心3、
コイル2,2′の内周面と環状冷却槽体1の中空胴部壁
との間に介在された絶縁体7.7′及び8,8′、冷却
槽体1内に液化された冷却媒体をもどす導管9、及び冷
却槽体1の上部より気化された冷却媒体を凝縮器(図示
せず)に送る導管10をもって成る。
In FIGS. 1 and 2, the electromagnets are annular cooling tank bodies 1 and 1.
', an annular coil 2 housed in the cooling tank body 1, 1',
2', an iron core 3 having magnetic pole parts 5, 5' facing each other with a predetermined gap into which the upper tank part 4 of the cooling tank bodies 1, 1' is fitted;
Insulators 7, 7' and 8, 8' interposed between the inner peripheral surfaces of the coils 2, 2' and the hollow body wall of the annular cooling tank body 1, and the liquefied cooling medium in the cooling tank body 1. A conduit 9 for returning the cooling medium, and a conduit 10 for sending the vaporized cooling medium from the upper part of the cooling tank body 1 to a condenser (not shown).

第2図に示されるように、コイル2,2′と冷却槽体1
の上槽部4の下壁との間に介在される絶縁体7.7′の
厚さdは、冷却槽体1の下槽部12の土壁とコイル2,
2′との間に介在される絶縁体8,8′の厚さDに対し
、d<Dなる関係にあることから、第1図の如く、コイ
ル2の軸線13は冷却槽体1の軸線14に対しD−dに
相当する長さ下方に偏移せしめられる。
As shown in FIG. 2, the coils 2, 2' and the cooling tank body 1
The thickness d of the insulator 7.7' interposed between the lower wall of the upper tank part 4 and the earthen wall of the lower tank part 12 of the cooling tank body 1 and the coil 2,
Since there is a relationship d<D with respect to the thickness D of the insulators 8 and 8' interposed between 14 by a length corresponding to D-d.

このように、コイル2,2′を冷却槽体1に対しD−d
だけ下方に偏移させた構造により、第2図の如く、上槽
部4の上部と下槽部12の絶縁体8.8′の両側に十分
大きな空隙を形成することができ、この上部および側上
部の空隙が気体の流路となり冷却媒体の気泡が集取され
、この部分より下方にコイル2,2′が位置することか
ら、コイル2,2′は直接気体領域にさらされず、常に
液化された冷却媒体中に浸漬され、均一な冷却効果が施
される。
In this way, the coils 2, 2' are connected to the cooling tank body 1 by D-d.
As shown in FIG. 2, a sufficiently large gap can be formed on both sides of the upper part of the upper tank part 4 and the insulator 8.8' of the lower tank part 12, as shown in FIG. The void at the upper side becomes a gas flow path and collects the bubbles of the cooling medium, and since the coils 2 and 2' are located below this part, the coils 2 and 2' are not directly exposed to the gas region and are constantly liquefied. It is immersed in a coolant coolant to provide a uniform cooling effect.

次に、第3及び4図に暗示する実験装置を用いて、コイ
ルの発熱により冷却媒体が気化して生じる気泡が集中し
て生じる気体領域にコイルが直接さらされる様になる時
の熱流束、即ち、バーンアウト熱流束の値とコイルに介
在される絶縁体の厚さ寸法との関係を説明する。
Next, using the experimental apparatus shown in Figures 3 and 4, we will calculate the heat flux when the coil is directly exposed to a gas region where bubbles are concentrated when the cooling medium is vaporized due to the heat generated by the coil. That is, the relationship between the burnout heat flux value and the thickness dimension of the insulator interposed in the coil will be explained.

まず第3,4図に示す実験装置は、タンク15内にフッ
ソ油等の冷却媒体を入れ、これに電熱コイル等を内蔵し
た発熱体16を収納し、発熱体16の上部には絶縁体1
7を介して邪魔板18を載置し、発熱体15の1側端よ
り長さlの位置にスペーサ19を介在させて仕切ると共
に、発熱体16の両側に間隔△Rを隔ててスペーサ20
を配置し、更にタンク15の上部に凝縮器21を設けた
ものである。
First, in the experimental apparatus shown in FIGS. 3 and 4, a cooling medium such as fluorine oil is placed in a tank 15, and a heating element 16 having a built-in electric heating coil is housed in the tank 15.
A baffle plate 18 is placed through the heat generating element 15, and a spacer 19 is interposed at a position of length l from one side end of the heat generating element 15 to partition the heat generating element 15, and a spacer 20 is placed on both sides of the heat generating element 16 at a distance ΔR.
A condenser 21 is further provided at the top of the tank 15.

この実験装置において、l=600mmとし、絶縁体1
7の厚さDを変えて、△R=5mm、lQmm及び20
mmのときのバーンアウト熱流束を測定し、第5図のグ
ラフに示す結果を得た。
In this experimental apparatus, l = 600 mm, and the insulator 1
By changing the thickness D of 7, △R=5mm, lQmm and 20
The burnout heat flux at mm was measured, and the results shown in the graph of FIG. 5 were obtained.

第5図のグラフから明らかな如く、絶縁体17の厚さD
が増すと、気泡の通過する流路の断面積が増加するため
、気泡はすみゃかに流路内を流れ排出されるのでバーン
アウト熱流束は直線的に増加する。
As is clear from the graph in FIG. 5, the thickness D of the insulator 17
As the heat flux increases, the cross-sectional area of the flow path through which the bubbles pass increases, so the bubbles quickly flow through the flow path and are discharged, so that the burnout heat flux increases linearly.

今仮りに、第1,2図の実施例におけるバーンアウト熱
流束の設計値が8×104(KCal/hrm2)テあ
り、且つコイル2の外表面と冷却槽体1の内隅との間隔
△R二10mmであったとすると、下槽部12内に介在
される絶縁体8を例にとれば、第5図のグラフからD=
lQmmが得られ、絶縁体8の厚さを10mmと定める
ことができる。
Assuming now that the design value of the burnout heat flux in the embodiment shown in FIGS. Assuming that R2 is 10 mm, and taking the insulator 8 interposed in the lower tank part 12 as an example, from the graph of FIG. 5, D=
lQmm is obtained, and the thickness of the insulator 8 can be determined to be 10 mm.

又このときのdの値は、コイル冷却槽体との間の絶縁を
考慮して定められる。
Further, the value of d at this time is determined in consideration of the insulation between the coil and the cooling tank body.

尚、この考案は、絶縁体の介在によってコイルを冷却槽
体内に偏移配置されるものに限定されず、冷却槽体の長
手方向軸線に対しコイルの長手方向軸線を下方に偏移し
て収納せしめる適宜の構造を含むものである。
Note that this invention is not limited to a case in which the coil is offset within the cooling tank body through the interposition of an insulator, but is also applicable to a case in which the longitudinal axis of the coil is offset downward with respect to the longitudinal axis of the cooling tank body. It includes an appropriate structure for causing the problem to occur.

この考案の沸騰冷却式電磁石は以上説明したように、環
状の冷却槽体の長手方向軸線に対しコイルの長手方向軸
線を所定長さ下方に偏移して収納した上下に非対称な収
納構造により、コイルの発熱による冷却媒体の気化で生
ずる気泡でコイルの上方に形成される気体領域を十分な
大きさとすることができ、コイルの上部が気体領域に露
呈して他の部分と冷却効率が異る冷却効率のアンバラン
スが回避され、常に安定したコイルの沸騰冷却を実現す
ることができる。
As explained above, the boiling-cooled electromagnet of this invention has a vertically asymmetric storage structure in which the longitudinal axis of the coil is shifted downward by a predetermined length with respect to the longitudinal axis of the annular cooling tank body. The air bubbles generated by the vaporization of the cooling medium due to the heat generated by the coil can make the gas area formed above the coil sufficiently large, and the upper part of the coil is exposed to the gas area, making the cooling efficiency different from other parts. Unbalanced cooling efficiency is avoided, and stable boiling cooling of the coil can be achieved at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この考案の一実施例を示す長手方向断面図、
第2図は第1図のA−A’からみた断面斜視図、第3,
4図は絶縁体の介在によるバーンアウト熱流束を測定す
るための実験装置の説明図、第5図は第3,4図の実験
装置で得られた絶縁体の厚さとバーンアウト熱流束の関
係を示すグラフ図である。 1.1′・・・・・・冷却槽体、2,2′・・・・・・
コイル、3・・・・・・鉄心、4・・・・・・上槽部、
5.5′・・・・・・磁極部、7.7’、8.8’・・
・・・・絶縁体、9,10・・・・・・導管、12・・
・・・・下槽部、15・・・・・・タンク、16・・・
・・・発熱体、17・・・・・・絶縁体、18・・・・
・・邪魔板、19゜20・・・・・・スペーサ、21・
・・・・・凝縮器。
FIG. 1 is a longitudinal sectional view showing an embodiment of this invention;
Figure 2 is a cross-sectional perspective view taken from line A-A' in Figure 1;
Figure 4 is an explanatory diagram of the experimental equipment for measuring burnout heat flux due to the presence of an insulator, and Figure 5 shows the relationship between the thickness of the insulator and the burnout heat flux obtained with the experimental equipment shown in Figures 3 and 4. FIG. 1.1'...Cooling tank body, 2,2'...
Coil, 3... Iron core, 4... Upper tank section,
5.5'...Magnetic pole part, 7.7', 8.8'...
... Insulator, 9, 10 ... Conduit, 12 ...
...Lower tank section, 15...Tank, 16...
... Heating element, 17 ... Insulator, 18 ...
...Baffle plate, 19°20...Spacer, 21.
·····Condenser.

Claims (1)

【実用新案登録請求の範囲】 環状コイル外表面と冷却槽体の内壁面との間に冷却媒体
流路が形成されるように環状の沸騰冷却槽体によって取
囲むと共に鉄心を嵌挿してなる沸騰冷却式電磁石におい
て、 環状コイルの長手方向軸線を環状冷却槽体の長手方向軸
線に対し下方に偏移せしめて環状コイルを冷却槽体内に
収納配置したことを特徴とする沸騰冷却式電磁石。
[Scope of Claim for Utility Model Registration] A boiler formed by surrounding an annular boiling cooling tank body and inserting an iron core so that a cooling medium flow path is formed between the outer surface of the annular coil and the inner wall surface of the cooling tank body. A boiling cooling type electromagnet characterized in that the longitudinal axis of the annular coil is shifted downward with respect to the longitudinal axis of the annular cooling tank body, and the annular coil is housed in the cooling tank body.
JP10499278U 1978-08-01 1978-08-01 boiling cooled electromagnet Expired JPS593543Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10499278U JPS593543Y2 (en) 1978-08-01 1978-08-01 boiling cooled electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10499278U JPS593543Y2 (en) 1978-08-01 1978-08-01 boiling cooled electromagnet

Publications (2)

Publication Number Publication Date
JPS5522167U JPS5522167U (en) 1980-02-13
JPS593543Y2 true JPS593543Y2 (en) 1984-01-31

Family

ID=29046837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10499278U Expired JPS593543Y2 (en) 1978-08-01 1978-08-01 boiling cooled electromagnet

Country Status (1)

Country Link
JP (1) JPS593543Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824032U (en) * 1981-08-07 1983-02-15 株式会社ニフコ level gauge
JPS6125519U (en) * 1984-07-20 1986-02-15 三菱自動車工業株式会社 Blow-by gas reduction equipment

Also Published As

Publication number Publication date
JPS5522167U (en) 1980-02-13

Similar Documents

Publication Publication Date Title
JP4942605B2 (en) Three-phase induction machine
JPS593543Y2 (en) boiling cooled electromagnet
JPS6310661B2 (en)
JP3713172B2 (en) Static induction machine
JPH0512995Y2 (en)
JPS5826500Y2 (en) liquid cooled wound core
JPH079354Y2 (en) Disk type transformer for high frequency induction heating
JPS593542Y2 (en) boiling cooled electromagnet
JPS6336872B2 (en)
JPS6317222Y2 (en)
JPS6120727Y2 (en)
JPS6351789B2 (en)
CN215528729U (en) Spiral warped sheet type multi-turn winding cooling device
JPH0246007Y2 (en)
JPS5814702Y2 (en) electromagnetic pump
JPH069321Y2 (en) Electromagnetic flow meter
JPS6144413Y2 (en)
JPS5814704Y2 (en) Annular flow path type linear induction electromagnetic pump
JPH0132338Y2 (en)
JPS58108726A (en) Transformer
JPS6214710U (en)
JPS6014087Y2 (en) steam generator
JP4065624B2 (en) Induction heating roller device
JPH09232165A (en) Reactor and power converter using the same
SU1156156A1 (en) Transformer