JPS5935421B2 - Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps - Google Patents

Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps

Info

Publication number
JPS5935421B2
JPS5935421B2 JP56075245A JP7524581A JPS5935421B2 JP S5935421 B2 JPS5935421 B2 JP S5935421B2 JP 56075245 A JP56075245 A JP 56075245A JP 7524581 A JP7524581 A JP 7524581A JP S5935421 B2 JPS5935421 B2 JP S5935421B2
Authority
JP
Japan
Prior art keywords
zinc
shot
iron alloy
lumps
based iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56075245A
Other languages
Japanese (ja)
Other versions
JPS57192240A (en
Inventor
恒男 鈴木
進 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP56075245A priority Critical patent/JPS5935421B2/en
Publication of JPS57192240A publication Critical patent/JPS57192240A/en
Publication of JPS5935421B2 publication Critical patent/JPS5935421B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は、亜鉛メッキ或いは亜鉛合金メッキ。[Detailed description of the invention] The present invention is zinc plating or zinc alloy plating.

特に亜鉛又は亜鉛一鉄合金の電気メッキの際にメッキ浴
中の亜鉛濃度がメッキの進行に従つて減少するのを補い
、メッキ浴中の亜鉛濃度を一定の値に保持するために、
メッキ浴中に補給投入する亜鉛ショット塊用の亜鉛基合
金、及びこの亜鉛基合金から成るショット塊に関する。
従来、一般的にメッキ浴中の亜鉛濃度の補給。
In particular, in electroplating of zinc or zinc-iron alloy, in order to compensate for the decrease in zinc concentration in the plating bath as plating progresses and to maintain the zinc concentration in the plating bath at a constant value,
The present invention relates to a zinc-based alloy for use as a zinc shot lump to be replenished into a plating bath, and to a shot lump made of this zinc-based alloy.
Traditionally, it is common to replenish the zinc concentration in the plating bath.

確保の目的のためには亜鉛ショット塊が用いられており
、その構造のためには、最純亜鉛地金が一般に用いられ
てきた。メッキ浴中の亜鉛濃度の維持のためには、亜鉛
ショット塊ができるだけ急速にかつ一様にメッキ浴中に
溶解することが好ましいが、亜鉛ショット塊の粒径ない
し粒子形状によつては、溶解が急速には進行せず、メッ
キ浴中の亜鉛濃度の制御上より溶解速度の高い亜鉛ショ
ット塊が望まれていた。本発明は上述の課題を解決する
ことを目的とし。
For securing purposes, zinc shot blocks have been used, and for their construction, purest zinc bullion has generally been used. In order to maintain the zinc concentration in the plating bath, it is preferable that the zinc shot lumps dissolve into the plating bath as quickly and uniformly as possible, but depending on the particle size or particle shape of the zinc shot lumps, dissolution may occur. However, in order to control the zinc concentration in the plating bath, a zinc shot mass with a high dissolution rate was desired. The present invention aims to solve the above-mentioned problems.

亜鉛ショット塊とした場合、より急速なメッキ浴中への
溶解を可能とする新規な亜鉛基鉄合金、及び該亜鉛基鉄
合金から成るショット塊を提供する。即ち、本発明のシ
ョット塊用亜鉛基鉄合金は。0.1重量%をこえ、2.
5重量%以下の鉄を含み残部を蒸留亜鉛地金の程度以上
の純度の亜鉛地金とする亜鉛基鉄合金である。
Provided is a novel zinc-based iron alloy that can be more rapidly dissolved in a plating bath when made into a zinc shot lump, and a shot lump made of the zinc-based iron alloy. That is, the zinc-based iron alloy for shot lumps of the present invention. exceeding 0.1% by weight; 2.
It is a zinc-based iron alloy containing 5% by weight or less of iron, with the remainder being zinc ingot with a purity higher than that of distilled zinc ingot.

さらに本発明の亜鉛基鉄合金ショット塊は、、1■、記
亜鉛基鉄合金から成るものである。以上、本発明につい
て詳述する。
Further, the zinc-based iron alloy shot ingot of the present invention is made of the zinc-based iron alloy described in 1. The present invention will now be described in detail.

従来、一般的には、亜鉛ショット塊(以下ショットとい
う)用の亜鉛地金としては、最純亜鉛地金が用いられ、
Feの混入は好ましくないものとされてきた。
Conventionally, the purest zinc ingot was generally used as the zinc ingot for zinc shot lumps (hereinafter referred to as shot).
Contamination of Fe has been considered undesirable.

しかしながら、意外にも本発明者による亜鉛及び亜鉛基
鉄合金を用いた亜鉛ショットの製造とこれに基づくメッ
キ浴中への亜鉛の溶解速度の研究の結果によればFe約
1.1%(以下本願においては重量比を示す)をピーク
として亜鉛ショット中にFeが存在することにより、最
純亜鉛地金による亜鉛ショットの場合よりも、はるかに
急速な溶解速度を示すことが見出された。本発明の亜鉛
基鉄合金は、0.1%を越え2.5%以下のFeを含み
、好ましくはFe0.5〜1.20最も好ましくはFe
0.7〜1.1%を含有する。残部は、亜鉛地金の一般
的規格である蒸留亜鉛地金の程度以上の純度を有する亜
鉛地金から成り。「蒸留亜鉛地金の程度以上」とは、J
ISH2107(1957)の規格中の蒸留亜鉛地金2
種(Zn98、O%以上、Pb1.8%以下、Fe0.
1%以下、Cd0.5%以下)の程度以上の純度を有す
ることを称する。
However, surprisingly, according to the results of the present inventor's research on the production of zinc shot using zinc and zinc-based iron alloys and the dissolution rate of zinc into the plating bath based on this, Fe is about 1.1% (less than It has been found that the presence of Fe in zinc shot exhibits a much more rapid dissolution rate than in the case of zinc shot made of the purest zinc ingot, with a peak of 0.25% by weight (in this application, the weight ratio is shown). The zinc-based iron alloy of the present invention contains more than 0.1% and less than 2.5% Fe, preferably 0.5 to 1.20 Fe, most preferably Fe
Contains 0.7-1.1%. The remainder consists of zinc ingots having a purity higher than that of distilled zinc ingots, which is a general standard for zinc ingots. “The grade of distilled zinc bullion or higher” means J.
Distilled zinc ingot 2 in the ISH2107 (1957) standard
Species (Zn98, O% or more, Pb1.8% or less, Fe0.
1% or less, Cd 0.5% or less).

これ以上の純度の亜鉛地金としては.例えば.同じくJ
ISH2lO7に規定する最純亜鉛地金(Zn99.9
95%以上.PbO.OO3%以下.FeO.OO2%
以下. CdO.OO2%以下.SnO.OOl%以下
)を用いることができ.その中間のものも使用可能であ
る。電気メツキ用のシヨツトには.一般にはZn99.
99%以Eのもの(いわゆる電気亜鉛.又は最純亜鉛)
を用いる。Fe含有の効果は亜鉛中のFeの飽和溶解礎
度1,07%で溶解速度のピークを示し.その後や\溶
解速度は緩かになるが.Feは最大2.5%までシヨツ
ト塊中に存在しうる(この場合一部偏折状態で存在して
いるものと考えられる)。
As a zinc ingot with a purity higher than this. for example. Similarly J
The purest zinc ingot specified by ISH21O7 (Zn99.9
More than 95%. PbO. OO3% or less. FeO. OO2%
below. CdO. OO2% or less. SnO. OOl% or less) can be used. Anything in between is also possible. For shots for electroplating. Generally Zn99.
99% or more E (so-called electrolytic zinc. or purest zinc)
Use. The effect of Fe content is that the dissolution rate peaks at a saturation dissolution level of Fe in zinc of 1.07%. After that, the dissolution rate slows down. Fe can be present in the shot mass up to a maximum of 2.5% (in this case it is considered to be present in a partially polarized state).

Feの含有はFel%以下の領域では.Fe含有量の増
大とともに合金の溶解速度を顕著に増大させるので.そ
の下限は.亜鉛地金の規格値のうち.Fe最大値である
0.1%をこえるものとする。なお.最近の市販蒸留亜
鉛地金は一般にFeO.O2%以下程度のものが多く.
これに対して本発明の亜鉛基鉄合金は.最低限有効な程
度にFeを含むものである。この亜鉛基合金(1.溶融
亜鉛地金にFeを溶解させて製造するが.シヨツト塊を
製造する際の溶融時においてFeを溶融し合金化するこ
ともできる。
The Fe content is below Fe%. As the dissolution rate of the alloy increases significantly with increasing Fe content. The lower limit is. Among the standard values for zinc ingots. The Fe content shall exceed the maximum value of 0.1%. In addition. Recent commercially available distilled zinc ingots are generally FeO. Many have O2% or less.
In contrast, the zinc-based iron alloy of the present invention. It contains Fe to a minimum effective extent. This zinc-based alloy (1. is manufactured by melting Fe into molten zinc ingot), but it is also possible to melt and alloy Fe during melting when manufacturing shot lumps.

Feはシヨツト化の際の急冷により.偏析を生じうるの
で.過飽和状態の2.5%まで.シヨツト申に含有され
うる。本発明の亜鉛基鉄合金は,本発明者の開発の結果
.亜鉛シヨツトと同様な粒形.粒径分布のシヨツトにす
ることが可能であり.この亜鉛基鉄合金シヨツトは.従
来一般に亜鉛シヨツトをメツキ浴中に投入Znイオンを
溶出させていたのに.代り一般的に使用可能である。亜
鉛メツキにおいて.Feの存在は必ずしも併害とはなら
ないし.積極的に亜鉛一鉄合金メツキの効果も認められ
ており.亜鉛一鉄(例えばFe25動合金メツキの場合
には.特に本発明の亜鉛基鉄合金シヨツトを用いること
は. Feイオンの補給も同時に部分的に可能となるの
で.特に有利である。本発明の亜鉛基合金を用いたシヨ
ツトの溶解速度は.特に硫酸酸性浴中において顕著に認
められ.その他ピロリン酸浴等においても同様の効果が
認められる。実施例1(以下%は重量%を示す) Zn純度99.99%以上の最純亜鉛地金(不純物Pb
O.OOll%,FeO.OOO2%,CdO.OOO
3%,)30kyを600〜650℃に溶融し.純鉄2
70〜3309を夫々溶解させて.FeO.88〜1.
07%を含有する亜鉛基鉄合金を得た。
Fe is produced by rapid cooling during shot production. Because it can cause segregation. Up to 2.5% supersaturation. It can be contained in shots. The zinc-based iron alloy of the present invention is the result of development by the inventor. Particle shape similar to zinc shot. It is possible to make a shot of particle size distribution. This zinc-based iron alloy shot. Conventionally, zinc shots were generally put into the plating bath to elute the Zn ions. Alternatives are commonly available. In galvanizing. The presence of Fe does not necessarily cause side effects. The effects of zinc-iron alloy plating have also been positively recognized. In the case of zinc-monoferrous (for example Fe25) dynamic alloy plating, it is particularly advantageous to use the zinc-based iron alloy shot of the invention, since it is also possible to partially replenish Fe ions at the same time. The dissolution rate of shots using zinc-based alloys is particularly noticeable in acidic sulfuric acid baths.A similar effect is also observed in other baths such as pyrophosphoric acid.Example 1 (hereinafter % indicates weight %) Zn The purest zinc ingot with a purity of 99.99% or higher (impurity Pb
O. OOll%, FeO. OOO2%, CdO. OOO
3%,) 30ky was melted at 600-650℃. pure iron 2
Dissolve each of 70 to 3309. FeO. 88-1.
A zinc-based iron alloy containing 0.07% was obtained.

その溶湯をノズルから水中に滴下して粒径−6〜+2m
mのシヨツトを得た。
The molten metal is dropped into water from a nozzle and the particle size is -6 to +2 m.
I got a shot of m.

このうち.Fel.O7%入り亜鉛基合金シヨツト15
.0f1を1000mjのH2SO4濃度22.49/
l溶液(液温15℃)中に投入し静置して.水素発生量
を測定した所水素発生速度10.0cc/Minを示し
.換算Zn溶解速度292X10−49/Min(0,
195%/Min)を示した。
this house. Fel. Zinc-based alloy shot 15 containing O7%
.. 0f1 is 1000mj H2SO4 concentration 22.49/
1 solution (liquid temperature 15°C) and let stand. The amount of hydrogen generated was measured and the hydrogen generation rate was 10.0cc/min. Converted Zn dissolution rate 292X10-49/Min(0,
195%/Min).

その結果はグラフ化して第1図に示す。(対照例 1) 同一粒径及び粒形の最純亜鉛シヨツト(実施例1で用い
た最純亜鉛地金を使用)により.実施例1と同様な測定
を行なつたところ.水素発生速度0.29cc/Min
換算.Zn溶解速度8.5X1019/Min(0,0
06%/Mjn)であつた。
The results are shown in graph form in FIG. (Comparative Example 1) By using the purest zinc shots (using the purest zinc ingot used in Example 1) with the same particle size and shape. The same measurements as in Example 1 were performed. Hydrogen generation rate 0.29cc/Min
Conversion. Zn dissolution rate 8.5X1019/Min(0,0
06%/Mjn).

その結果を第1図にグラフ化して示す。この実験により
.最純亜鉛シヨツトに比して.30倍以上の溶解速度を
有する亜鉛基鉄合金シヨツトが得られることが判明した
The results are shown graphically in FIG. Through this experiment. Compared to the purest zinc shot. It has been found that zinc-based iron alloy shot having a dissolution rate 30 times higher can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の亜鉛基合金を用いたシヨツトと.従来
の最純亜鉛シヨツトとの.硫酸酸性浴中における溶解速
度を示すグラフである。
Figure 1 shows a shot using the zinc-based alloy of the present invention. Compared to the conventional purest zinc shot. It is a graph showing the dissolution rate in a sulfuric acid acidic bath.

Claims (1)

【特許請求の範囲】 1 0.1%をこえ2.5重量%以下の鉄を含み残部を
蒸留亜鉛地金の程度以上の純度の亜鉛地金とするメッキ
ショット塊用亜鉛基鉄合金。 2 特許請求の範囲第1項において、塊状としたことを
特徴とするメッキショット塊用亜鉛基鉄合金。
[Scope of Claims] 1. A zinc-based iron alloy for plating shot ingots, containing more than 0.1% and less than 2.5% by weight of iron, with the remainder being zinc ingot with a purity equal to or higher than that of distilled zinc ingot. 2. The zinc-based iron alloy for plating shot lumps according to claim 1, characterized in that it is in the form of lumps.
JP56075245A 1981-05-19 1981-05-19 Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps Expired JPS5935421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56075245A JPS5935421B2 (en) 1981-05-19 1981-05-19 Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56075245A JPS5935421B2 (en) 1981-05-19 1981-05-19 Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps

Publications (2)

Publication Number Publication Date
JPS57192240A JPS57192240A (en) 1982-11-26
JPS5935421B2 true JPS5935421B2 (en) 1984-08-28

Family

ID=13570640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56075245A Expired JPS5935421B2 (en) 1981-05-19 1981-05-19 Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps

Country Status (1)

Country Link
JP (1) JPS5935421B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154906U (en) * 1984-03-26 1985-10-16 日立電線株式会社 Light guide for optical thyristor ignition
JPH01177346A (en) * 1988-01-07 1989-07-13 Kawasaki Steel Corp Method for supplying component to plating bath
DE3819892A1 (en) * 1988-06-09 1989-12-14 Schering Ag ALKALINE AQUEOUS BATH FOR GALVANIC DEPOSITION OF ZINC-IRON ALLOYS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532701A (en) * 1978-08-23 1980-03-07 Mitsui Mining & Smelting Co Ltd Facilitating method for dissolution of zinc and zinc alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532701A (en) * 1978-08-23 1980-03-07 Mitsui Mining & Smelting Co Ltd Facilitating method for dissolution of zinc and zinc alloy

Also Published As

Publication number Publication date
JPS57192240A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US4124482A (en) Method and apparatus for casting anodes
CA1064786A (en) Low tin terne coating
JPH07207421A (en) Galvanizing method
JPS5935421B2 (en) Zinc-based iron alloy for plated shot lumps and zinc-based iron alloy plated shot lumps
US2923671A (en) Copper electrodeposition process and anode for use in same
JPS6184389A (en) Manufacture of high purity electrolytic copper
JPS5918457B2 (en) Magnesium-based alloy with high mechanical strength and low corrosion tendency
JP3425520B2 (en) Hot dip galvanizing of steel materials
JP2651931B2 (en) Aluminum alloy foil for cathode of electrolytic capacitor and method for producing the same
CN114058891A (en) Method for adding zirconium element in smelting of zirconium-containing rare earth casting magnesium alloy
JPS61288039A (en) Zinc alloy for zinc hot dipping having crystal
US2620270A (en) Method of improving magnesium and the binary magnesium-base alloy of magnesium and manganese
JP2640405B2 (en) Corrosion resistant magnesium alloy
US5026433A (en) Grain refinement of a copper base alloy
CN1208483C (en) Method for eliminating bismuth from molten lead by adding calcium-magnesium alloys
JPH01246387A (en) Method for electrolytically refining copper
CN114836706B (en) Preparation method of batch hot dip galvanized steel ultrathin galvanized layer
JPS61104044A (en) Al alloy ingot for rolling
JPH03122239A (en) Aluminum alloy for cathode foil of electrolytic capacitor
JPS6024198B2 (en) Manufacturing method of anode material for copper plating
JPH0353051A (en) Plating bath for galvanizing treatment
US1556953A (en) Alloy
JP3076096B2 (en) Method for dissolving Ni and Zn in Ni-Zn alloy plating bath
JPH01139789A (en) Production of high purity electrolytic copper having low silver content
JPH0313296B2 (en)