JPS593530B2 - Corrosion-resistant brass material for radiator tube - Google Patents

Corrosion-resistant brass material for radiator tube

Info

Publication number
JPS593530B2
JPS593530B2 JP1392580A JP1392580A JPS593530B2 JP S593530 B2 JPS593530 B2 JP S593530B2 JP 1392580 A JP1392580 A JP 1392580A JP 1392580 A JP1392580 A JP 1392580A JP S593530 B2 JPS593530 B2 JP S593530B2
Authority
JP
Japan
Prior art keywords
corrosion
brass
nickel
added
dezincification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1392580A
Other languages
Japanese (ja)
Other versions
JPS56112431A (en
Inventor
繁 大山
将 相馬
正雄 木崎
吉和 山道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP1392580A priority Critical patent/JPS593530B2/en
Publication of JPS56112431A publication Critical patent/JPS56112431A/en
Publication of JPS593530B2 publication Critical patent/JPS593530B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は耐脱亜鉛腐食特性を有するラジェーターチュー
ブ用黄銅材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brass material for radiator tubes having dezincing corrosion resistance properties.

一般に自動車等に用いられるラジェーターのチューブ材
は銅65係、亜鉛35係の黄銅(以下65/35黄銅と
いう)が用いられ、黄銅条を扁平な断面形状に成型し、
衝合端部をはぜ巻きに接合してろう付けをしている。
Generally, the tube material for radiators used in automobiles is made of brass containing 65% copper and 35% zinc (hereinafter referred to as 65/35 brass), and is made by molding a brass strip into a flat cross-sectional shape.
The abutting ends are joined to the flap and brazed.

そして、更に使用上耐食性が要求され、半田コーティン
グを施したり更にその上に塗装を施すことが行なわれて
いる。
Further, corrosion resistance is required for use, and solder coating or painting is performed on the coating.

しかして、今日ラジェーターの製作において最も要求さ
れているのは、なお一層の軽量化と耐食性の向上であり
、軽量化のために近時0.13m7M厚まで薄肉化され
て来たが、反面使用時に脱亜鉛腐食現象が起きて孔食が
生じ、その部分から漏水する危険があるだめ、予めある
程度の腐食式を見込む必要があり、これ以上薄肉化する
ことは困難であると考えられて来た。
However, what is most required in the production of radiators today is further weight reduction and improved corrosion resistance.In order to reduce weight, the thickness has recently been reduced to 0.13m7M, but on the other hand, Sometimes dezincification corrosion occurs, causing pitting corrosion, and there is a risk of water leaking from that area, so it is necessary to anticipate a certain degree of corrosion in advance, and it has been thought that it would be difficult to make the wall any thinner. .

ラジェーターチューブ材の脱亜鉛腐食現象はチューブ内
外両面から進行し、内面は管内を循環する熱水に常時接
触していることによる腐食であり、外面は半田フラック
スの残留による塩化物の存在や海岸地方の塩分とか工業
地帯におけるS02ガスと接触しているためで、かよう
な腐食環境の中で自動車が走行中に振動を受けて過酷な
繰返し応力が加わると、腐食疲労により単なる腐食に比
較して更に腐食の機会が多くなる。
The dezincification corrosion phenomenon of radiator tube material progresses from both the inside and outside of the tube.The inner surface is corroded due to constant contact with the hot water circulating inside the tube, and the outer surface is corroded due to the presence of chlorides due to residual solder flux or in coastal areas. This is due to the contact with salt in the environment and S02 gas in industrial areas, and when a car is subjected to vibrations and severe repeated stress while driving in such a corrosive environment, corrosion fatigue occurs and the damage is more severe than simple corrosion. Furthermore, there are more opportunities for corrosion.

従って、かかる脱亜鉛腐食を防止することが可能であれ
ば、ラジェーターチューブ材を更に薄肉化することも可
能となり、自動車等の軽量化に寄与することができる。
Therefore, if it is possible to prevent such dezincification corrosion, it is possible to further reduce the thickness of the radiator tube material, which can contribute to reducing the weight of automobiles and the like.

本発明はかような脱亜鉛腐食を防止することを目的とし
て開発されたものである。
The present invention was developed for the purpose of preventing such dezincification corrosion.

一般に65/35黄銅が用いられるのは、黄銅材におい
ては亜鉛28係以下であると熱間加工性が悪く、37%
を超えるとβ相が析出して耐食性を悪化させると共に冷
間加工性をも劣化させるため、その中間成分が用いられ
るのである。
Generally, 65/35 brass is used because hot workability is poor if the zinc content is less than 28% in brass materials, and 37%
If the β phase is exceeded, the β phase will precipitate, deteriorating the corrosion resistance and also the cold workability, so an intermediate component thereof is used.

本発明は上記の亜鉛範囲の黄銅材に微量のニッケル等を
添加して耐食性を向上せしめたものであり、同時にラジ
ェーターチューブ材として必要とされる引張強さ、伸び
率、硬度、結晶粒度、エリクセン値等の緒特性をも満足
せしめたものである。
The present invention improves corrosion resistance by adding a small amount of nickel etc. to a brass material in the above zinc range.At the same time, it has the tensile strength, elongation, hardness, grain size, and Erichsen It also satisfies other characteristics such as value.

即ち、本発明は重量でニッケル0.5〜5.0係を単独
で、或いはニッケル0.05〜1.0係と、これに砒素
0.005〜0.1係、リン0.005〜0.1%、ア
ンチモン0.005〜0.1係のうちの一種又はそれ以
上を混合添加し、亜鉛28〜37%の範囲で残部が実質
的に銅である組成の脱亜鉛腐食の防止特性を有するラジ
ェーターチューブ用黄銅材を提供するものである。
That is, the present invention uses 0.5 to 5.0 parts of nickel alone, or 0.05 to 1.0 parts of nickel, 0.005 to 0.1 parts of arsenic, and 0.005 to 0 parts of phosphorus. .1%, antimony 0.005 to 0.1%, and one or more of the following are mixed and added, and zinc is in the range of 28 to 37%, and the balance is substantially copper to prevent dezincification corrosion. A brass material for a radiator tube is provided.

次に、本発明を実施例に基づいて以下詳細に説明する。Next, the present invention will be described in detail below based on examples.

まず、黄銅板の脱亜鉛腐食に対して効果的な添加金属を
見出すため、各種の元素を添加した6 5/35ベース
の黄銅を熔製し、次の要領で0.51n7IL厚の腐食
試験用試片を製作した。
First, in order to find additive metals that are effective against dezincification corrosion of brass plates, we melted 65/35 base brass to which various elements were added, and used it for corrosion tests with a thickness of 0.51n7IL in the following manner. A specimen was made.

(イ)熔解鋳造(15mm厚)→(ロ)850℃熱間圧
延(5mm厚)→(・う酸洗→(→冷間圧延(2mm厚
)→((ホ)500℃焼純→(へ)酸洗→(ト)冷間圧
延(Q、5mm厚)→(7)500℃焼鈍→(IJ)酸
洗→(ヌ)冷間圧延(Q、5mm厚)。
(a) Melt casting (15mm thick) → (b) 850℃ hot rolling (5mm thick) → (・Pickling → (→ cold rolling (2mm thick) → (e) 500℃ sintering → (to) ) Pickling → (G) Cold rolling (Q, 5 mm thickness) → (7) 500°C annealing → (IJ) Pickling → (J) Cold rolling (Q, 5 mm thickness).

黄銅の脱亜鉛腐食の測定法としては、従来(a)塩化第
2銅の塩酸酸性溶液中に数ケ月間浸漬させてその腐食の
進行状態を測定する方法。
Conventional methods for measuring dezincification corrosion of brass include (a) immersing it in an acidic solution of cupric chloride in hydrochloric acid for several months and measuring the progress of corrosion.

(b) 塩水噴霧試験によって数週間における腐食の
進行状態を測定する方法。
(b) A method of measuring the progress of corrosion over several weeks using a salt spray test.

などがあるが、いずれもテスト期間が長期にわたるだめ
、本発明者等は新たに上記と同程度の精度をもつ迅速な
腐食測定法を開発して採用した。
However, since the test period for each method is long, the present inventors have developed and adopted a new rapid corrosion measurement method that has the same accuracy as the above method.

これは、60℃の5係塩酸水溶液中に72時間浸漬して
その重量の減少速度ならびに液中の銅イオン濃度及び亜
鉛イオン濃度を測定する方法で、その装置の概略は第1
図に示す通りである。
This is a method in which the weight loss rate and copper ion concentration and zinc ion concentration in the solution are measured by immersing the solution in a 60°C 5th scale hydrochloric acid aqueous solution for 72 hours.
As shown in the figure.

即ち、還流器2付の三ロフラスコ(500mA容量)1
に5%塩酸水溶液3を250mt入れ、前記の試片4を
挿入してプラスチックス製糸5により吊下げ、60℃に
維持した恒温槽6中で72時間放置後取出し、試片4の
浸漬前後の重量変化を求めると共に、塩酸水溶液3中に
溶出したCu2+イオン濃度とZn2+イオン濃度を定
量するのである。
That is, 1 three-lough flask (500 mA capacity) with 2 reflux devices.
250 m of 5% hydrochloric acid aqueous solution 3 was added to the tank, the specimen 4 was inserted and suspended by plastic thread 5, and after being left in a constant temperature bath 6 maintained at 60°C for 72 hours, it was taken out. In addition to determining the change in weight, the concentrations of Cu2+ ions and Zn2+ ions eluted into the aqueous hydrochloric acid solution 3 are determined.

この場合、試片4は厚さ0.5關で110X257fi
7の大きさの板であり、予め表面を≠1500エメリー
紙で研磨し水洗乾燥したものを使用した。
In this case, the specimen 4 is 110×257fi with a thickness of 0.5
The surface of the plate was polished with ≠1500 emery paper, washed with water and dried.

なお、図中7は温水、8はヒーター、9は温度調節機、
10は温度計、11は保温材(発泡スチロール)を示し
ている。
In addition, in the figure, 7 is hot water, 8 is a heater, 9 is a temperature controller,
Reference numeral 10 indicates a thermometer, and reference numeral 11 indicates a heat insulating material (styrofoam).

以下、上記測定法を使用して行なった例を説明する。An example using the above measurement method will be described below.

参考例 1 黄銅の脱亜鉛腐食の防止に効果があるとされている砒素
を0.005〜0.1係の範囲で65/35ベースの黄
銅に配合した合金を製作し、前記測定法により腐食試験
を行なった結果を第2− a図に示す。
Reference Example 1 An alloy was prepared in which arsenic, which is said to be effective in preventing dezincification corrosion of brass, was mixed with 65/35 base brass in a range of 0.005 to 0.1%, and the corrosion was measured by the above measurement method. The results of the test are shown in Figure 2-a.

この結果から解るように、単位面積当りの重量減少量と
液中に溶出した〔Cu2++Zn2モ〕量はほぼ一致し
た値を示し、As添加量の増大と共に増加する傾向を示
している。
As can be seen from this result, the amount of weight loss per unit area and the amount of [Cu2++Zn2 mo] eluted into the liquid were almost the same, and showed a tendency to increase as the amount of As added increased.

一方、液中のzn2+/Cu2+比は0.02%As以
上の添加量範囲で一定値(黄銅中のZn/Cu=35/
65=0.54)に近い値を示しており、これから脱亜
鉛腐食が防止されていることが解る。
On the other hand, the zn2+/Cu2+ ratio in the liquid is a constant value within the addition amount range of 0.02% As or more (Zn/Cu in brass = 35/
65=0.54), which indicates that dezincification corrosion is prevented.

また、Zn”/Cu2力比が0.54以上の場合には、
試片4表面は銅色を呈し、該試片の断面をEPMACX
線マイクロ子マイクロアナライザー素分析を行なったと
ころ、表面層はほとんど銅のみであることが確認され、
脱亜鉛腐食現象が生じていることが判明した。
In addition, when the Zn''/Cu2 force ratio is 0.54 or more,
The surface of test piece 4 is copper-colored, and the cross section of the test piece is EPMACX.
When we performed elemental analysis using a wire microanalyzer, it was confirmed that the surface layer was almost entirely made of copper.
It was found that a dezincification corrosion phenomenon occurred.

実施例 1 そこで、上記参考例1と同様にしてニッケル0.1〜5
.0%を添加した場合の重量減少量(△W)。
Example 1 Therefore, in the same manner as in Reference Example 1 above, 0.1 to 5 nickel was added.
.. Amount of weight decrease (△W) when 0% is added.

溶出イオン量(Ct)、脱亜鉛比(r)ならびに総腐食
量(△T)の関係を第2−b図に示す。
The relationship between the amount of eluted ions (Ct), the dezincing ratio (r), and the total amount of corrosion (ΔT) is shown in Figure 2-b.

この結果から、添加量の相違を除き脱亜鉛抑制に関して
As添加の場合とほぼ同様な傾向を示していることが解
る。
From this result, it can be seen that, except for the difference in the amount added, the inhibition of dezincing shows almost the same tendency as in the case of As addition.

なお、第2− a及びb図に示した総腐食量(△T)は
次のように計算した値である。
The total corrosion amount (ΔT) shown in Figures 2-a and 2-b is a value calculated as follows.

△T (m ?/d)”C5s(Zn””)+(Zn2
” 〕)N但し、■=試験液量(4) S=試片表面積(ffl) 〔zn2モ〕=液中のZn2+イオン濃 度(rnfI/l) 〔Cu2+〕=液中のCu”+イー)f7濃度(mfI
/l) これにより、△T値と脱亜鉛比r (=Zn”/Cu2
+)によって脱亜鉛抑制効果と耐食性とを比較できるの
である。
△T (m?/d)"C5s(Zn"")+(Zn2
”)N However, ■=Test liquid volume (4) S=Specimen surface area (ffl) [zn2mo]=Zn2+ ion concentration in the liquid (rnfI/l) [Cu2+]=Cu”+e in the liquid) f7 concentration (mfI
/l) As a result, △T value and dezincification ratio r (=Zn''/Cu2
+) allows comparison of dezincification suppression effect and corrosion resistance.

参考例 2 次に、いかなる金属元素が脱亜鉛腐食の抑制に効果があ
るかを知るため、種々の金属元素を65/35ベースの
黄銅に添加して試片を作成し、ω℃の5係塩酸水溶液中
における脱亜鉛腐食に及ぼす影響を調べた。
Reference Example 2 Next, in order to find out which metal elements are effective in suppressing dezincification corrosion, various metal elements were added to 65/35 base brass to prepare specimens, and the 5 coefficient of ω℃ was added. The effect of dezincification on corrosion in aqueous hydrochloric acid was investigated.

その結果を第1表に示す。第1表から解るように、各種
金属元素のうち脱亜鉛抑制に効果があるものは砒素、リ
ン、アンチモン、錫ならびにニッケルの5種であった。
The results are shown in Table 1. As can be seen from Table 1, among the various metal elements, five were effective in suppressing dezincing: arsenic, phosphorus, antimony, tin, and nickel.

このうち、砒素は0.02%以上、リンは0.005%
以上、アンチモンは0.005%以上の極めて微量の添
加で防食効果が認められた。
Of these, arsenic is 0.02% or more and phosphorus is 0.005%.
As described above, anti-corrosion effects were observed when antimony was added in an extremely small amount of 0.005% or more.

ただし、アンチモンは総腐食量を増加させる傾向がある
ので、その添加量は少ない方が良い。
However, since antimony tends to increase the total amount of corrosion, it is better to add less antimony.

ニッケルは1係以上の添加で効果を現わし、総腐食量も
低い価を示している。
Nickel is effective when added in a ratio of 1 or more, and the total amount of corrosion is also low.

このニッケル単味の添加で脱亜鉛腐食の防止効果がある
ことは新規な知見であり、ニッケルは黄銅に溶解しやす
く加工性も良好で、圧延板の機械的特性も良いので、ラ
ジェーターチューブ用黄銅材の添加元素として適してい
る。
It is a new finding that the addition of nickel alone has the effect of preventing dezincification corrosion.Nickel is easily dissolved in brass, has good workability, and has good mechanical properties of rolled sheets, so it can be used for brass for radiator tubes. Suitable as an additive element for materials.

錫は黄銅の耐食性を向上させる元素として知られている
が、脱亜鉛腐食抑制効果は上記4元素よりは劣る。
Although tin is known as an element that improves the corrosion resistance of brass, its effect on inhibiting dezincification corrosion is inferior to the above four elements.

まだ、上記5元素以外の元素については、脱亜鉛抑制効
果は認められなかった。
However, no dezincing suppression effect was observed for elements other than the above five elements.

以上のように、各元素の単独効果としては砒素、アンチ
モン、リン、錫ならびにニッケルの5元素が効果的であ
った。
As described above, the five elements of arsenic, antimony, phosphorus, tin, and nickel were effective individually.

ただし、砒素、アンチモン、リンは微量でも効果がある
が、多量添加すると熱間又は冷間加工時の耳割れなどが
発生することがある。
However, although small amounts of arsenic, antimony, and phosphorus are effective, adding large amounts may cause edge cracking during hot or cold working.

実施例 2 次に、ニッケル量を0.5%、0.2%と落してこれに
微量の砒素、アンチモン、リンを添加し、その相乗効果
を調べだ。
Example 2 Next, the amount of nickel was reduced to 0.5% and 0.2%, and trace amounts of arsenic, antimony, and phosphorus were added thereto, and their synergistic effects were investigated.

その結果を第2表に示す。第2表から、ニッケル量を低
下させても、これに微量の砒素、アンチモン、リンを添
加することにより脱亜鉛腐食が防止されていることが解
る。
The results are shown in Table 2. Table 2 shows that even if the amount of nickel is reduced, dezincification corrosion is prevented by adding trace amounts of arsenic, antimony, and phosphorus.

第1表及び第2表において、脱亜鉛比が低下しても総腐
食量がほとんど変らないのは、脱亜鉛腐食が防止されて
全面腐食に移行しためである。
In Tables 1 and 2, the total amount of corrosion hardly changes even if the dezincification ratio decreases because dezincification corrosion is prevented and the corrosion shifts to full surface corrosion.

なお、第2表中の試料の冷間加工硬化曲線を測定した結
果、無添加の65/35黄銅の場合とほとんど差異は見
られなかった。
In addition, as a result of measuring the cold work hardening curves of the samples in Table 2, there was almost no difference between the cold work hardening curves and the case of 65/35 brass without additives.

実施例 3 前記参考例及び実施例において試作した添加元素入り6
5/35黄銅板の80係冷間圧延を施しだ0.4mm厚
の板材を各種温度で30分間焼鈍し、その硬度(Hv)
を測定した焼鈍軟化曲線を第3図に示す。
Example 3 Additive element-containing 6 prototyped in the reference examples and examples above
A 0.4 mm thick 5/35 brass plate subjected to 80° cold rolling was annealed at various temperatures for 30 minutes to determine its hardness (Hv).
Figure 3 shows the annealing softening curve measured.

第3図から解るように、再結晶温度は微量添加元素によ
ってはほとんど左右されず、何れの場合も200〜30
0℃の間にあることが解る。
As can be seen from Figure 3, the recrystallization temperature is hardly affected by trace addition elements, and in any case it is between 200 and 30.
It can be seen that the temperature is between 0℃.

再結晶温度以上における硬度は添加元素の種類と量によ
シ若干異なるが、0.5Ni+0.05Pの場合以外は
無添加の場合とほとんど変らない。
The hardness above the recrystallization temperature differs slightly depending on the type and amount of added elements, but except for the case of 0.5Ni+0.05P, it is almost the same as the case of no addition.

600℃で30分間の焼鈍で硬度(Hv)100以下に
軟化する。
It is softened to a hardness (Hv) of 100 or less by annealing at 600°C for 30 minutes.

0.2Ni+0.02Asの場合は無添加の場合と同等
である。
The case of 0.2Ni+0.02As is equivalent to the case of no addition.

実施例 4 第4図は0.2係ニツケル黄銅材に微量の砒素、アンチ
モン、リンを加えた場合の機械的性質を測定した結果を
示したもので、供試試料は500℃で30分間焼鈍後、
17%冷延したQ、5mm厚の板材である。
Example 4 Figure 4 shows the results of measuring the mechanical properties of a 0.2 nickel brass material to which trace amounts of arsenic, antimony, and phosphorus were added.The test sample was annealed at 500°C for 30 minutes. rear,
It is a 17% cold-rolled Q plate material with a thickness of 5 mm.

第4図から解るように、無添加の場合と比較して伸びは
若干低下し、硬度と引張強さは若干増加している。
As can be seen from FIG. 4, the elongation was slightly lower and the hardness and tensile strength were slightly higher than when no additive was added.

実施例3,4に示した通り、ニッケル添加によっても加
工性や機械的特性はほとんど影響を受けず、一方最終焼
鈍において若干温度を高めれば無添加の黄銅と同様に取
扱い得ることが解った。
As shown in Examples 3 and 4, the workability and mechanical properties were hardly affected by the addition of nickel, and on the other hand, it was found that by raising the temperature slightly in the final annealing, it could be handled in the same way as brass without additives.

例えば、第3表は5朋熱延板を2朋厚まで冷間圧延して
600℃で30分間焼鈍し、更に0.漣雌で冷間圧延し
て再び600℃で30分間焼鈍した場合の各種65/3
5黄銅の機械的性質を示したも・のである。
For example, Table 3 shows that a 5 mm hot rolled sheet is cold rolled to a thickness of 2 mm, annealed at 600°C for 30 minutes, and then 0.5 mm thick. Various types of 65/3 when cold-rolled with Renme and annealed again at 600°C for 30 minutes
5 This shows the mechanical properties of brass.

第3表から解るように、試料/461と腐3はそれぞれ
リン0.02%にニッケル0.2%を添加した場合とリ
ン0.02%単味添加の場合であるが、はぼ同程度であ
る。
As can be seen from Table 3, samples 461 and 3 are the cases in which 0.2% nickel is added to 0.02% phosphorus, and the cases in which 0.02% phosphorus is added alone, but the results are almost the same. It is.

/I6.2のニッケル1係単味添加の場合は無添加(4
4)の場合とほぼ同程度である。
/I6.2 No additives (4
This is almost the same as in case 4).

従って、少量のニッケル添加は加工性や機械的特性等に
は特に影響は与えず、脱亜鉛の防止に効果が顕著である
ことが解る。
Therefore, it can be seen that the addition of a small amount of nickel does not particularly affect workability, mechanical properties, etc., and is significantly effective in preventing dezincing.

以上の如く、本発明は重量でニッケル0.05〜5係を
単独で或いはこれに砒素0.005〜0.1%、リン0
.005〜0.1%アンチモン0.005〜0.1%の
うちの少なくとも一種を混合添加し、亜鉛28〜37係
の範囲で残部が銅の組成となるようにした黄銅材であり
、脱亜鉛腐食の防止に特に顕著な効果を奏するので、ラ
ジェーターチューブ用に最適である。
As described above, the present invention uses 0.05 to 5% of nickel alone or 0.005 to 0.1% of arsenic and 0.05% of phosphorus by weight.
.. It is a brass material to which at least one of 0.005 to 0.1% antimony is mixed and added, and the composition is made of zinc in a range of 28 to 37 parts and the balance is copper, and is dezinced. It is particularly effective in preventing corrosion, making it ideal for radiator tubes.

そして、ニッケル単味の添加の場合は0.5〜5係が良
好であり、1係以上が特に好ましく、5係を越えても特
別の効果は認められず経済的に不利となる。
In the case of adding nickel alone, a ratio of 0.5 to 5 is good, and a ratio of 1 or more is particularly preferred, and if it exceeds 5, no special effect will be observed and it will be economically disadvantageous.

また、ニッケル0.05〜1%の場合には砒素、アンチ
モン、リンの一種又はそれ以上を微量混合添加するのが
好ましく、上記数値範囲以上の添加は加工性に悪影響を
及ぼし、脱亜鉛の防食効果も余り認められない。
In addition, in the case of 0.05 to 1% nickel, it is preferable to add a small amount of one or more of arsenic, antimony, and phosphorus in a mixed manner.Addition of more than the above numerical range will have an adverse effect on workability, and will prevent corrosion during dezincing. The effect is not very noticeable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱亜鉛腐食測定装置の説明図、第2−a及びb
図はそれぞれ5%塩酸溶液中における6 5/35黄銅
板の腐食に及ぼす砒素ならびにニッケルの影響を示すグ
ラフ、第3図は各種添加元素入りの65/35黄銅板の
焼鈍軟化曲線を示すグラフ、第4図はニッケル0.2添
加黄銅板に砒素、アンチモン又はリンを加えた場合の機
械的性質を測定した結果を示すグラフである。 符号説明、1・・・三ロフラスコ、2・・・還流器、3
・・・5係塩酸水溶液、4・・・試片、5・・・糸、6
・・・恒温槽。
Figure 1 is an explanatory diagram of the dezincification corrosion measuring device, Figure 2-a and b
The figures are graphs showing the effects of arsenic and nickel on the corrosion of 65/35 brass plates in a 5% hydrochloric acid solution, and Figure 3 is a graph showing the annealing softening curves of 65/35 brass plates containing various additive elements. FIG. 4 is a graph showing the results of measuring mechanical properties when arsenic, antimony or phosphorus is added to a brass plate with 0.2 nickel added. Explanation of symbols, 1...Three-hole flask, 2...Reflux vessel, 3
... 5th grade hydrochloric acid aqueous solution, 4... Sample, 5... Thread, 6
... Constant temperature bath.

Claims (1)

【特許請求の範囲】 1 重量でニッケル0.5〜5.0%、亜鉛28〜37
%範囲で残部が実質的に銅の組成を有することを特徴と
するラジェーターチューブ用耐食黄銅材。 2 重量でニッケル0.05〜1.0係と、これに砒素
0.005〜0.1へリン0.005〜0.1係、アン
チモン0.005〜0.1係のケちの少なくとも一種を
混合添加し、亜鉛28〜37係の範囲で残部が実質的に
銅の組成を有することを特徴とするラジェーターチュー
ブ用耐食黄銅材。
[Claims] 1. Nickel 0.5-5.0%, zinc 28-37% by weight
A corrosion-resistant brass material for a radiator tube, characterized in that the remainder has a composition of copper within a range of 1. 2. Add at least 0.05 to 1.0 part of nickel by weight, 0.005 to 0.1 part of arsenic to 0.005 to 0.1 part of herring, and 0.005 to 0.1 part of antimony. A corrosion-resistant brass material for a radiator tube, characterized in that the composition is mixed and added with zinc in a range of 28 to 37 parts, with the remainder being substantially copper.
JP1392580A 1980-02-07 1980-02-07 Corrosion-resistant brass material for radiator tube Expired JPS593530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1392580A JPS593530B2 (en) 1980-02-07 1980-02-07 Corrosion-resistant brass material for radiator tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1392580A JPS593530B2 (en) 1980-02-07 1980-02-07 Corrosion-resistant brass material for radiator tube

Publications (2)

Publication Number Publication Date
JPS56112431A JPS56112431A (en) 1981-09-04
JPS593530B2 true JPS593530B2 (en) 1984-01-24

Family

ID=11846754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1392580A Expired JPS593530B2 (en) 1980-02-07 1980-02-07 Corrosion-resistant brass material for radiator tube

Country Status (1)

Country Link
JP (1) JPS593530B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161742A (en) * 1982-03-19 1983-09-26 Nippon Radiator Co Ltd Welded tube of heat exchanger for car
US4674566A (en) * 1985-02-14 1987-06-23 Olin Corporation Corrosion resistant modified Cu-Zn alloy for heat exchanger tubes

Also Published As

Publication number Publication date
JPS56112431A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
EP2876182A1 (en) Hot dip zinc alloy plated steel sheet having excellent corrosion resistance and external surface and method for manufacturing same
JPS6248742B2 (en)
JP2010270395A (en) Aluminum alloy brazing sheet for thin-wall tube
BR112020006338A2 (en) cast zn-based steel sheet having superior corrosion resistance after being coated
WO2014155944A1 (en) Molten-al-zn-plated steel sheet and method for manufacturing same
JP2002129300A (en) Surface treated steel sheet having excellent corrosion resistance and workability, and its manufacturing method
EP0376248B1 (en) Copper fin material for heat-exchanger and method of producing the same
AU2015362106B2 (en) Plating composition, method for manufacturing plated steel material by using same, and plated steel material coated with plating composition
JPS593530B2 (en) Corrosion-resistant brass material for radiator tube
EP1391679A2 (en) Sacrificial Material and Aluminium Alloy Cladding Material for Heat Exchanger
JP2001214280A (en) Sn SERIES AND Al SERIES PLATED STEEL SHEET COATED WITH Cr- FREE FILM EXCELLENT IN LUBRICITY
JPS5935977B2 (en) Copper-based alloy for radiator tubes
JPH09291328A (en) Aluminum alloy multiple member for brazing, and brazing method
JPS60251246A (en) Water resistant brazing sheet for vacuum brazing and heat exchanger using said material
JP3230685B2 (en) Copper base alloy for heat exchanger
JPH05311295A (en) Copper base alloy for heat exchanger and its manufacture
JPH0436433A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JP3243479B2 (en) Copper base alloy for heat exchanger
JPH05311294A (en) Copper base alloy for heat exchanger and its manufacture
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP3830066B2 (en) Sacrificial corrosion-resistant aluminum alloy composite
JPH05311292A (en) Copper base alloy for heat exchanger and its manufacture
JPS6311598B2 (en)
JPH03134128A (en) Aluminum alloy-clad material for heat exchanger member
JPH0790427A (en) Copper alloy excellent in resistance to ant's lair-form corrosion