JPS5935012A - Purification of graphite fluoride - Google Patents

Purification of graphite fluoride

Info

Publication number
JPS5935012A
JPS5935012A JP57142091A JP14209182A JPS5935012A JP S5935012 A JPS5935012 A JP S5935012A JP 57142091 A JP57142091 A JP 57142091A JP 14209182 A JP14209182 A JP 14209182A JP S5935012 A JPS5935012 A JP S5935012A
Authority
JP
Japan
Prior art keywords
fluorine
graphite fluoride
treatment
purification
unbound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57142091A
Other languages
Japanese (ja)
Other versions
JPS6313930B2 (en
Inventor
Yasushi Kida
喜田 康
Shiro Moroi
師井 史郎
Akira Sakagami
阪上 晃
Hisaharu Nakano
久治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP57142091A priority Critical patent/JPS5935012A/en
Publication of JPS5935012A publication Critical patent/JPS5935012A/en
Publication of JPS6313930B2 publication Critical patent/JPS6313930B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare purified graphite fluoride useful as an active substance of cell, etc. free from a bad smell and corrosive properties, by treating graphite fluoride with an ammonia gas so that remaining unliked fluorine is removed. CONSTITUTION:The crude graphite fluoride 3 is packed on the porous plate 2 of the purification column 1, NH3 introduced from the pipe 5 is brought into contact with it for about 5min-48hr while it is heated by the heater 4 at room temperature - about 200 deg.C, unreacted NH3 and the reaction product are discharged from the pipe 6, to give graphite fluoride containing no unlinked fluorine.

Description

【発明の詳細な説明】 本発明はフッ化黒鉛(Graphite Fluori
de以下GFと略す)の精製法に関す・・るもので、G
F中に存在する非結合フッ素ヲ除去することを目的とす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses graphite fluoride (Graphite Fluori
This article is about the purification method of GF (hereinafter abbreviated as GF).
The purpose is to remove non-bonded fluorine present in F.

GFは炭素又は黒鉛をフッ素と反応させて得られる固体
粉末であって、(OF)n又は(02F)nで表わされ
るものが知られており、特異な潤滑性、傍水撲油性を有
し、耐楽品性もすぐれていることから固体潤滑剤、防濡
剤、防汚剤、倭水撲油剤などとして使用されている一方
、電池活物質としても使用され、電池の保存性が良好で
、高エネルギー密度の一次電池を与えることがよく知ら
れている。
GF is a solid powder obtained by reacting carbon or graphite with fluorine, and is known to be represented by (OF)n or (02F)n, and has unique lubricity and para-oil properties. Because of its excellent resistance to wear and tear, it is used as a solid lubricant, wetting-proofing agent, antifouling agent, water blistering oil, etc. It is also used as a battery active material, and has good shelf life. , is well known to provide high energy density primary cells.

しかしながら、GFには炭素原子と完全に共有結合して
いないフッ素が少巣含まれており、取り扱い上の悪臭や
衛生面で問題があるとともに用途によっては物性面で問
題になる場合がある。例えばIJ Fを電池活物質とし
て使用した場合、電池の保存中に正極の集電体を酸化さ
せたシ、あるいは非水電解液の溶媒を分解して変質させ
たシ、負極のリチウム表面を腐食したりする影響がある
ものである。
However, GF contains a small number of fluorine atoms that are not completely covalently bonded to carbon atoms, which causes problems in terms of odor and hygiene during handling, and may also cause problems in terms of physical properties depending on the application. For example, when IJF is used as a battery active material, the current collector of the positive electrode may be oxidized during storage of the battery, or the solvent of the non-aqueous electrolyte may be decomposed and deteriorated, or the lithium surface of the negative electrode may be corroded. It has the effect of

このフッ素はOF層問および結晶欠陥に吸着されており
、脱着速度も非常に遅く、客易に除去することはできな
いものである。かかる非結合フッ素の量は原料の種類お
よび反応率によっても異なシ、黒鉛質の原料Iデど、ま
た反応率の低いものほど多い。
This fluorine is adsorbed in OF interlayers and crystal defects, and its desorption rate is very slow, so it cannot be easily removed. The amount of unbonded fluorine varies depending on the type of raw material and the reaction rate, and it is larger for graphitic raw materials with a lower reaction rate.

このような非結合フッ素の除去方法としてはOFにアル
コールを添加し、さらに強′アルカリ水溶液又は強酸水
溶液を加えて煮沸する方法(特公昭56−36790号
)があるが、その後水洗し、溶液と分離し、乾燥しなけ
ればならず工程が非常に繁雑である。さらに電池活物質
として用いた場合の電池の保存性は必ずしも十分なもの
ではなかった。
A method for removing such unbound fluorine is to add alcohol to OF, then add a strong alkaline aqueous solution or a strong acid aqueous solution and boil it (Japanese Patent Publication No. 56-36790). The process is very complicated as it must be separated and dried. Furthermore, when used as a battery active material, the storage life of the battery was not necessarily sufficient.

以」二のことから、GFの性能を低下させず効率的且簡
便な非結合フッ素の除去法が望まれている。
For these reasons, an efficient and simple method for removing non-bonded fluorine without deteriorating the performance of GF is desired.

そこで、本発明者らはGFの効率的且簡便な非結合フッ
素の除去法について鋭意(vF究を重ねた結果、GFf
アンモニアガス忙より処理するという極めて簡単な手段
でGF中に含まれる非結合フッ素を効率よく除去できる
ことを見い出し本発明を完成させた。
Therefore, the present inventors have worked hard to find an efficient and simple method for removing non-bonded fluorine from GF (as a result of repeated research on GFf
It was discovered that non-bonded fluorine contained in GF can be efficiently removed by an extremely simple method of treatment using ammonia gas, and the present invention was completed.

本56明に用いられるGFは(OF)n。The GF used in this book 56 is (OF)n.

(02F )r+またはそれらの混合物Cあっても、ま
た反応途中の未反応黒鉛が含まれるものでもよい。
(02F)r+ or a mixture C thereof may be present, or it may contain unreacted graphite during the reaction.

本発明においては、アンモニアガスは単独で用いるほか
他のN2. Ar 、  A、i r 、 He など
のGF、アンモニアに対して不活性なガスと混合しても
用いることができる。処理温度は、GFの熱分解が起こ
らない温度であるならいかなる温度でもよく、処理の簡
便さから室温〜200℃が好ましい。
In the present invention, in addition to using ammonia gas alone, other N2. It can also be used in combination with a gas inert to GF and ammonia, such as Ar, A, ir, and He. The treatment temperature may be any temperature as long as the thermal decomposition of GF does not occur, and is preferably room temperature to 200°C from the viewpoint of ease of treatment.

処理時間は長いほどCF中の非結合フッ素は少くなるが
、その除去速度は次第に遅くなるため実用上問題のない
範囲に精製する程度であれば5分〜48時間が好ましい
The longer the treatment time, the less unbound fluorine in the CF, but the removal rate gradually slows down, so 5 minutes to 48 hours is preferable as long as the purification is within a range that poses no practical problems.

処理装置としではアンモニアガスとすべてのGFが効率
よく接触する装置であればいかなる装置でもよい。
As the processing device, any device may be used as long as the ammonia gas and all the GFs come into contact with each other efficiently.

以下、実施例により本発明を更に詳細に説明するが、本
発明の範囲は実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited to the Examples.

なお、CF中の非結合フッ素置は以下の方法によって定
*k[7た。50n/のメスフラスコ(褐色カラス製)
にG ’F’ 500 mg 、飽和にニーエタノール
溶液を入れて50.lとし、よく混合する。暗室で48
hr放置した後、遊離したヨウ素を1/250 Nチオ
硫酸ナトリウムにて滴定し、ヨウ素イオンを酸化する能
力のあるフッ素を非結合フッ素どして定蹟した。
In addition, the non-bonded fluorine content in CF was determined by the following method. 50n volumetric flask (made of brown crow)
Add 500 mg of G'F' and saturated ethanol solution for 50. 1 and mix well. 48 in the darkroom
After standing for hr, liberated iodine was titrated with 1/250 N sodium thiosulfate, and fluorine capable of oxidizing iodine ions was determined as unbound fluorine.

実施例1 処理に使用した装置の概略図を第1図に示す。Example 1 A schematic diagram of the apparatus used for the treatment is shown in FIG.

lは5U8304製の50φX300H閂の精製塔であ
シ2は多孔質プレート、3はGF、4は加熱用ヒーター
、5はアンモニアガス導入パイプ、6は未反応アンモニ
アガス及び反応生成物の排気パイプを示す。
1 is a 50φ x 300H bolt purification tower made of 5U8304, 2 is a porous plate, 3 is a GF, 4 is a heating heater, 5 is an ammonia gas introduction pipe, and 6 is an exhaust pipe for unreacted ammonia gas and reaction products. show.

使用したGFは、人造黒鉛より製造したもので、フッ素
含有駿51.6w七チの(02F)型GFである。この
ものの非結合フッ素量は0.30wtチであった6(J
Floogを装置に設置した後、下部よ#)No、ガス
を10000/minにて導入し、室温で5時間処理し
た。その後150℃で5時間乾燥させた。このものの非
結合フッ素業は0.07Wll−チでちった。
The GF used was manufactured from artificial graphite and was a (02F) type GF containing fluorine with a weight of 51.6w and 70cm. The amount of unbonded fluorine in this product was 0.30wt6 (J
After installing Floog in the apparatus, gas was introduced into the lower part at a rate of 10,000/min, and the treatment was carried out at room temperature for 5 hours. Thereafter, it was dried at 150°C for 5 hours. The non-bonded fluorine content of this product was 0.07 Wll-h.

実施例2 実施例1と同様処して室温にて48hr処理し7た後1
50℃で5時間乾燥さぜた。
Example 2 After 48 hours of treatment at room temperature in the same manner as in Example 1, 1
It was dried at 50°C for 5 hours.

非結合フッ素tは0,04wt%であった。Unbound fluorine t was 0.04 wt%.

実施例3 実施例1と同様にして130℃でIhr処理した。但し
、乾燥は行なわなかった。非結合フッ素酸は0.08W
’t;チであった。
Example 3 Ihr treatment was carried out at 130° C. in the same manner as in Example 1. However, drying was not performed. Unbound fluoric acid is 0.08W
It was 't;

実施例4 実施例!と同様にして180℃で5 h r処理した。Example 4 Example! It was treated in the same manner as above at 180°C for 5 hours.

但し、乾燥は行なわなかった。非結合フッ素酸は0 、
02wt%であった。
However, drying was not performed. Unbound fluoric acid is 0,
It was 0.02 wt%.

実施例5 処理装置K1方法は実施例Iと同様で、GFとして石油
コークスより製造したフッ素含有針62.7wt%の(
CF)n型G F”i用いた。このものの非結合フッ素
酸は0.04W’l;%であった。
Example 5 Processing device K1 The method was the same as in Example I, with 62.7 wt% of fluorine-containing needles made from petroleum coke as GF (
CF) n-type GF"i was used. The unbound fluoric acid content of this was 0.04 W'l;%.

N1h処理は室温にて5hr処理し、150℃で5時間
乾燥させた。
The N1h treatment was performed at room temperature for 5 hours and dried at 150°C for 5 hours.

非結合フッ素量は0 、 Of vi l; %でりつ
/ζ。
The amount of unbound fluorine is 0, Ofvi l; %/ζ.

実施例6 処理装置、方法は実施例1と同様で、GFとしては天然
黒鉛よシ製造したフッ素含有量48.6Wシチの(C2
F’)niGFで、未反応黒鉛が少量含まれているもの
を用いた。このものの非結合フッ素量は0,73wt%
であった。
Example 6 The processing equipment and method were the same as in Example 1, and the GF was (C2) with a fluorine content of 48.6W produced from natural graphite.
F') niGF containing a small amount of unreacted graphite was used. The amount of non-bonded fluorine in this product is 0.73wt%
Met.

NH,処理は室温にて48hr処理し、150℃で5時
間乾燥させた。
The NH treatment was performed at room temperature for 48 hours, and then dried at 150° C. for 5 hours.

非結合フッ素量は0.06wt%であった。The amount of unbound fluorine was 0.06 wt%.

比較例1 実施例1と同じGFを用い、真空中(3Torr)、1
20℃で24時間乾燥処理ケおこなった。この結果、非
結合フッ素量は未処理で0.30wt%のものが0.2
9wt%になったにすぎず効果は全く認められなかった
Comparative Example 1 Using the same GF as in Example 1, in vacuum (3 Torr), 1
Drying treatment was carried out at 20° C. for 24 hours. As a result, the amount of unbonded fluorine was 0.30 wt% in the untreated state, but 0.2
The amount was only 9 wt%, and no effect was observed at all.

実施例7、比較例2 実施例!で処理した(a2ir)n(非結合フッ素績、
0.07wt%)〔実施例7〕、実施例1で用いた(0
2F)型GF111/にメタノール22を添加し、さら
に6N#L酸2!を添加し、約1時間煮沸洗浄をおこな
い、しかるのち塩素イオンが検出されなくなるまで傾斜
洗浄をおこない、脱水、乾燥して得た非結合フッ素量0
.08wt%の(02F)n(比較例2〕、及び実施例
Iで用いた未処理の(OzF’)n(非結合フッ素量0
,30wt%)〔参考例〕のそれぞれについて、初度及
び45℃で6力月間、■年間保存した後の電池特性を以
下の方法によシ測定した。
Example 7, Comparative Example 2 Example! (a2ir)n (unbound fluoride,
0.07 wt%) [Example 7], used in Example 1 (0
2F) Add 22 methanol to type GF111/, and then add 22 6N#L acid! was added, washed by boiling for about 1 hour, then washed with gradients until no chlorine ions were detected, dehydrated, and dried to obtain a solution with zero unbound fluorine content.
.. 08wt% (02F)n (Comparative Example 2), and the untreated (OzF')n used in Example I (unbonded fluorine amount 0).
, 30 wt%) [Reference Example], the battery characteristics were measured by the following method, both initially and after storage at 45° C. for 6 months and 2 years.

導電剤、粘結剤として膨張化黒鉛(東洋炭素製)を用い
て、(02F)nと重量比I:1で混合し、約8800
KP/cy/Iの圧で1分間圧縮し、直径lQwaのペ
レット状に成形したものを正極として使用した。負極は
リチウムブロックから切り出したものをそのまま用いた
。電解質としては過塩素酸リチウム(LIOQO4) 
f I moQ/1.溶解させたフロピレンカーボネイ
ト溶液を用いた。これら′t4i、池招成要素をテンロ
ン容器に入れ、実験は全て30Cアルゴン雰囲気のドラ
イボックス内で行ない、fJf、極間距離は10jI#
lで20に1ノ定抵抗負荷べおける放電特性を測定した
。それぞれについて2.5vの終止電圧となる放電持続
時間を第1表に示す。
Using expanded graphite (manufactured by Toyo Tanso Co., Ltd.) as a conductive agent and a binder, it was mixed with (02F)n at a weight ratio of I:1, and a
It was compressed for 1 minute at a pressure of KP/cy/I and formed into a pellet with a diameter of 1Qwa, which was used as a positive electrode. The negative electrode was cut out from a lithium block and used as it was. Lithium perchlorate (LIOQO4) as electrolyte
f I moQ/1. A dissolved flopylene carbonate solution was used. These 't4i and pond-forming elements were placed in a Tenron container, and all experiments were conducted in a dry box with a 30C argon atmosphere. fJf and interpolar distance were 10jI#.
The discharge characteristics were measured under a constant resistance load of 1 in 20 l. Table 1 shows the discharge duration resulting in a final voltage of 2.5 V for each.

第1表 この表よシも明らかな・ごとく本発明によれば未処理の
場合よシも格段に保存特性が向上し、従来の処理法と比
較しても優れた保存特性を示すものである。
Table 1 As is clear from this table, according to the present invention, the preservation characteristics are significantly improved compared to the untreated case, and the preservation characteristics are superior even when compared with conventional treatment methods. .

第2図忙は各側の1年間保存後の放[特性図を示す。図
中(勾は実施例7%(B)は比較例2、(0)は参考例
を示す。
Figure 2 shows the release characteristics of each side after one year of storage. In the figure (gradient is 7% for Example), (B) indicates Comparative Example 2, and (0) indicates Reference Example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の1例を示す概略
図である。第2図は、本発明により処理したGF、従来
法にょシ処理したGF及び未処理GFの電池特性を示す
グラフである。
FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the present invention. FIG. 2 is a graph showing the battery characteristics of GF treated according to the present invention, conventionally treated GF, and untreated GF.

Claims (1)

【特許請求の範囲】[Claims] フッ化黒鉛をアンモニアガスによシ処理することを特徴
とするフッ化黒鉛の精製法
A method for purifying fluorinated graphite characterized by treating fluorinated graphite with ammonia gas
JP57142091A 1982-08-18 1982-08-18 Purification of graphite fluoride Granted JPS5935012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142091A JPS5935012A (en) 1982-08-18 1982-08-18 Purification of graphite fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142091A JPS5935012A (en) 1982-08-18 1982-08-18 Purification of graphite fluoride

Publications (2)

Publication Number Publication Date
JPS5935012A true JPS5935012A (en) 1984-02-25
JPS6313930B2 JPS6313930B2 (en) 1988-03-28

Family

ID=15307216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142091A Granted JPS5935012A (en) 1982-08-18 1982-08-18 Purification of graphite fluoride

Country Status (1)

Country Link
JP (1) JPS5935012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228084A2 (en) 1985-12-25 1987-07-08 Fuji Photo Film Co., Ltd. Image forming process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228084A2 (en) 1985-12-25 1987-07-08 Fuji Photo Film Co., Ltd. Image forming process

Also Published As

Publication number Publication date
JPS6313930B2 (en) 1988-03-28

Similar Documents

Publication Publication Date Title
JP5400892B2 (en) Method for producing porous activated carbon
JP7236391B2 (en) Method for producing activated carbon
US7119047B1 (en) Modified activated carbon for capacitor electrodes and method of fabrication thereof
JP2012507470A5 (en)
KR20110100221A (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
KR101631180B1 (en) Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation
CN108083260B (en) High-expansion-volume graphene aggregate and preparation method and application thereof
JP5335211B2 (en) catalyst
US6299850B1 (en) Carbon activation process for increased surface accessibility in electrochemical capacitors
JP3521224B2 (en) Method for producing porous carbon material from low molecular weight fluororesin and its use
CN113371709A (en) Preparation method of rice hull-based high-specific-surface-area biochar material
JPS5935012A (en) Purification of graphite fluoride
KR101273495B1 (en) Tuning method of interlayer spacing in graphene oxide composites for hydrogen storage
CN113087093B (en) Manganese oxide composite nitrogen-phosphorus double-doped porous carbon material, preparation method thereof and application thereof in capacitive desalination and fluorine removal
JPH07155608A (en) Production of high capacity carbon material
JP2010168238A (en) Method for producing highly purified activated carbon and electric double layer capacitor obtained by the method
CN105417543B (en) Preparation process of nano porous silicon electrode material
KR102036990B1 (en) Mesoporous carbon materials and method for preparing the same
JPH09213590A (en) Active carbon for electrode of electric double layer capacitor and its manufacture
CN113488376A (en) Two-dimensional silicon dioxide and preparation method and application thereof
CN113511710A (en) Electrode active material for capacitance adsorption of lead ions and preparation method and application thereof
JPH06172764A (en) Method for improving low-rank coal and production of coal-water mixture using the same
JP2003206121A (en) Activated carbon and method for manufacturing the same
EP0350856A1 (en) Purification method of carbon fluorides
JP2001316103A (en) Porous carbon material, its manufacturing method and electrical two layer capacitor