JP3521224B2 - Method for producing porous carbon material from low molecular weight fluororesin and its use - Google Patents

Method for producing porous carbon material from low molecular weight fluororesin and its use

Info

Publication number
JP3521224B2
JP3521224B2 JP2000303820A JP2000303820A JP3521224B2 JP 3521224 B2 JP3521224 B2 JP 3521224B2 JP 2000303820 A JP2000303820 A JP 2000303820A JP 2000303820 A JP2000303820 A JP 2000303820A JP 3521224 B2 JP3521224 B2 JP 3521224B2
Authority
JP
Japan
Prior art keywords
fluororesin
porous carbon
alkali metal
carbon material
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000303820A
Other languages
Japanese (ja)
Other versions
JP2002105124A (en
Inventor
能生 山田
天賜 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000303820A priority Critical patent/JP3521224B2/en
Publication of JP2002105124A publication Critical patent/JP2002105124A/en
Application granted granted Critical
Publication of JP3521224B2 publication Critical patent/JP3521224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低分子量フッ素樹脂の
製造方法及びその樹脂を原料とする炭素前駆体並びに多
孔質炭素材料の製造方法に関し、さらには、その多孔質
炭素材料を用いた電気二重層キャパシタに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low molecular weight fluororesin, a carbon precursor using the resin as a raw material and a method for producing a porous carbon material, and further, an electrical method using the porous carbon material. The present invention relates to a double layer capacitor.

【0002】[0002]

【従来技術】従来より、活性炭に代表される各種の多孔
質炭素材料は、その優れた特性である吸着性能や分離機
能を活用して気体や液体中の不純物の除去、ガス分離、
溶剤回収等に幅広く利用されてきている。近年、これら
の多孔質炭素材料は、その他の用途として、炭素材料中
の微小な細孔を利用したメタンや水素の大量吸蔵材料、
イオンや電解質を多量に充填したり、放出したりする機
能を備えた電子デバイス材料として、二次電池の負極材
や電気二重層キャパシタ材料への利用が急速に拡大して
いる。メタンや水素ガスの吸蔵材としては、数ナノメー
ター(nm)以下の細孔を有する多孔体が有効であり、
一方、電子デバイス用としては、イオンや電解質、ある
いはこれらが溶媒和した状態のサイズに近い数nm〜数
十nmの細孔を有する多孔質体が望ましい。
2. Description of the Related Art Conventionally, various porous carbon materials typified by activated carbon utilize their excellent characteristics of adsorption performance and separation function to remove impurities in gas or liquid, gas separation,
It has been widely used for solvent recovery. In recent years, these porous carbon materials are used for other purposes, such as a mass storage material for methane and hydrogen, which utilizes fine pores in the carbon material,
As an electronic device material having a function of filling and releasing a large amount of ions and electrolytes, its use as a negative electrode material of a secondary battery or an electric double layer capacitor material is rapidly expanding. A porous material having pores of a few nanometers (nm) or less is effective as a storage material for methane or hydrogen gas,
On the other hand, for electronic devices, a porous body having pores of several nm to several tens nm close to the size of ions or electrolytes or a solvated state of these is desirable.

【0003】ところで、従来の多孔質炭素材料は、一般
的には各種有機廃棄物、ヤシ殻、石炭等を原料とし、こ
れらを熱処理して得られた炭素化物を水蒸気やCO
等で賦活処理して製造されてきている。しかし、こ
れらの賦活法で生成する炭素材料は、極微小なミクロ孔
からメソ孔、それにミクロン単位のマクロ孔に至るま
で、様々な大きさをもつ細孔が広く分布しているため、
小型で大量にガス状物を収納できる吸蔵材或いは小型で
優れた特性を持つ電子デバイス材料として用いるには不
十分である。特に電気二重層キャパシタ材料への応用に
ついて、市販の活性炭繊維を用いた場合には、その電気
容量は比表面積が1000m/gまでは約140F/g
と増大していくが、それ以上の比表面積では、飽和して
ほとんど増加しないという問題がある。このように、炭
素材料には、炭素の持つ優れた特性を有効に活用し得る
炭素構造の制御に大きな改善の余地が残されており、特
に、使用目的に適合した均一な微細孔径を有する多孔質
炭素材料の開発が要望されている。
Incidentally, conventional porous carbon materials are generally made of various organic wastes, coconut shells, coal, etc. as raw materials, and carbonized products obtained by heat-treating these are treated with steam, CO 2 ,
It is manufactured by activating treatment with O 2 or the like. However, the carbon materials produced by these activation methods have a wide distribution of pores of various sizes, from very small micropores to mesopores, to macropores in micron units.
It is insufficient to be used as a small-sized occlusion material capable of accommodating a large amount of gaseous substances or as a small-sized electronic device material having excellent characteristics. Especially when applied to electric double layer capacitor materials, when using commercially available activated carbon fiber, the electric capacity is about 140 F / g up to a specific surface area of 1000 m 2 / g.
However, there is a problem that when the specific surface area is larger than that, it saturates and hardly increases. As described above, the carbon material has a large room for improvement in the control of the carbon structure that can effectively utilize the excellent characteristics of carbon, and in particular, the porous material having a uniform fine pore size suitable for the purpose of use. There is a demand for the development of carbonaceous materials.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の技術
における上記した実状に鑑みてなされたものである。す
なわち、本発明の目的は、フッ素樹脂を出発原料とし、
メソ孔領域のサイズの均一な微細孔径を多量に有するこ
とから比表面積が大きく、高い電気容量を有する多孔質
炭素材料の製造方法を提供することにある。また、本発
明の他の目的は、単位容積あたりの電気容量の大きい電
気二重層キャパシタを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned actual situation in the prior art. That is, an object of the present invention is to use a fluororesin as a starting material,
An object of the present invention is to provide a method for producing a porous carbon material having a large specific surface area and a high electric capacity because it has a large amount of fine pores having a uniform size in the mesopore region. Another object of the present invention is to provide an electric double layer capacitor having a large electric capacity per unit volume.

【0005】[0005]

【課題を解決するための手段】本発明者らは、既に、原
料が従来のものとは全く異なると同時に、炭素材料にな
る前の炭素前駆体においても、これまでの方法とは全く
異なる手法で調製した炭素材料の製法を提案した。すな
わち、従来使用されたことのないフッ素系樹脂を原料と
し、その樹脂中に含まれるフッ素原子をアルカリ金属で
脱離させ、次に、副生したフッ化アルカリを除去して残
存した炭素質物質を炭素前駆体とし、これを特定の温度
で熱処理することにより、均一な細孔径を多数有する多
孔質炭素材料を得るものである。これに引き続いて、本
発明者らは、さらに鋭意検討を重ねた結果、従来用いた
市販のフッ素系樹脂に代えて、そのフッ素系樹脂を特殊
な手法で処理して得られた低分子量のフッ素樹脂原料と
すると、より一層メソ孔領域に均一な細孔径を多量に有
し、高比表面積からなる電気容量の大きい多孔質炭素材
料が得られることを知見し、本発明を完成するに至っ
た。
The inventors of the present invention have already made a completely different raw material from the conventional one and, at the same time, used a completely different method for a carbon precursor before it became a carbon material. A method of manufacturing the carbon material prepared in 1. was proposed. That is, using a fluorine-based resin that has never been used as a raw material, the fluorine atoms contained in the resin are desorbed with an alkali metal, and then the by-produced alkali fluoride is removed to leave a carbonaceous substance remaining. Is used as a carbon precursor and heat-treated at a specific temperature to obtain a porous carbon material having a large number of uniform pore diameters. Subsequent to this, as a result of further intensive studies, the present inventors replaced the commercially available fluororesin used conventionally with low molecular weight fluorine obtained by treating the fluororesin with a special method. It was found that a resin raw material has a large amount of uniform pore diameters in the mesopore region, and a porous carbon material having a high specific surface area and a large electric capacity can be obtained, and the present invention has been completed. .

【0006】すなわち、本発明の低分子量フッ素樹脂の
製造方法は、フッ素樹脂にガンマー線を照射することに
よりフッ素樹脂が解重合した低分子量フッ素樹脂を得る
ことを特徴とする。また、本発明の多孔質炭素材料の製
造方法は、フッ素樹脂にガンマー線を照射してフッ素樹
脂の解重合により得られた低分子量フッ素樹脂を、アル
カリ金属またはアルカリ金属含有溶液で還元脱フッ素化
させ、得られた反応生成物を酸処理して副生したアルカ
リ金属フッ化物を除去した脱フッ素化炭素質物質を炭素
前駆体として用いたことを特徴とする。
That is, the method for producing a low molecular weight fluororesin of the present invention is characterized in that a low molecular weight fluororesin obtained by depolymerizing the fluororesin is obtained by irradiating the fluororesin with gamma rays. Further, the method for producing a porous carbon material of the present invention is a method of reducing defluorination of a low molecular weight fluororesin obtained by depolymerization of a fluororesin by irradiating the fluororesin with gamma rays, with an alkali metal or an alkali metal-containing solution. The obtained reaction product is treated with an acid to remove the by-produced alkali metal fluoride, and the defluorinated carbonaceous material is used as a carbon precursor.

【0007】また、本発明の炭素前駆体の製造方法は、
フッ素樹脂にガンマー線を照射してフッ素樹脂の解重合
により得られた低分子量フッ素樹脂を、アルカリ金属ま
たはアルカリ金属含有溶液で還元脱フッ素化させ、得ら
れた脱フッ素化物とアルカリ金属フッ化物の共存する反
応生成物を真空中200〜500℃で熱処理した後、フ
ッ酸または塩酸水溶液で処理して得られる脱フッ素化炭
素質物質を炭素前駆体とすることを特徴とする。次に、
上記の方法で得られた炭素前駆体を、不活性雰囲気中5
00〜3000℃の温度で高温熱処理することにより、
メソ孔領域の均一細孔が高度に発達した多孔質炭素材料
を得ることを特徴とする多孔質炭素材料の製造方法であ
る。
The method for producing a carbon precursor of the present invention is
The low molecular weight fluororesin obtained by depolymerizing the fluororesin by irradiating the fluororesin with gamma rays is subjected to reductive defluorination with an alkali metal or an alkali metal-containing solution, and the resulting defluorinated product and alkali metal fluoride It is characterized in that the coexisting reaction product is heat-treated in vacuum at 200 to 500 ° C. and then treated with an aqueous solution of hydrofluoric acid or hydrochloric acid to obtain a defluorinated carbonaceous substance as a carbon precursor. next,
The carbon precursor obtained by the above method was added in an inert atmosphere for 5
By high temperature heat treatment at a temperature of 00 to 3000 ° C.,
The method for producing a porous carbon material is characterized in that a porous carbon material having highly developed uniform pores in the mesopore region is obtained.

【0008】本発明の電気二重層キャパシタは、上記の
方法で得られた多孔質炭素材料を分極性電極に用いたこ
とを特徴とする。
The electric double layer capacitor of the present invention is characterized in that the porous carbon material obtained by the above method is used for a polarizable electrode.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明においては、先ずフッ素樹脂原料をガンマ
ー線で照射してそのフッ素樹脂中の炭素鎖を適宜の大き
さに開裂させた低分子量フッ素樹脂を製造し、次いで、
得られた低分子量フッ素樹脂から炭素前駆体を経て多孔
性炭素材料を製造するものである。本発明において得ら
れた多孔性炭素材料は、2〜50nmのメソ孔領域にお
いて均一な孔径分布を有する細孔が多量に形成された高
比表面積のもので、電気容量が大きいことから電気二重
層キャパシタの電極や二次電池の負極炭素材料等に極め
て有用なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the present invention, a low molecular weight fluororesin is first produced by irradiating a fluororesin raw material with gamma rays to cleave the carbon chain in the fluororesin to an appropriate size, and then,
A porous carbon material is produced from the obtained low molecular weight fluororesin via a carbon precursor. The porous carbon material obtained in the present invention has a high specific surface area in which a large number of pores having a uniform pore size distribution in the mesopore region of 2 to 50 nm are formed, and has a large electric capacity. It is extremely useful as an electrode for capacitors and as a negative electrode carbon material for secondary batteries.

【0010】本発明における多孔質炭素材料の製造方法
は、主に次の工程からなるものである。 (1)フッ素樹脂にガンマー線を照射して、フッ素樹脂
を解重合させることにより低分子量フッ素樹脂を製造す
る。 (2)上記(1)で得られた低分子量フッ素樹脂とアル
カリ金属またはアルカリ金属含有溶液とを反応させて、
フッ素樹脂中のフッ素原子をアルカリ金属で脱離させ、
脱フッ素化物とアルカリ金属フッ素化物とを含む反応生
成物を製造する。 (3)次に、その反応生成物を酸処理して、脱フッ素化
物から副生したアルカリ金属フッ素化物を除去した脱フ
ッ素化炭素質物質を炭素前駆体として得る。その際、そ
の反応生成物を酸処理する前に、脱フッ素化物と副生し
たアルカリ金属フッ素化物とが共存する状態で、真空中
において200〜500℃の温度範囲で熱処理すること
が好ましい。 (4)さらに、その炭素前駆体から多孔質炭素材料を製
造する。その際、その炭素前駆体を不活性ガス雰囲気中
において500〜3000℃の温度範囲で高温熱処理す
ることが好ましく、これにより2〜50nmからなるメ
ソ領域の均一な孔径の細孔が多量に分布した構造を持つ
多孔質炭素材料を得ることができる。
The method for producing a porous carbon material according to the present invention mainly comprises the following steps. (1) A low molecular weight fluororesin is produced by irradiating the fluororesin with gamma rays to depolymerize the fluororesin. (2) reacting the low molecular weight fluororesin obtained in (1) above with an alkali metal or an alkali metal-containing solution,
The fluorine atom in the fluororesin is desorbed with an alkali metal,
A reaction product containing a defluorinated product and an alkali metal fluorinated product is produced. (3) Next, the reaction product is treated with an acid to obtain a defluorinated carbonaceous material obtained by removing the by-produced alkali metal fluorinated product from the defluorinated product as a carbon precursor. At this time, it is preferable to heat-treat the reaction product in a temperature range of 200 to 500 ° C. in vacuum in a state where the defluorinated compound and the by-produced alkali metal fluorinated compound coexist before being acid-treated. (4) Further, a porous carbon material is produced from the carbon precursor. At that time, it is preferable to subject the carbon precursor to a high temperature heat treatment in an inert gas atmosphere in a temperature range of 500 to 3000 ° C., whereby a large number of pores having a uniform pore size in the meso region of 2 to 50 nm are distributed. A porous carbon material having a structure can be obtained.

【0011】次に、本発明における上記製造工程(1)
〜(4)について順に説明する。まず、第1工程の原料
として用いるフッ素樹脂としては、炭素原子とフッ素原
子からなるフッ素樹脂であって、製品名:テフロンとし
て市販されているポリテトラフルオロエチレン(PTF
E)、フッ化エチレンプロピレン、不飽和炭素二重結合
を有する炭素鎖とフッ素原子からなる重合体等が挙げら
れる。その形状としては、粉末状或いは薄膜状固体で用
いることが好ましい。そのフッソ樹脂を照射するガンマ
ー(γ)線としては、γ線を放出するものであれば使用
可能であるが、通常60Coが用いられる。その照射処
理は、真空中または不活性ガス中で照射して炭素鎖を適
宜の大きさに切断し得る照射量となるように1〜100
時間、好ましくは8〜80時間の照射処理を行う。この
照射処理により、フッ素樹脂(融点332.0℃)は、
照射時間を8時間、40時間、80時間と増加させるに
つれて、それぞれの融点が325.6℃、321.4℃、
318.5℃に低下した低分子量のフッ素樹脂が得られ
る。図1には、フッ素樹脂をγ線照射処理して得られた
低分子量フッ素樹脂の示差熱分析(DTA)と熱重量分
析(TG)の測定結果を示す。図1におけるγ線照射量
(C/kg)は、それぞれ(a)なし、(b)3.12
×10 、(c)1.56×10、(d)3.12
×10である。
Next, the above manufacturing process (1) in the present invention.
(4) will be described in order. First, the fluororesin used as the raw material in the first step is a fluororesin composed of carbon atoms and fluorine atoms, and the product name: polytetrafluoroethylene (PTF) commercially available as Teflon.
E), fluorinated ethylene propylene, a polymer composed of a carbon atom having an unsaturated carbon double bond and a fluorine atom, and the like. As the shape, it is preferable to use a powdery or thin film solid. As the gamma (γ) ray for irradiating the fluorine resin, any gamma ray that emits γ ray can be used, but 60 Co is usually used. The irradiation treatment is performed in a vacuum or in an inert gas so that the irradiation amount is 1 to 100 so that the carbon chain can be cut into an appropriate size.
The irradiation treatment is performed for a time, preferably 8 to 80 hours. By this irradiation treatment, the fluororesin (melting point 332.0 ° C.)
As the irradiation time was increased to 8 hours, 40 hours, and 80 hours, the melting points of each were 325.6 ° C, 321.4 ° C,
A low molecular weight fluororesin having a temperature of 318.5 ° C. is obtained. FIG. 1 shows the measurement results of differential thermal analysis (DTA) and thermogravimetric analysis (TG) of a low molecular weight fluororesin obtained by subjecting the fluororesin to γ-ray irradiation treatment. The γ-ray irradiation dose (C / kg) in FIG. 1 is (a) none and (b) 3.12, respectively.
× 10 3 , (c) 1.56 × 10 4 , (d) 3.12
It is × 10 4 .

【0012】次に、第2工程の低分子量フッ素樹脂の還
元脱フッ素化反応に用いるアルカリ金属としては、L
i、Na、K、Cs、Rbのいずれの金属元素も使用可
能であるが、なかでも取り扱い性等の観点からしてKが
好ましい。また、その使用法としては、それらの金属元
素を高温下にガス状にして用いるか、またはそれらの金
属イオンとナフタレン、アントラセン等の多環芳香環化
合物とをテトラヒドロフタン等の溶媒に溶解したアルカ
リ金属含有溶液(アルカリ金属のアニオンラジカル溶
液)として用いる。
Next, as the alkali metal used in the reductive defluorination reaction of the low molecular weight fluororesin in the second step, L
Although any metal element of i, Na, K, Cs, and Rb can be used, K is preferable from the viewpoint of handleability and the like. In addition, as its usage, those metal elements are used in a gas state at high temperature, or those metal ions and polycyclic aromatic ring compounds such as naphthalene and anthracene are dissolved in a solvent such as tetrahydroftane. Used as an alkali metal-containing solution (alkali metal anion radical solution).

【0013】本発明における脱フッ素化反応条件として
は、アルカリ金属元素がガス化する減圧下に、特に真空
状態でガス化させて低分子量フッ素樹脂粉末と反応させ
ることが好ましい。その反応温度としては、使用する金
属種のガス化する温度によって異なるが、例えば、金属
カリウム(K)を用いる場合には、80〜400℃の温
度範囲であり、好ましくは約200℃程度である。ま
た、その反応時間は低分子量フッ素樹脂の形状による
が、例えば粉末の場合は約2〜12時間程度である。こ
のように、低分子量フッ素樹脂の脱フッ素化反応を行う
ことにより、フッ素樹脂は還元されて、数多くの炭素−
炭素三重結合を有するポリイン形或いは炭素の累積二重
結合系を持つクムレン形からなるカルビン状物質(脱フ
ッ素化物)と副生するアルカリ金属フッ素化物の共存す
る反応生成物が得られる。その際、アルカリ金属にKを
用いると、フッ化カリウム(KF)が副生する。
As the defluorination reaction conditions in the present invention, it is preferable to gasify the alkali metal element under reduced pressure, particularly in a vacuum state to react with the low molecular weight fluororesin powder. The reaction temperature varies depending on the gasification temperature of the metal species used, but when metal potassium (K) is used, it is in the temperature range of 80 to 400 ° C., preferably about 200 ° C. . The reaction time depends on the shape of the low molecular weight fluororesin, but is about 2 to 12 hours in the case of powder. In this way, by performing the defluorination reaction of the low molecular weight fluororesin, the fluororesin is reduced and a large amount of carbon-
A reaction product in which a carbine-like substance (defluorinated product) of polyyne type having a carbon triple bond or a cumulene type having a cumulative double bond system of carbon and an alkali metal fluorinated by-product coexist is obtained. At that time, if K is used as the alkali metal, potassium fluoride (KF) is by-produced.

【0014】次に、第3工程では、上記脱フッ素化物の
酸処理を行う。この酸処理によって脱フッ素化物から副
生したアルカリ金属フッ素化物、例えばKF、を除去し
た残存物である脱フッ素化炭素質物質を得、これを多孔
質炭素材料の炭素前駆体(プレカーサー)として用いる
ものである。その酸処理には、脱フッ素化物から副生し
たアルカリ金属フッ素化物を除去し得る酸性溶液であれ
ば使用可能であるが、フッ酸水溶液(HF/HO)ま
たは塩酸溶液を用いることが好ましい。
Next, in the third step, acid treatment of the above defluorinated compound is performed. By this acid treatment, a defluorinated carbonaceous substance, which is a residue obtained by removing an alkali metal fluorinated substance by-produced from the defluorinated substance, for example, KF, is obtained and used as a carbon precursor (precursor) of the porous carbon material. It is a thing. For the acid treatment, any acidic solution capable of removing the by-produced alkali metal fluoride from the defluorinated product can be used, but it is preferable to use a hydrofluoric acid aqueous solution (HF / H 2 O) or a hydrochloric acid solution. .

【0015】その第3工程においては、フッ酸水溶液等
による酸処理を行う前に、カルビン状物質とアルカリ金
属フッ素化物の共存下で、真空中200〜500℃の温
度範囲で30分〜5時間程度、好ましくは1〜2時間程
度の熱処理を行うことが好ましい。この熱処理を行うこ
とにより、脱フッ素化カルビン状物質の中に存在するア
ルカリ金属フッ素化物の凝集したクラスターが形成さ
れ、また、その熱処理温度を種々変更すると、形成され
るクラスターの大きさは異なってくることが分かった。
このことから、第3工程では、上記した熱処理を適宜の
条件で行って、形成されるクラスターの大きさを調製し
た後、そのクラスターをフッ酸水溶液または塩酸溶液で
処理して取り除くことにより、2〜50nmのメソ孔領
域のナノサイズ径で、任意の均一な細孔径を多数有し、
炭素環構造を形成した脱フッ素化炭素質物質を適宜製造
することができる。このようにして得られた脱フッ素化
炭素質物質を多孔質炭素材料の炭素前駆体とすることが
好ましい。
In the third step, before the acid treatment with a hydrofluoric acid aqueous solution or the like, in the coexistence of the carbine-like substance and the alkali metal fluoride, the temperature is in the range of 200 to 500 ° C. in vacuum for 30 minutes to 5 hours. It is preferable to perform heat treatment for about 1 to 2 hours. By carrying out this heat treatment, aggregated clusters of alkali metal fluorinated compounds present in the defluorinated carbine-like substance are formed, and when the heat treatment temperature is variously changed, the size of the formed clusters becomes different. I knew it would come.
Therefore, in the third step, the heat treatment described above is performed under appropriate conditions to adjust the size of clusters to be formed, and then the clusters are treated with an aqueous solution of hydrofluoric acid or a hydrochloric acid solution to remove the clusters. With a nano-sized diameter in the mesopore region of ~ 50 nm, it has a large number of arbitrary uniform pore diameters,
A defluorinated carbonaceous material having a carbocyclic structure can be appropriately produced. The defluorinated carbonaceous material thus obtained is preferably used as the carbon precursor of the porous carbon material.

【0016】次に、第3工程では、上記した炭素前駆体
を用いて、炭素材料の一般的な手法によって容易に多孔
質炭素材料を製造することができる。ところが、その炭
素前駆体は、クラスターが除去されて数多くの細孔経が
形成され、主に数多くの炭素−炭素三重結合が環化して
炭素6員環構造を有する脱フッ素化炭素質物質であるか
ら、これをアルゴン、ネオン等の不活性ガス雰囲気中に
おいて500〜3000℃の範囲、このましくは約80
0℃で高温熱処理すると、メソ孔領域の均一な細孔径に
精密に制御された細孔を多数有する多孔質炭素材料を製
造することができる。
Next, in the third step, using the above-mentioned carbon precursor, a porous carbon material can be easily manufactured by a general method for carbon materials. However, the carbon precursor is a defluorinated carbonaceous material having a 6-membered carbon ring structure in which a large number of pores are formed by removing clusters and a large number of carbon-carbon triple bonds are cyclized. Therefore, in an atmosphere of an inert gas such as argon or neon, the temperature is in the range of 500 to 3000 ° C., preferably about 80.
A high temperature heat treatment at 0 ° C. makes it possible to produce a porous carbon material having a large number of pores precisely controlled to have a uniform pore diameter in the mesopore region.

【0017】一般に、フッ素樹脂に対するγ線の照射量
を増加させて得た低分子量フッ素樹脂を用いる程、得ら
れる多孔質炭素材料はメソ孔領域の細孔が増加して比表
面積が大きくなり、電気容量は増加して約240F/g
のものが得られることを確認した。そのため、本発明の
製造方法で得られた多孔質炭素材料は、2〜50nmの
メソ孔領域の均一な細孔を多量に有していて比表面積が
大きいことから、電気二重層キャパシタの分極性電極と
して用いることにより電気容量を増大させることができ
る。
Generally, the lower the molecular weight fluororesin obtained by increasing the irradiation amount of γ-rays to the fluororesin, the more the pores in the mesopore region of the obtained porous carbon material increase and the larger the specific surface area of The electric capacity increases to about 240F / g
It was confirmed that Therefore, the porous carbon material obtained by the production method of the present invention has a large number of uniform pores in the mesopore region of 2 to 50 nm and has a large specific surface area. By using it as an electrode, the electric capacity can be increased.

【0018】[0018]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例によって何ら限定される
ものではない。 実施例1 市販のポリテトラフルオルエチレン(PTFE)粉末
(商品名:テフロン、平均粒径:20μm)に、真空中
でガンマー線を8時間照射(照射量3.12×10
/kg)して、解重合された低分子量フッ素樹脂を得
た。得られた低分子量フッ素樹脂の融点は、熱重量分析
から325.6℃であった[図1中の(b)参照]。こ
のガンマー線処理したPTFE粉末とカリウム金属を、
それぞれ別々に真空中に保持した。これらを200℃の
恒温槽中に入れて、PTFE粉末をカリウムの蒸気に暴
露させて脱フッ素化反応を徐々に進行させた。その反応
が進むにつれて白色のPTFE粉末は次第に黒色に変化
したが、すべての粉末の反応が完了するまで恒温槽中に
放置して黒色粉末を得た。その後、生成した黒色粉末
を、そのまま真空中で脱気しながら200℃で1時間熱
処理を行い、次いで、その加熱処理後の黒色粉末を空気
中で取り出し、これをフッ酸溶液に加えて24時間撹拌
した後、プロピレン(PP)製またはガラス製のフィル
ターを用いてろ過、分離し、蒸留水で洗浄した後、乾燥
させることにより脱フッ素化された炭素質物質(炭素前
駆体)を得た。次に、この炭素前駆体をアルゴンガス中
で約800℃の温度で熱処理することにより多孔質炭素
材料を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 Commercially available polytetrafluoroethylene (PTFE) powder (trade name: Teflon, average particle size: 20 μm) was irradiated with gamma rays in a vacuum for 8 hours (irradiation amount: 3.12 × 10 3 C).
/ Kg) to obtain a depolymerized low molecular weight fluororesin. The melting point of the obtained low molecular weight fluororesin was 325.6 ° C. according to thermogravimetric analysis [see (b) in FIG. 1]. This gamma-ray treated PTFE powder and potassium metal,
Each was held in vacuum separately. These were placed in a constant temperature bath of 200 ° C., and the PTFE powder was exposed to potassium vapor to gradually progress the defluorination reaction. The white PTFE powder gradually changed to black as the reaction proceeded, but it was left in a constant temperature bath until the reaction of all the powders was completed to obtain a black powder. Then, the generated black powder is heat-treated at 200 ° C. for 1 hour while being degassed in vacuum as it is, and then the black powder after the heat treatment is taken out in air and added to the hydrofluoric acid solution for 24 hours. After stirring, it was filtered and separated using a propylene (PP) or glass filter, washed with distilled water, and dried to obtain a defluorinated carbonaceous material (carbon precursor). Next, this carbon precursor was heat-treated in argon gas at a temperature of about 800 ° C. to obtain a porous carbon material.

【0019】実施例2 市販のポリテトラフルオルエチレン(PTFE)粉末
(商品名:テフロン、平均粒径:20μm)に、真空中
でガンマー線を40時間照射(照射量1.56×10
C/kg)して、解重合された低分子量フッ素樹脂を得
た。得られた低分子量フッ素樹脂の融点は、321.4
℃であった[図1中の(c)参照]。得られた低分子量
フッ素樹脂を用いたこと以外は、すべて実施例1と同様
にして多孔質炭素材料を得た。
Example 2 Commercially available polytetrafluoroethylene (PTFE) powder (trade name: Teflon, average particle size: 20 μm) was irradiated with gamma rays in a vacuum for 40 hours (irradiation amount 1.56 × 10 4).
C / kg) to obtain a depolymerized low molecular weight fluororesin. The melting point of the obtained low molecular weight fluororesin is 321.4.
It was ℃ [see (c) in FIG. 1]. A porous carbon material was obtained in the same manner as in Example 1 except that the obtained low molecular weight fluororesin was used.

【0020】実施例1及び2で得られた多孔質炭素材料
について、それぞれ77Kの窒素ガスによる吸着測定を
実施し、細孔分布を求めた。図2には、フッ素樹脂から
得られた多孔質炭素材料の吸脱着等温線(77Kの窒素
ガス)を示した。 図2において、(a)はγ線照射し
なかったもの、(b)はγ線照射量3.12×10
/kgで処理したもの 、(c)はγ線照射量1.56
×10C/kgで処理したものを示す。図2に見られ
るように、吸脱着等温線は、γ線照射量の増加とともに
吸着量は増加した。
The porous carbon materials obtained in Examples 1 and 2 were subjected to adsorption measurement with nitrogen gas of 77 K to determine the pore distribution. FIG. 2 shows adsorption / desorption isotherms (nitrogen gas at 77K) of the porous carbon material obtained from the fluororesin. In FIG. 2, (a) shows the case where γ-ray irradiation was not performed, and (b) shows the γ-ray irradiation amount of 3.12 × 10 3 C
/ Kg, (c) shows a γ-ray irradiation amount of 1.56
It shows the one treated with × 10 4 C / kg. As shown in FIG. 2, the adsorption / desorption isotherm showed that the adsorption amount increased as the γ-ray irradiation amount increased.

【0021】下記表1には、フッ素樹脂から得られた多
孔質炭素材料の比表面積とその電気容量を示す。実施例
2で得た低分子量フッ素樹脂、即ち、フッ素樹脂を照射
量1.56×10C/kgのγ線で照射処理したもの
を用いた場合には、得られた多孔質炭素材料の比表面積
は、表1に見られるように、約1560m/gと高く
なった。また、メソ孔(細孔直径2〜50nm)は、γ
線照射量の増加と共に発達することが判った。
Table 1 below shows the specific surface area and the electric capacity of the porous carbon material obtained from the fluororesin. When the low molecular weight fluororesin obtained in Example 2, that is, the fluororesin irradiated with γ rays having an irradiation dose of 1.56 × 10 4 C / kg was used, the obtained porous carbon material was The specific surface area was as high as about 1560 m 2 / g as seen in Table 1. Further, the mesopores (pore diameter 2 to 50 nm) have a γ
It was found that it developed with an increase in the radiation dose.

【0022】[0022]

【表1】 [Table 1]

【0023】また、図3には、脱着曲線から算出した多
孔質炭素材料の細孔分布を示した。図3に示したよう
に、本発明で得られた多孔質炭素材料(b)及び(c)
の平均細孔径は、約4nmにシャープな孔径分布のピー
クを持つとともに、細孔容積が極めて大きいものであっ
た。さらに、多孔質炭素材料の電気容量と比表面積との
関係は、図4に示したように、本発明で得られた多孔質
炭素材料(b)及び(c)の電気容量は、従来の活性炭
繊維のそれと比べて同じ比表面積では大幅に高くなり、
また、γ線照射しなかったもの(a)と比べてもかなり
上昇することが判明した。
Further, FIG. 3 shows the pore distribution of the porous carbon material calculated from the desorption curve. As shown in FIG. 3, the porous carbon materials (b) and (c) obtained by the present invention.
The average pore diameter of No. 2 had a sharp peak of pore diameter distribution at about 4 nm, and the pore volume was extremely large. Further, as for the relationship between the electric capacity of the porous carbon material and the specific surface area, as shown in FIG. 4, the electric capacities of the porous carbon materials (b) and (c) obtained by the present invention are the same as those of the conventional activated carbon. Compared to that of fiber, it is significantly higher for the same specific surface area,
It was also found that the amount was significantly higher than that of the case (a) which was not irradiated with γ-rays.

【0024】[0024]

【発明の効果】本発明では、フッ素樹脂を簡易な処理に
よって、電気材料やガスの吸蔵材料等に有用な多孔質炭
素材料の原料として好適な低分子量フッ素樹脂を容易に
製造することができる。本発明の製法により得られる多
孔質炭素材料は、メソ孔範囲の細孔径で、均一に制御さ
れた所望の細孔を多量に有する優れた多孔質炭素材料で
あるから、各種ガスの吸蔵材料、例えば、水素やメタン
等の低級炭化水素等の吸蔵材料、二次電池の電極材料、
電気二重層キャパシタ材料等の広範な分野において極め
て有用である。
INDUSTRIAL APPLICABILITY According to the present invention, a low molecular weight fluororesin suitable as a raw material for a porous carbon material useful as an electric material or a gas storage material can be easily produced by a simple treatment of the fluororesin. Porous carbon material obtained by the production method of the present invention, in the pore size of the mesopore range, since it is an excellent porous carbon material having a large amount of desired pores uniformly controlled, various gas storage material, For example, storage materials such as lower hydrocarbons such as hydrogen and methane, electrode materials for secondary batteries,
It is extremely useful in a wide range of fields such as electric double layer capacitor materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】 フッ素樹脂のγ線照射処理ににより得られた
低分子量フッ素樹脂の分析データを示すグラフである。
FIG. 1 is a graph showing analytical data of low molecular weight fluororesin obtained by γ-ray irradiation treatment of fluororesin.

【図2】 フッ素樹脂から得られた多孔質炭素材料の吸
脱着等温線(77Kの窒素ガス)のグラフである。
FIG. 2 is a graph of adsorption / desorption isotherms (nitrogen gas at 77K) of a porous carbon material obtained from a fluororesin.

【図3】 脱着曲線から算出した多孔質炭素材料の細孔
分布を示すグラフである。
FIG. 3 is a graph showing a pore distribution of a porous carbon material calculated from a desorption curve.

【図4】 多孔質炭素材料の電気容量と比表面積との関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the electric capacity and the specific surface area of a porous carbon material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01G 9/058 H01M 4/58 H01M 4/58 C08L 27:12 // C08L 27:12 H01G 9/00 301A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01G 9/058 H01M 4/58 H01M 4/58 C08L 27:12 // C08L 27:12 H01G 9/00 301A

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ素樹脂にガンマー線を照射してフッ
素樹脂の解重合により得られた低分子量フッ素樹脂を、
アルカリ金属またはアルカリ金属含有溶液で還元脱フッ
素化させ、得られた反応生成物を酸処理して副生したア
ルカリ金属フッ化物を除去した脱フッ素化炭素質物質を
炭素前駆体として用いたことを特徴とする多孔質炭素材
料の製造方法。
1. A low molecular weight fluororesin obtained by depolymerizing a fluororesin by irradiating the fluororesin with gamma rays,
The defluorinated carbonaceous material obtained by reducing and defluorinating with an alkali metal or a solution containing an alkali metal and treating the resulting reaction product with an acid to remove the by-produced alkali metal fluoride was used as a carbon precursor. A method for producing a porous carbon material having the characteristics.
【請求項2】 フッ素樹脂にガンマー線を照射してフッ
素樹脂の解重合により得られた低分子量フッ素樹脂を、
アルカリ金属またはアルカリ金属含有溶液で還元脱フッ
素化させ、得られた脱フッ素化物とアルカリ金属フッ化
物の共存する反応生成物を真空中200〜500℃で熱
処理した後、フッ酸または塩酸水溶液で処理して得られ
る脱フッ素化炭素質物質を炭素前駆体とすることを特徴
とする炭素前駆体の製造方法。
2. A low molecular weight fluororesin obtained by depolymerizing a fluororesin by irradiating the fluororesin with gamma rays,
Reductively defluorinate with an alkali metal or an alkali metal-containing solution, and heat the reaction product of coexistence of the obtained defluorinated product and alkali metal fluoride at 200 to 500 ° C. in vacuum, and then treat with a hydrofluoric acid or hydrochloric acid aqueous solution. A method for producing a carbon precursor, which comprises using the defluorinated carbonaceous material obtained by the above as a carbon precursor.
【請求項3】 請求項に記載の方法で得られた炭素前
駆体を、不活性雰囲気中500〜3000℃の温度で高
温熱処理することにより、メソ孔領域の均一細孔が高度
に発達した多孔質炭素材料を得ることを特徴とする多孔
質炭素材料の製造方法。
3. The carbon precursor obtained by the method according to claim 2 is subjected to a high temperature heat treatment at a temperature of 500 to 3000 ° C. in an inert atmosphere to highly develop uniform pores in the mesopore region. A method for producing a porous carbon material, which comprises obtaining a porous carbon material.
【請求項4】 請求項またはで得られた多孔質炭素
材料を分極性電極に用いたことを特徴とする電気二重層
キャパシタ。
4. An electric double layer capacitor, wherein the porous carbon material obtained in claim 1 or 3 is used for a polarizable electrode.
JP2000303820A 2000-10-03 2000-10-03 Method for producing porous carbon material from low molecular weight fluororesin and its use Expired - Lifetime JP3521224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303820A JP3521224B2 (en) 2000-10-03 2000-10-03 Method for producing porous carbon material from low molecular weight fluororesin and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303820A JP3521224B2 (en) 2000-10-03 2000-10-03 Method for producing porous carbon material from low molecular weight fluororesin and its use

Publications (2)

Publication Number Publication Date
JP2002105124A JP2002105124A (en) 2002-04-10
JP3521224B2 true JP3521224B2 (en) 2004-04-19

Family

ID=18784968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303820A Expired - Lifetime JP3521224B2 (en) 2000-10-03 2000-10-03 Method for producing porous carbon material from low molecular weight fluororesin and its use

Country Status (1)

Country Link
JP (1) JP3521224B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070149627A1 (en) * 2002-06-03 2007-06-28 Shiyou Guan Micelle-containing organic polymer, organic polymer porous material and porous carbon material
KR20040009541A (en) * 2002-07-24 2004-01-31 (주) 나노텍 Methods of preparing high specific surface area/nano-porous carbon materials using polymer precursors with three-dimensional network structure
JP4245522B2 (en) * 2003-07-07 2009-03-25 東洋炭素株式会社 Carbonized product and production method thereof
JP4968425B2 (en) * 2005-08-04 2012-07-04 戸田工業株式会社 Spherical porous carbon particle powder and method for producing the same
US20110236567A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method of forming electrode
JP5682971B2 (en) * 2010-05-14 2015-03-11 国立大学法人群馬大学 Method for producing carbon material for electric double layer capacitor and method for forming electric double layer capacitor
JP2013080780A (en) * 2011-10-03 2013-05-02 Asahi Kasei Corp Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP5975953B2 (en) * 2013-08-06 2016-08-23 日本バルカー工業株式会社 Method for producing electrode film for electric double layer capacitor
WO2019156067A1 (en) * 2018-02-07 2019-08-15 ダイキン工業株式会社 Manufacturing method for composition including low molecular weight polytetrafluoroethylene
WO2019156038A1 (en) * 2018-02-07 2019-08-15 ダイキン工業株式会社 Method for producing low molecular weight polytetrafluoroethylene
US11780973B2 (en) 2018-07-13 2023-10-10 Osaka University Method for producing low-molecular-weight polytetrafluoroethylene
US11333987B2 (en) * 2019-02-07 2022-05-17 Fujifilm Business Innovation Corp. Fluorine-containing resin particle, composition, layer-shaped article, electrophotographic photoreceptor, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP2002105124A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
He et al. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability
JP3521224B2 (en) Method for producing porous carbon material from low molecular weight fluororesin and its use
JP4294246B2 (en) Carbon material for electric double layer capacitor electrode and method for producing the same, electric double layer capacitor and method for producing the same
EP2362851B1 (en) Process for making porous activated carbon
US5891822A (en) Production process of active carbon used for electrode for organic solvent type electric double layer capacitor
KR102113719B1 (en) Activated carbon and its manufacturing method
JPH07201677A (en) Polarizable electrode and its manufacture
JP2001240407A (en) Activated carbon and its manufacturing method
JP6553307B2 (en) Carbonaceous material and method for producing the same
CN109569508A (en) Micro-pore carbon material separates the nitrogen in association and nonassociated gas stream
JP4864238B2 (en) Activated carbon and its manufacturing method
KR100878262B1 (en) Production method of high performance activated carbon from soybean curd residue
JP2007326732A (en) Carbon nanostructure and method for producing the same
JP3577507B2 (en) Method for producing porous carbon material from fluorine resin
Liang et al. Preparation of porous carbon by defluorination of poly (tetrafluoroethylene) and the effect of γ-irradiation on the polymer
KR101956993B1 (en) High performance mesoporous activated carbon and method for preparing the same
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
US6013208A (en) Manufacturing method for carbon material for electrical double layer capacitor
JP2001316103A (en) Porous carbon material, its manufacturing method and electrical two layer capacitor
CN110759326B (en) Doped porous carbon material, preparation method thereof and porous carbon-based electrode material
JP2003206121A (en) Activated carbon and method for manufacturing the same
US5948329A (en) Manufacturing method for carbon material for electrical double layer capacitor
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
KR20140110427A (en) Porous graphene/carbon complex and method for preparing the same
WO2017207593A1 (en) A method for manufacturing microporous carbon particles

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350