JPH06172764A - Method for improving low-rank coal and production of coal-water mixture using the same - Google Patents

Method for improving low-rank coal and production of coal-water mixture using the same

Info

Publication number
JPH06172764A
JPH06172764A JP15215591A JP15215591A JPH06172764A JP H06172764 A JPH06172764 A JP H06172764A JP 15215591 A JP15215591 A JP 15215591A JP 15215591 A JP15215591 A JP 15215591A JP H06172764 A JPH06172764 A JP H06172764A
Authority
JP
Japan
Prior art keywords
coal
water
low
cwm
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15215591A
Other languages
Japanese (ja)
Inventor
Chikao Yokogawa
親雄 横川
Sadao Wasaka
貞雄 和坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP15215591A priority Critical patent/JPH06172764A/en
Publication of JPH06172764A publication Critical patent/JPH06172764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To decrease the equilibrium moisture of a low-rank coal by thermally treating it at the critical temp. of water or lower in the presence of water and CO. CONSTITUTION:A pressure vessel, such as an autoclave, is charged with water and a low-rank coal having a carbon content of 75wt.% or lower and an equilibrium moisture of 15wt.% or higher in a wt. ratio of water to coal of (0.3:1.0) to (3.0:1.0). After the introduction of CO at normal temp. under 0.5-5MPa (gauge pressure) into the vessel, the coal and water are thermally treated under stirring at the critical temp. of water or lower (523-647.3K) for 0.2-6hr to give a slurry, which is separated by filtration into a liq. phase and an improved coal having a carbon content of 75wt.% or lower and an equilibrium moisture of 10wt.% or lower. The slurry is mixed with a surfactant (e.g. a condensate of sodium naphthalenesulfonate with formalin) and adjusted in the water content, giving a slurry (CWM) which is stable, has a good flowability, and contains 30-35wt.% water, 65-75wt.% coal, 0.2-0.7wt.% surfactant, and, if necessary, a filler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水分含有量の高い低石
炭化度炭を安全かつ高能率で輸送可能とする低石炭化度
炭の改質法及びその改質処理物を用いた石炭・水混合物
の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for reforming low-coal-grade coal which enables safe and high-efficiency transportation of low-coal-grade coal having high water content, and coal using the reformed product. -It relates to a method for producing a water mixture.

【0002】[0002]

【従来の技術】炭素含有量が60〜75重量%(無水無
灰基準)の低石炭化度炭は、一般に日本工業規格JIS
M8812に規定される水分(固有水分)が20〜3
0%と高いものが多く、また石炭の種類によっては、常
温で、相対温度98%における水分(平衡水分)が60
〜70%に達するものもある。このような石炭を高い水
分のまま輸送することは不経済であり、また、燃料その
他の目的で使用する際の効率も悪い。石炭の水分を低減
させるために、例えば熱風乾燥や自然乾燥等の方法を用
いて乾燥しても、得られる乾燥炭は貯炭中あるいは輸送
中に水分を再吸収し、更に水分を吸収する過程で石炭が
細分化したり自然発火する危険がある。このような問題
があるため、低石炭化度炭の利用分野は限られており、
利用拡大を図るため、従来より低石炭化度炭を改質し
て、水分の含有量を少なくする方法が求められている。
2. Description of the Related Art Low coal-grade coal having a carbon content of 60 to 75% by weight (anhydrous ashless standard) is generally manufactured by Japanese Industrial Standard JIS.
Moisture (specific moisture) specified in M8812 is 20 to 3
Many of them are as high as 0%, and depending on the type of coal, the water content (equilibrium water content) at room temperature and 98% relative temperature is 60
Some can reach ~ 70%. It is uneconomical to transport such coal with high water content, and it is inefficient when used for fuel or other purposes. In order to reduce the water content of coal, even if it is dried using a method such as hot air drying or natural drying, the obtained dry coal reabsorbs water during storage or transportation, and in the process of further absorbing water. There is a risk of coal fragmentation and spontaneous combustion. Due to such problems, the field of application of low-rank coal is limited,
In order to expand utilization, there has been a demand for a method of reforming low-rank coal to reduce the water content.

【0003】また、低石炭化度炭の輸送においては、そ
のままで燃料として使用可能な石炭と水との混合スラリ
ー(以下、CWMという)で輸送できれば、取扱い上極
めて便利である。CWMの調製に関しては、既に多くの
研究がなされており、CWMの性状を支配する因子も数
多く指摘されているが、これらの中で最も重要な因子は
石炭が吸蔵する水の量である。すなわち、石炭濃度の高
いCWMを製造するには、石炭粒子の細孔内に吸蔵され
CWMのカロリーを低下させるが、流動性の向上には寄
与しない水の量が可及的に少ないことが望ましい。ここ
で、石炭粒子の細孔内に吸蔵される水の量は、常温で相
対湿度98%以上の雰囲気中での平衡水分と近似的に比
例関係にあると考えられるため、前記平衡水分をもって
CWM製造の難易の尺度とすることができる。また、C
WMの性状(石炭濃度、粘性ならびに安定性等)は、石
炭粒子の外に存在する水の量に支配されるところが大で
あり、かつ石炭に対してその2〜3%が変化するだけで
決定的な影響を及ぼすことが多い。このような観点か
ら、低石炭化度炭の有効利用に関し、安全かつ高能率で
輸送するため、あるいは良好な性状を有するCWMを製
造するため、低い石炭化度炭の平衡水分を少なくする改
質方法が種々試みられている。例えば、低石炭化度炭の
改質法として、温度473〜573K、圧力1.5〜
8.5MPaの飽和水蒸気を用いて石炭中の水分を低減
させるFleissner法(T.G.Rozgony
i and I.Z.Szigeti,Interna
tional J.Mining Eng.、157
1984等)や石炭と水との混合物を温度473〜6
03K、圧力1.5〜17MPaの加圧水の中で改質す
る水熱処理法(T.A.Potas、R.E.Sear
s、D.J.Maas、G.G.Baker and
W.G.Willson,Chem.Eng.Comm
un.44、133 1986等)が知られている。し
かしながら、これらの方法においては、低石炭化度炭を
改質してその水分を減少させる効果は認められるが、前
記平衡水分は11〜20%程度までである。処理温度を
高くして処理時間を長くすると改質の程度が高められる
傾向にはあるが、工業的には低温、短時間での処理が望
まれており、また処理温度は飽和水蒸気圧も上がるた
め、装置的にも高圧のものが必要となるため、コスト的
にも好ましくない。このような点から見て、従来の方法
では前記平衡水分11%程度までの改質が限界であると
いうのが現状である。この程度の改質では低石炭化度炭
の利用拡大の観点からすれば不十分である。
In the transportation of low-rank coal, it is extremely convenient in handling if it can be transported as a mixed slurry of coal and water (hereinafter referred to as CWM) which can be used as a fuel as it is. Much research has already been done on the preparation of CWM, and many factors that control the properties of CWM have been pointed out, but the most important factor among these is the amount of water stored by coal. That is, in order to produce a CWM having a high coal concentration, it is desirable that the amount of water that is stored in the pores of the coal particles and reduces the calories of the CWM, but does not contribute to the improvement of fluidity is as small as possible. . Here, the amount of water stored in the pores of the coal particles is considered to be approximately proportional to the equilibrium water content in an atmosphere having a relative humidity of 98% or more at room temperature. It can be a measure of manufacturing difficulty. Also, C
The properties of WM (coal concentration, viscosity, stability, etc.) are largely governed by the amount of water existing outside the coal particles, and are determined only by a 2-3% change relative to coal. Often have a negative impact. From this point of view, regarding the effective utilization of low-coal-grade coal, reforming for reducing equilibrium water content of low-coal-grade coal in order to transport it safely and with high efficiency or to produce CWM having good properties. Various methods have been tried. For example, as a method for reforming low-rank coal, a temperature of 473 to 573K and a pressure of 1.5 to
Fleissner method (TG Rozgony) of reducing water content in coal by using saturated steam of 8.5 MPa
i and I. Z. Szigeti, Interna
regional J. Mining Eng. 2 , 157
1984) or a mixture of coal and water at a temperature of 473-6.
Hydrothermal treatment method (TA Potas, RE Sear) for reforming in pressurized water at 03 K and a pressure of 1.5 to 17 MPa.
S.D. J. Maas, G .; G. Baker and
W. G. Willson, Chem. Eng. Comm
un. 44 , 133 1986) are known. However, in these methods, although the effect of reforming the low-rank coal and reducing the water content is recognized, the equilibrium water content is about 11 to 20%. Although there is a tendency for the degree of reforming to be enhanced by increasing the treatment temperature and lengthening the treatment time, industrially, low temperature treatment in a short time is desired, and the treatment temperature also increases the saturated steam pressure. Therefore, a high pressure device is required in terms of equipment, which is not preferable in terms of cost. From this point of view, it is the current situation that the conventional method has a limit of reforming up to about 11% of the equilibrium water content. This degree of reforming is not sufficient from the perspective of expanding the use of low-coal coal.

【0004】一方、本発明とは直接の技術分野を異にす
るが、水と一酸化炭素とを用いて石炭を処理する方法が
知られている。このような技術としては、極めて少量の
水と一酸化炭素との共存下で、水の臨界温度(647.
3K)以上の温度(即ち、液体としての水が存在しない
状態)で石炭ならびにその関連物質を加熱し、水と一酸
化炭素との水性ガス平衡反応(CO+H2 O→CO2
2 )により発生する発生期の水素を利用して特定の触
媒下で石炭を液化しようとする試み(横山ら、燃協誌、
57、182(1977))が知られているが、これは
石炭を分解・液化しようとするものであって、石炭の吸
蔵水分を減らすものと本質的に異なっている。
On the other hand, a method of treating coal using water and carbon monoxide is known, although the technical field is different from the present invention. As such a technique, a critical temperature of water (647.
Coal and its related substances are heated at a temperature of 3 K) or more (that is, in the absence of water as a liquid), and a water-gas equilibrium reaction between water and carbon monoxide (CO + H 2 O → CO 2 +
An attempt to liquefy coal under a specific catalyst by using nascent hydrogen generated by H 2 (Yokoyama et al.
57 , 182 (1977)), which is an attempt to decompose and liquefy coal, and is essentially different from that for reducing the stored water content of coal.

【0005】[0005]

【発明が解決しようとする課題】本発明は、石炭を水熱
反応を利用して改質する方法の改良法に関するものであ
り、低石炭化度炭を水の臨界温度以下の温度であって、
液体としての水が存在する状態(即ち、水と蒸気が共存
する状態)で改質し、石炭の平衡水分を従来技術の限界
であった11%程度よりも低下させ、併せて石炭の安
全、高能率な輸送方法に寄与できる低石炭化度炭の改質
法及びこの方法により得られる改質炭を用いた石炭・水
混合物の製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to an improved method for reforming coal by utilizing a hydrothermal reaction, in which low-rank coal having a temperature below the critical temperature of water is used. ,
It reforms in the presence of water as a liquid (that is, in the state where water and steam coexist), lowers the equilibrium water content of coal to less than about 11%, which is the limit of the prior art, and also improves the safety of coal. An object of the present invention is to provide a method for reforming a low-coalized coal which can contribute to a highly efficient transportation method, and a method for producing a coal-water mixture using the reformed coal obtained by this method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来その
含有水分量が多いため輸送方法等に困難があった低石炭
化度炭を改質し、平衡水分を下げる方法について鋭意検
討した結果、特定の条件下で前記石炭を処理することに
より、従来の改質法では到達が困難とされていた低い平
衡水分の石炭が得られること、及びこの改質法により得
られる改質炭を用いて石炭含有量の高い、良好な性状を
有するCWMが製造できることを見いだし本発明を完成
した。
[Means for Solving the Problems] The present inventors diligently studied a method of reforming low-coal-rank coal, which has been difficult to transport due to its large water content, to lower the equilibrium water content. As a result, by treating the coal under a specific condition, it is possible to obtain a coal having a low equilibrium water content, which was difficult to reach by the conventional reforming method, and the reformed coal obtained by this reforming method. The present invention has been completed by finding that a CWM having a high coal content and good properties can be produced by using the same.

【0007】すなわち、本発明は、低石炭化度炭を、水
及び一酸化炭素の存在下、水の臨界温度以下の温度で熱
処理することを特徴とする低石炭化度炭の改質法及びこ
の改質法により得られる改質処理物に界面活性剤を添加
し水の含有量を調整して混合することを特徴とする石炭
・水混合物の製造方法である。なお、従来技術において
水熱反応とは一般に高温・高圧水を用いた反応をいい、
本発明における反応も、この反応の範疇と言えるが、後
述するように水/石炭重量比が0.3でも処理可能なた
め水熱処理といわず熱処理という。
[0007] That is, the present invention is a method for reforming low-coal-rank coal, which comprises heat-treating low-coal-rank coal in the presence of water and carbon monoxide at a temperature below the critical temperature of water. A method for producing a coal / water mixture, characterized in that a surfactant is added to a reformed product obtained by this reforming method to adjust the content of water and mixed. In the prior art, the hydrothermal reaction generally means a reaction using high temperature / high pressure water,
The reaction in the present invention can be said to be in the category of this reaction, but since it can be processed even with a water / coal weight ratio of 0.3 as described later, it is called hydrothermal treatment rather than hydrothermal treatment.

【0008】本発明は、例えば次のような方法で実施で
きる。すなわち、オートクレーブ等の圧力容器内に水と
石炭とを装填したあと、一酸化炭素(CO)を圧入し、
523K〜647.3K(水の臨界温度)の反応温度に
保持して反応させることにより低い平衡水分の石炭を得
ることができる。また、熱処理後に圧力容器から回収し
た処理物(スラリー)中の液相中には、反応により生成
したフミン酸と総称される有機カルボン酸が多量に含有
されており、これが界面活性剤としての作用を有するの
で、熱処理後のスラリーから直接CWMを調製する場
合、界面活性剤の添加量を減少できる。
The present invention can be implemented by the following method, for example. That is, after charging water and coal in a pressure vessel such as an autoclave, carbon monoxide (CO) is injected under pressure,
Coal having a low equilibrium water content can be obtained by maintaining the reaction temperature of 523K to 647.3K (critical temperature of water) and causing the reaction. In addition, the liquid phase of the treated product (slurry) recovered from the pressure vessel after the heat treatment contains a large amount of organic carboxylic acid, which is generally called humic acid produced by the reaction, and acts as a surfactant. Therefore, when the CWM is directly prepared from the slurry after the heat treatment, the amount of the surfactant added can be reduced.

【0009】本発明において、低石炭化度炭とは、無水
無灰基準(daf基準)で炭素含有量が75%以下、J
IS M8812に規定される水分(固有水分)が10
%以上、または常温で、相対温度98%における水分
(平衡水分)が15%以上のいずれかの条件に該当する
石炭をいうが、前記条件を満たさない石炭についての実
施を排除するものではない。また、石炭の種類について
も特に限定されるものではない。
In the present invention, the low-rank coal has a carbon content of 75% or less on a dry ashless basis (daf basis), J
Moisture (specific moisture) specified in IS M8812 is 10
% Or more, or at room temperature, the coal (equilibrium moisture) at a relative temperature of 98% corresponds to any condition of 15% or more, but does not exclude the implementation of coal that does not meet the above conditions. Also, the type of coal is not particularly limited.

【0010】熱処理に使用する装置としては、常圧を超
える圧力で操作するため、圧力容器を使用することが好
ましく、例えば回分式、流通式等のオートクレーブ等を
好適に用い得るが、使用する圧力容器としては、特に限
定されるものではない。
As a device used for heat treatment, a pressure vessel is preferably used because it is operated at a pressure exceeding normal pressure. For example, a batch type or a flow type autoclave and the like can be preferably used. The container is not particularly limited.

【0011】圧力容器に装填する水と石炭との比は、用
いる圧力容器の種類、熱処理後のプロセスの相違等によ
り適正な比率とすればよいが、水の量としては熱処理時
に石炭粒子に水が十分に接するのに必要な量であればよ
い。即ち、概略0.3〜3.0(水/石炭重量比)の範
囲でよく、CWMとしての利用であれば、水の量を比較
的多くしスラリーとし、又処理物の水を切って利用する
場合は比較的少なくすると有利である。また、石炭の粘
度としては、例えば改質炭をCWM製造に向ける場合は
200メッシュ程度以下、改質炭をそのまま水を切って
使用したり、輸送したりする場合は8〜20メッシュ程
度とすればよいが、用途により適宜粒度調整すればよ
い。
The ratio of water to coal charged in the pressure vessel may be an appropriate ratio depending on the type of pressure vessel used, the difference in the process after the heat treatment, and the like. It is sufficient if the amount is sufficient to make contact. That is, it may be approximately in the range of 0.3 to 3.0 (water / coal weight ratio), and in the case of use as a CWM, the amount of water is made relatively large to form a slurry, and the water to be treated is drained before use. When doing so, it is advantageous to make it relatively small. The viscosity of coal is, for example, about 200 mesh or less when the modified coal is directed to CWM production, and about 8 to 20 mesh when the modified coal is used after being drained or used as it is. However, the particle size may be appropriately adjusted depending on the application.

【0012】また、水と一酸化炭素との水性ガス平衡反
応により水素を発生させるには、一酸化炭素の分圧を大
きくすればよいが、一酸化炭素の分圧を大きくすると反
応系の圧力が大きくなり、工業的な実施に際し、設備
的、経済的な課題を生じるので、純度の高い一酸化炭素
ガスを用い、その量は反応系内における一酸化炭素の常
温における分圧表示で、1〜5MPa(ゲージ圧)の範
囲とするのが好ましい。前記一酸化炭素の分圧範囲は、
実用性を勘案した好ましい範囲であり、この範囲以外で
の実施を排除するものではない。
Further, in order to generate hydrogen by a water-gas equilibrium reaction between water and carbon monoxide, it suffices to increase the partial pressure of carbon monoxide. However, if the partial pressure of carbon monoxide is increased, the pressure of the reaction system will increase. Since it becomes large and causes industrial and economic problems in industrial implementation, high-purity carbon monoxide gas is used, and the amount is 1 at the room temperature partial pressure display of carbon monoxide in the reaction system. It is preferably in the range of 5 MPa (gauge pressure). The partial pressure range of the carbon monoxide is
It is a preferable range in consideration of practicality, and implementation outside this range is not excluded.

【0013】反応温度は523K〜647.3K(水の
臨界温度)が好ましい。523K以下の反応温度では反
応速度が小さく実用的ではなく、また水の臨界温度64
7.3K以上の温度では処理する石炭の熱分解が起こり
好ましくない。
The reaction temperature is preferably 523K to 647.3K (critical temperature of water). At a reaction temperature of 523 K or less, the reaction rate is small and not practical, and the critical temperature of water is 64
At a temperature of 7.3 K or higher, the coal to be treated is thermally decomposed, which is not preferable.

【0014】一酸化炭素の分圧と反応温度とは、例えば
処理する石炭の種類により特に反応温度を高くする必要
がある場合には、一酸化炭素の分圧を低くして、反応系
内の全圧を抑える等の調整を行なえばよい。
The partial pressure of carbon monoxide and the reaction temperature are set so that the partial pressure of carbon monoxide is lowered to lower the reaction pressure in the reaction system when the reaction temperature needs to be raised particularly depending on the type of coal to be treated. Adjustments such as suppressing the total pressure may be made.

【0015】反応時間は処理する石炭の種類、熱処理に
使用する圧力容器の種類等により変化するが、これらの
選択枝に合わせて適宜設定すればよいが概略0.2〜6
時間の反応時間で処理できる。反応時間が短ければ改質
効果が十分でなく、一方長くなれば平衡水分の低下は認
められるが、長すぎてもそれ以上の効果は認められな
い。
The reaction time varies depending on the type of coal to be treated, the type of pressure vessel used for heat treatment, etc., but it may be appropriately set according to these options, but it is approximately 0.2 to 6
Can be processed in reaction time of time. If the reaction time is short, the reforming effect is not sufficient. On the other hand, if the reaction time is long, the equilibrium water content is lowered, but if it is too long, no further effect is observed.

【0016】熱処理後に圧力容器から回収した石炭・水
混合物中の液相の化学的酸素消費量(COD)は、従来
の熱処理法(T.A.Potas等)や本発明の方法と
も、処理温度が高いほど大きくなる傾向が認められる
が、一酸化炭素を加えて熱処理する本発明の方法がより
顕著であり、COD値は従来法の値の約2倍である。ま
た、石炭の改質に対する直接的な効果はないが、系にK
2 CO3 を加えて熱処理することでCOD値は更に大き
くなる。液相中の成分は主にフミン酸と総称される有機
カルボン酸であり、これが界面活性剤としての作用を有
するため、石炭の輸送手段としてCWMを調製する場
合、界面活性剤の添加量を減少できるという効果を有す
る。
The chemical oxygen consumption (COD) of the liquid phase in the coal-water mixture recovered from the pressure vessel after the heat treatment is determined by the conventional heat treatment method (TA Potas etc.) and the method of the present invention. Although the higher the value is, the larger the tendency tends to be, the method of the present invention in which carbon monoxide is added and the heat treatment is more remarkable, and the COD value is about twice the value of the conventional method. Also, there is no direct effect on the reforming of coal,
The COD value is further increased by adding 2 CO 3 and heat treatment. The components in the liquid phase are mainly organic carboxylic acids generally called humic acid, which acts as a surfactant, so when CWM is prepared as a means of transporting coal, the amount of surfactant added is reduced. It has the effect of being able to.

【0017】ところで、水性ガス平衡反応は、本来CO
とH2Oから、H2を製造するために工業的に行なわれる
ものであり、CO+H2O→H2+CO2 で示される反応
をいう。この反応は発熱反応であるためその平衡は温度
が低いほどH2の生成に有利であるが、その反応速度が
小さいため一般に720K以上の温度で触媒を用いて行
なわれる。本発明における水性ガス平衡反応は、完全に
解明はされていないが、上記反応とは触媒を用いていな
い点、温度が水性ガス平衡反応に用いられている温度よ
りも低い点で全く相違している。確かにCO+H2O→
2+CO2 の反応により発生する発生期のH(反応速
度は小さい)を利用するが、これが石炭の改質に有効で
あることは、従来考えられたこともなく、また知られて
いなかったと言える。 本発明の方法により低石炭化度
炭の平衡水分を減少できる理由として、水と一酸化炭素
との水性ガス平衡反応により生成する発生期の水素
(H)が石炭に作用して石炭中の含酸素官能基を減少さ
せることにより、石炭中の気孔壁が疎水性となるととも
に、これらの官能基が関与した水素結合による架橋が解
消され石炭マトリックスが緻密になることにより、改質
炭の平衡水分が減少すると考えられる。このことは、一
酸化炭素(CO)を用いる代わりに水素(H2)を用い
て熱処理を行わせた場合は、従来の熱処理に比較して石
炭の改質効果はほとんど向上していないことからも推測
される。
By the way, the water-gas equilibrium reaction is essentially CO 2.
And H 2 O are industrially carried out to produce H 2 , which is a reaction represented by CO + H 2 O → H 2 + CO 2 . Since this reaction is an exothermic reaction, the equilibrium is more advantageous for the production of H 2 at lower temperatures, but it is generally carried out using a catalyst at a temperature of 720K or higher because of its low reaction rate. Although the water-gas equilibrium reaction in the present invention has not been completely clarified, it is completely different from the above reaction in that a catalyst is not used and the temperature is lower than the temperature used in the water-gas equilibrium reaction. There is. Certainly CO + H 2 O →
Although nascent H (reaction rate is low) generated by the reaction of H 2 + CO 2 is used, it has never been considered or was known that it is effective for reforming coal. I can say. The reason why the equilibrium water content of the low coal-grade coal can be reduced by the method of the present invention is that nascent hydrogen (H) produced by the water-gas equilibrium reaction between water and carbon monoxide acts on the coal to contain it in the coal. By reducing the oxygen functional groups, the pore walls in the coal become hydrophobic, and the cross-linking due to hydrogen bonds involving these functional groups is eliminated and the coal matrix becomes dense, resulting in an equilibrium moisture content of the reformed coal. Is expected to decrease. This is because when the heat treatment is performed using hydrogen (H 2 ) instead of using carbon monoxide (CO), the coal reforming effect is hardly improved as compared with the conventional heat treatment. Is also guessed.

【0018】従って、本発明の改質方法を用いることに
より、石炭中の気孔壁が疎水性となり、石炭マトリック
スが緻密になることにより、炭素含有量が75%以下で
あり、通常20〜30%以上である低石炭化度炭の平衡
水分を10%程度以下に減らすことができ、水分の再吸
着の少ない改質炭を得ることができる。本発明の改質法
による得られる改質炭は必要に応じて乾燥した上で燃料
その他の用途に用いることができるが、また改質処理後
のスラリー状態のままCWM製造に向けることに特に適
している。
Therefore, by using the reforming method of the present invention, the pore wall in coal becomes hydrophobic and the coal matrix becomes dense, so that the carbon content is 75% or less, usually 20 to 30%. It is possible to reduce the equilibrium water content of the low-rank coal having the above degree to about 10% or less, and it is possible to obtain a reformed coal with less water re-adsorption. The reformed carbon obtained by the reforming method of the present invention can be used for fuel and other applications after being dried if necessary, and is particularly suitable for directing to CWM production in a slurry state after the reforming treatment. ing.

【0019】CWMの製造については、例えば次のよう
な方法で実施できる。すなわち、低石炭化度炭を前記改
質法により処理して得られるスラリーの水分量を調整
し、CWMとしての安定性、流動性を持たせるための界
面活性剤を加えて混合すればよい。ここで、用いる界面
活性剤は特に制限はないが、CWMの石炭含有量を高め
るには、例えば減水効果、分散効果等を有する、ナフタ
リンスルホン酸ナトリウムホルマリン縮合物を主成分と
する界面活性剤等の使用が好ましい。なお、用いる界面
活性剤の種類により、その効果を発揮させるためにCW
Mスラリー中の液相の水素イオン濃度(pH)調整を行
なってもかまわない。ここで、本発明の方法を利用して
低石炭化度炭を熱処理して得られるスラリーには、界面
活性剤の作用を有する成分が含まれているため、新たに
加える界面活性剤の添加量は少なくてすむ。CWMの概
略組成としては、水分30〜35%,石炭65〜70
%、添加界面活性剤0.2〜0.7%、その他必要によ
り微量のカオリナイトなどのフィラーを含有するのが一
般的であるが、用途により適宜調整すればよい。また、
石炭の粘度は、200メッシュ通過80重量%程度が好
ましい。
The CWM can be manufactured by the following method, for example. That is, the water content of the slurry obtained by treating the low-rank coal with the above-mentioned reforming method may be adjusted, and a surfactant for imparting stability and fluidity as CWM may be added and mixed. The surfactant used here is not particularly limited, but in order to increase the coal content of CWM, for example, a surfactant having a sodium naphthalene sulfonate formalin condensate having a water reducing effect, a dispersing effect, etc. Is preferably used. In addition, depending on the type of surfactant used, in order to exert its effect, CW
The hydrogen ion concentration (pH) of the liquid phase in the M slurry may be adjusted. Here, since the slurry obtained by heat-treating the low-rank coal using the method of the present invention contains a component having the action of a surfactant, the addition amount of the surfactant to be newly added. Is less. The general composition of CWM is as follows: water content 30-35%, coal 65-70
%, 0.2 to 0.7% of an added surfactant, and a small amount of filler such as kaolinite, if necessary, are generally contained, but it may be appropriately adjusted depending on the application. Also,
The viscosity of coal is preferably about 80% by weight through 200 mesh.

【0020】本発明の方法によれば、炭素含有量が75
%以下の低石炭化度炭から石炭濃度が高く、しかも安定
で良好な流動性を有し、遠距離輸送が容易なCWMを容
易に製造することができる。なお、CWMの調製におい
て、本発明の改質法により得られた処理物をそのまま用
いることは処理操作上、便利であり好ましいが、一旦、
改質炭として得たあと、新たにCWMを調製してもよ
い。
According to the method of the present invention, the carbon content is 75.
A CWM having a high coal concentration, a stable and good fluidity, and easy long-distance transportation can be easily produced from a coal with a low coalification degree of not more than%. In addition, in the preparation of CWM, it is convenient and preferable in terms of processing operation to use the processed product obtained by the modification method of the present invention as it is.
CWM may be newly prepared after obtaining the modified carbon.

【0021】以下、実施例により本発明を更に具体的に
説明する。
Hereinafter, the present invention will be described more specifically with reference to Examples.

【0022】[0022]

【実施例】改質処理に先だち、表1に示す石炭を32〜
60メッシュの粒度となるよう粒度調整して試料とし
た。なお、表1において元素分析値は無水無灰基準%で
表示し、また、工業分析値は日本工業規格(JIS)M
8812に基づき分析した値である。
[Example] Prior to the reforming treatment, the coal shown in Table 1
A sample was prepared by adjusting the particle size so that the particle size was 60 mesh. In addition, in Table 1, elemental analysis values are expressed by% ashless standard, and industrial analysis values are Japanese Industrial Standard (JIS) M.
It is a value analyzed based on 8812.

【0023】また、実施例及び比較例において、圧力容
器はその内容積が50cm3 の電磁攪拌式オートクレーブ
(SUS製)を用いた。
In the examples and comparative examples, the pressure vessel used was an electromagnetic stirring type autoclave (made by SUS) having an internal volume of 50 cm 3 .

【0024】(実施例1〜8、比較例1〜10)表1に
示した石炭A、B及びCを原料石炭として、それぞれの
石炭について、石炭10g(乾燥炭基準)と純水20g
とを前記オートクレーブ内に装填し、表2に示す条件で
常温で0.5〜5MPa(ゲージ圧)の一酸化炭素を加
えたあと、電磁的に攪拌しながら553K、573K、
593Kの反応温度で6時間保持し、熱処理を行った。
熱処理後のスラリーを濾過して、石炭(改質炭)と液相
とに分別した。得られた改質炭については、乾燥炭基準
での収率(原料石炭量に対する改質炭量の比率)、元素
組成及び常温における相対湿度75%、100%での平
衡水分を測定した。また、液相については、オートクレ
ーブより回収した直後のスラリーを濾過分別したものを
直ちにJIS K0101に準拠して化学的酸素消費量
(COD)を測定した。また、一酸化炭素を使用しない
場合の例として、上記3種類の石炭を用いて、石炭10
g、純水30gとしたほかは、実施例の条件に準じて熱
処理を行なった。これらの測定結果を併せて表2に示
す。なお、比較例1、4及び8は表1に示した原料とし
て用いた石炭(未処理)である。表2の結果から、比較
例に示した一酸化炭素を用いない水熱処理では、相対湿
度(R.H.)100%における平衡水分を11%程度
以下とすることは極めて困難であることがわかる。これ
に対して本発明の一酸化炭素を加えた方法では、6〜8
%まで平衡水分を減少でき、また改質が特に困難とされ
ている石炭Aにおいても10%まで低下できることがわ
かる。
(Examples 1 to 8 and Comparative Examples 1 to 10) Using the coals A, B and C shown in Table 1 as raw material coals, for each coal, 10 g of coal (dry coal standard) and 20 g of pure water were used.
Were charged into the autoclave, carbon monoxide of 0.5 to 5 MPa (gauge pressure) was added at room temperature under the conditions shown in Table 2, and then 553 K, 573 K with electromagnetic stirring.
The heat treatment was carried out by holding the reaction temperature of 593 K for 6 hours.
The slurry after the heat treatment was filtered to separate it into coal (reformed coal) and a liquid phase. For the obtained reformed coal, the yield (the ratio of the amount of reformed coal to the amount of raw coal) on the basis of dry coal, the elemental composition, and the relative moisture at room temperature of 75% and 100% equilibrium moisture were measured. As for the liquid phase, the slurry immediately after being recovered from the autoclave was filtered and fractionated, and the chemical oxygen consumption (COD) was immediately measured according to JIS K0101. In addition, as an example in the case where carbon monoxide is not used, coal 10
g and pure water of 30 g were used, and the heat treatment was performed according to the conditions of the example. The results of these measurements are also shown in Table 2. In addition, Comparative Examples 1, 4 and 8 are coals (untreated) used as raw materials shown in Table 1. From the results in Table 2, it is found that it is extremely difficult to reduce the equilibrium water content to about 11% or less at 100% relative humidity (RH) by the hydrothermal treatment without using carbon monoxide shown in the comparative example. . On the other hand, according to the method of adding carbon monoxide of the present invention, 6 to 8
It can be seen that the equilibrium water content can be reduced to 10%, and even in the case of coal A, which is particularly difficult to reform, it can be reduced to 10%.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 (実施例9、比較例11〜12)石炭Cを用いて、実施
例9として本発明の方法による熱処理、また比較例11
〜12として、一酸化炭素(CO)の代わりに水素(H
2 )を用いた系、及び一酸化炭素(CO)、水素(H
2 )を用いない系で熱処理を行なった。処理条件は実施
例、比較例とも、反応温度553K、反応時間6時間、
一酸化炭素あるいは水素の添加量はいずれもゲージ圧で
5MPaとした。得られた改質炭の平衡水分、反応後の
ガス組成を表3に示す。表3の結果より、一酸化炭素の
代わりに水素を用いた比較例11では、比較例12の一
酸化炭素を用いない場合よりも幾分石炭の改質が進んで
いるが、実施例9の一酸化炭素を用いた場合と比べてそ
の効果は極めて小さいことがわかる。また、CODは表
2の実施例に示すように一酸化炭素を加えた熱処理では
いずれも高いCOD値(石炭10gに水20mlを用いて
処理した時のCOD値)が得られているのに対して、水
素を用いた比較例11では1450ppm であり、従来の
熱処理である表2に示した比較例(石炭10gに水30m
lを用いて処理した時のCOD値)の値と大差がない。
また、K2 CO3を用いて実施例9の条件で熱処理した
場合のCOD値は7070ppm と極めて大きくなってお
り、熱処理後の液相中にはフミン酸のカリウム塩として
存在している。K2 CO3 は石炭の改質には効果はない
が、界面活性剤としての前記フミン酸のカリウム塩が多
量に存在するため、CWMを調製する場合は好都合であ
る。
[Table 2] (Example 9, Comparative Examples 11 to 12) Using coal C, as Example 9, heat treatment by the method of the present invention, and Comparative Example 11
~ 12, instead of carbon monoxide (CO), hydrogen (H
2 ) using carbon monoxide (CO), hydrogen (H)
Heat treatment was performed in a system that did not use 2 ). The treatment conditions were a reaction temperature of 553 K, a reaction time of 6 hours, in both Examples and Comparative Examples.
The addition amount of carbon monoxide or hydrogen was 5 MPa in gauge pressure. Table 3 shows the equilibrium water content of the obtained reformed carbon and the gas composition after the reaction. From the results of Table 3, in Comparative Example 11 in which hydrogen was used instead of carbon monoxide, coal reformation was somewhat advanced as compared with the case where Comparative Example 12 did not use carbon monoxide, but in Example 9 It can be seen that the effect is extremely small as compared with the case of using carbon monoxide. Further, as for COD, as shown in the examples of Table 2, a high COD value (COD value when treated with 20 ml of water for 10 g of coal) was obtained by the heat treatment with addition of carbon monoxide. In Comparative Example 11 using hydrogen, the amount was 1450 ppm, which is a conventional heat treatment (Comparative Example shown in Table 2 (10 g of coal and 30 m of water).
There is no big difference with the value of COD value when treated with l.
Further, the COD value when heat-treated using K 2 CO 3 under the conditions of Example 9 was as large as 7070 ppm, and it exists as a potassium salt of humic acid in the liquid phase after the heat-treatment. K 2 CO 3 has no effect on the reforming of coal, but it is convenient for preparing CWM because of the large amount of the potassium salt of humic acid as a surfactant.

【0027】[0027]

【表3】 (実施例10、比較例13)実施例10として実施例8
で得られた改質炭を用いて、また比較例13として未処
理の石炭Cを用いてCWMを調製した。なお、改質炭、
石炭とも粒径は200メッシュ通過80%に調整したも
のを用いた。比較例13の場合は、安定で流動性を持つ
CWMを調製するために、ナフタリンスルホン酸ナトリ
ウムホルマリン縮合物を主成分とする界面活性剤を乾燥
石炭量に対して1%加える必要があり、またその時のC
WMの最高石炭濃度(乾燥炭重量/水の重量)は42%
であった。一方、実施例10の場合は、熱処理後のスラ
リーを濾過分別して得られた液に3N−NaOH溶液を
加えてpH値を12程度としたものに、上記界面活性剤
を乾燥石炭量に対して0.5%加えたものを液体成分と
して用いることにより、最高石炭濃度が65%の安定で
良好な流動性を有するCWMを製造することができた。
このように本発明の方法をCWM調製の前処理として利
用することにより、より少ない界面活性剤の添加で、C
WMの石炭濃度を極めて高め得ることがわかる。
[Table 3] (Example 10, Comparative Example 13) Example 8 as Example 10
CWM was prepared using the modified coal obtained in 1. and untreated Coal C as Comparative Example 13. In addition, reformed coal,
The particle size of coal was adjusted to 80% through 200 mesh. In the case of Comparative Example 13, in order to prepare a stable and fluid CWM, it is necessary to add a surfactant containing sodium naphthalenesulfonate formalin condensate as a main component to the dry coal in an amount of 1%. C at that time
The maximum coal concentration of WM (dry coal weight / water weight) is 42%
Met. On the other hand, in the case of Example 10, 3N-NaOH solution was added to the liquid obtained by filtering and separating the slurry after the heat treatment to adjust the pH value to about 12, and the surfactant was added to the dry coal amount. By using 0.5% added as a liquid component, a CWM having a maximum coal concentration of 65% and stable and good fluidity could be produced.
Thus, by utilizing the method of the present invention as a pretreatment for the preparation of CWM, C
It is understood that the coal concentration of WM can be extremely increased.

【0028】[0028]

【発明の効果】水分含有量の高い低石炭化度炭を熱処理
により改質するに際し、一酸化炭素を加えて、水の臨界
温度以下の温度で熱処理する本発明の方法により、石炭
中の気孔壁を疎水性となすとともに石炭マトリックスが
緻密化されるため、熱処理後の改質炭の平衡水分を減少
させることができる。このことにより、石炭の長距離輸
送手段として有用とされているCWMを調製する場合、
本発明の方法をCWM調製の前処理として利用すること
により、より少ない界面活性剤の添加で、石炭濃度が高
く、安定で良好な流動性を有するCWMが得られる。
[Effects of the Invention] When reforming low-coal-coal having a high water content by heat treatment, by adding carbon monoxide and heat-treating at a temperature below the critical temperature of water, the method of the present invention is used to obtain pores in coal. Since the walls are made hydrophobic and the coal matrix is densified, the equilibrium water content of the reformed coal after heat treatment can be reduced. Due to this, when preparing CWM, which is said to be useful as a long-distance transportation means for coal,
By utilizing the method of the present invention as a pretreatment for the preparation of CWM, a CWM having a high coal concentration, a stable and good fluidity can be obtained by adding less surfactant.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低石炭化度炭を、水及び一酸化炭素の存
在下、水の臨界温度以下の温度で熱処理することを特徴
とする低石炭化度炭の改質法。
1. A method for reforming low-coal-grade coal, which comprises heat-treating the low-coal-grade coal at a temperature not higher than the critical temperature of water in the presence of water and carbon monoxide.
【請求項2】 低石炭化度炭を、水及び一酸化炭素の存
在下、水の臨界温度以下の温度で熱処理して得られる改
質処理物に界面活性剤を添加し水の含有量を調整して混
合することを特徴とする石炭・水混合物の製造方法。
2. A surfactant is added to a reformed product obtained by heat-treating a low-coal-rank coal in the presence of water and carbon monoxide at a temperature not higher than the critical temperature of water to increase the content of water. A method for producing a coal-water mixture, which comprises adjusting and mixing.
JP15215591A 1991-05-29 1991-05-29 Method for improving low-rank coal and production of coal-water mixture using the same Pending JPH06172764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15215591A JPH06172764A (en) 1991-05-29 1991-05-29 Method for improving low-rank coal and production of coal-water mixture using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15215591A JPH06172764A (en) 1991-05-29 1991-05-29 Method for improving low-rank coal and production of coal-water mixture using the same

Publications (1)

Publication Number Publication Date
JPH06172764A true JPH06172764A (en) 1994-06-21

Family

ID=15534229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15215591A Pending JPH06172764A (en) 1991-05-29 1991-05-29 Method for improving low-rank coal and production of coal-water mixture using the same

Country Status (1)

Country Link
JP (1) JPH06172764A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278578A (en) * 1994-04-13 1995-10-24 Eiji Ikeda Water-coal mixed fuel and its production
WO2012101963A1 (en) * 2011-01-24 2012-08-02 川崎重工業株式会社 Low-grade coal slurry production method, low-grade coal slurry production device, and low-grade coal gasification system
CN103113909A (en) * 2013-02-01 2013-05-22 太原理工大学 Method for modifying and tackifying low-rank coals
US8453953B2 (en) 2005-04-29 2013-06-04 Gtl Energy Holdings Pty Limited Method to transform bulk material
US8673030B2 (en) 2007-08-01 2014-03-18 Gtl Energy Holdings Pty Limited Methods of producing water-resistant solid fuels
CN113416589A (en) * 2021-06-08 2021-09-21 太原理工大学 Process for passivating and partially desulfurizing lignite
CN113416588A (en) * 2021-06-08 2021-09-21 太原理工大学 Dehydration and passivation process of lignite

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278578A (en) * 1994-04-13 1995-10-24 Eiji Ikeda Water-coal mixed fuel and its production
US8453953B2 (en) 2005-04-29 2013-06-04 Gtl Energy Holdings Pty Limited Method to transform bulk material
US8673030B2 (en) 2007-08-01 2014-03-18 Gtl Energy Holdings Pty Limited Methods of producing water-resistant solid fuels
US9499756B2 (en) 2007-08-01 2016-11-22 Gtl Energy Holdings Pty Limited Roll press
WO2012101963A1 (en) * 2011-01-24 2012-08-02 川崎重工業株式会社 Low-grade coal slurry production method, low-grade coal slurry production device, and low-grade coal gasification system
JP2012153760A (en) * 2011-01-24 2012-08-16 Kawasaki Heavy Ind Ltd Method for producing low-grade coal slurry, apparatus for producing low-grade coal slurry, and gasification system of low-grade coal
CN103282469A (en) * 2011-01-24 2013-09-04 川崎重工业株式会社 Low-grade coal slurry production method, low-rade coal slurry production device, and low-grade coal gasification system
AU2012210130B2 (en) * 2011-01-24 2015-10-29 Kawasaki Jukogyo Kabushiki Kaisha Method for Producing Low-Grade Coal Slurry, Apparatus for Producing Low-Grade Coal Slurry, and System for Gasifying Low-Grade Coal
CN103282469B (en) * 2011-01-24 2015-11-25 川崎重工业株式会社 The gasification system of the manufacture method of low-grade coal slurry, the manufacturing installation of low-grade coal slurry and low grade coal
CN103113909A (en) * 2013-02-01 2013-05-22 太原理工大学 Method for modifying and tackifying low-rank coals
CN113416589A (en) * 2021-06-08 2021-09-21 太原理工大学 Process for passivating and partially desulfurizing lignite
CN113416588A (en) * 2021-06-08 2021-09-21 太原理工大学 Dehydration and passivation process of lignite

Similar Documents

Publication Publication Date Title
JP2735491B2 (en) Microporous activated carbon and its production method
CN108128774A (en) A kind of preparation method of high-purity porous charcoal
Ashu et al. Enhancement of char reactivity by rapid heating of precursor coal
JPH06172764A (en) Method for improving low-rank coal and production of coal-water mixture using the same
JPH07155589A (en) Production of carbon material having large specific surface area
DE10045465A1 (en) Process for the atmospheric production of furfural using a gaseous catalyst
US5382559A (en) Process for producing activated charcoal
US5290324A (en) Coal-water mixture using upgraded low-rank coal and process for producing said mixture
CN112691666A (en) Amorphous iron oxyhydroxide-biochar composite material and preparation method thereof
KR101722963B1 (en) Method For Producing Magnesium Hydroxide Powder By Semidry Process
CN115403229A (en) Method for treating aquaculture wastewater
CN108144425B (en) Three-dimensional graphene carbon-based composite desulfurization material and preparation method thereof
JPS6369705A (en) Production of expanded graphite
RU2709872C1 (en) Method of producing chemically precipitated chalk
JP2002029738A (en) Calcium hydroxide and acidic gas treating agent by using the same
JPS6048140A (en) Production of hydrophobic adsorbent
US1266339A (en) Process of making light precipitated chalk.
JPH01123627A (en) Production of desulfurizing agent
AU601983B2 (en) Coal treatment process
CN114345295B (en) Impurity removal process for chemical auxiliary agent
RU2090498C1 (en) Method of preparing oxidized graphite
KR970061783A (en) Method of manufacturing calcium carbonate by particle size
SU1279971A1 (en) Method of dewatering sediment of natural and waste water
Kuznetsov et al. Obtaining the Porous Carbon Materials through High-Speed Heating and Preliminary Chemical Modification of Anthracites
JPS6228084B2 (en)