JPS5934401A - Turbine rotor - Google Patents

Turbine rotor

Info

Publication number
JPS5934401A
JPS5934401A JP14484382A JP14484382A JPS5934401A JP S5934401 A JPS5934401 A JP S5934401A JP 14484382 A JP14484382 A JP 14484382A JP 14484382 A JP14484382 A JP 14484382A JP S5934401 A JPS5934401 A JP S5934401A
Authority
JP
Japan
Prior art keywords
coupling
rotor
sleeve
turbine rotor
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14484382A
Other languages
Japanese (ja)
Inventor
Kazunari Kimura
和成 木村
Masataka Aoyama
青山 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14484382A priority Critical patent/JPS5934401A/en
Publication of JPS5934401A publication Critical patent/JPS5934401A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/02Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits
    • B23P11/025Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits by using heat or cold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent the generation of any crack due to the fretting fatigue in a shrinkage fitted part, by shrinkage fitting a sleeve and a coupling to be formed on a turbine rotor after shot peening treatment with a steel ball is applied to a journal part and a coupling part. CONSTITUTION:Shot peening treatment with a steel ball is applied to a turbine rotor made of high chrome alloy steel to an extent such that the length of a sleeve 3 and a coupling 5 in the direction of a rotor shaft is sufficiently covered. Next, the sleeve and the coupling made of chrome-molybdenum-vanadium low alloy steel are heated to 250-300 deg.C at a rate of temperature increase of 20 deg.C per hour to be held for 3-10hr and then shrinkage fitted to the turbine rotor of high chrome alloy steel in the order of the sleeve and the coupling.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば蒸気タービンロータにおける高圧部や
中圧部において高温で使用するタービンロータに関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a turbine rotor used at high temperatures, for example in a high pressure section or an intermediate pressure section of a steam turbine rotor.

〔発明の技術的背景〕[Technical background of the invention]

一般に、この種のタービンロータ鍛造品にはクロム−モ
リブデン−バナジウム低合金鋼と高クロム鋼が使用され
るが、後者は高温強度が浸れている為、応力が高い場合
使用される。ところで高クロム鋼は軸受特性に問題があ
り、ジャーナル部が損傷する例が報告されている。すな
わち、タービンロータは、ホワイトメタルで内張すされ
た軸受で支えられており、潤滑の為、連続的に注油され
ているが、この油系統に混入するサビ等の異物がロータ
ジャーナルと軸受の間に入った場合、ロータが局部的に
加熱され、かじり現象ひいては溶着現象が起こるという
ものである。この原因は高クロム鋼がクロム−モリブデ
ン−バナジウム低合金鋼に比べ熱伝導率が悪いことから
異物混入部が局部的に摩擦により加熱される為とされて
いる。
Generally, chromium-molybdenum-vanadium low alloy steel and high chromium steel are used for this type of turbine rotor forgings, and the latter is used when stress is high because of its high temperature strength. However, high chromium steel has problems with bearing properties, and there have been reports of damage to the journal portion. In other words, the turbine rotor is supported by bearings lined with white metal, and is continuously lubricated with oil for lubrication, but foreign matter such as rust that gets into this oil system can cause damage to the rotor journal and bearings. If this occurs, the rotor will be locally heated, resulting in galling and welding. The reason for this is said to be that high chromium steel has poor thermal conductivity compared to chromium-molybdenum-vanadium low alloy steel, so the foreign matter-contaminated area is locally heated by friction.

tこで、この様な損WJ全防止する為、従来、第1図に
示す様に、高クロム鋼製鍛造製のタービンロータ1のジ
ャーナル部2はクロム−モリブデン−バナジウム低合金
鋼製のスリーブ3が焼きばめられ、軸受4に支持されて
いる。この為、軸端にあるカップリング5も必然的に焼
きばめ構造をとっている。なおりツブリング5はキー6
を通してジャーナル部2に固定されている。
In order to completely prevent such loss WJ, conventionally, as shown in Fig. 1, the journal portion 2 of the turbine rotor 1 made of forged high chromium steel is equipped with a sleeve made of chromium-molybdenum-vanadium low alloy steel. 3 is shrink-fitted and supported by a bearing 4. For this reason, the coupling 5 at the shaft end also necessarily has a shrink fit structure. Naori Tsubling 5 is key 6
It is fixed to the journal part 2 through.

〔背景技術の問題点〕[Problems with background technology]

ところで、ロータの回転中には、ロータ自重によるたわ
みや、微小なアラインメントの狂いが生じ、ロータにく
り返し曲げ応力が作用する。特に、スリーブやカップリ
ングがロータに焼きばめられている部分のロータ表面に
は、焼きばめ面圧と、くり返し曲げ応力がロータ回転中
、同時に作用する為、bわゆるフレッティング疲労によ
るき裂がロータに発生する可能性がある。
By the way, during rotation of the rotor, deflection due to the rotor's own weight and slight misalignment occur, and bending stress repeatedly acts on the rotor. In particular, shrink-fit surface pressure and repeated bending stress act simultaneously on the rotor surface where the sleeve or coupling is shrink-fitted to the rotor while the rotor rotates, resulting in so-called fretting fatigue. Cracks may occur in the rotor.

〔発明の目的〕[Purpose of the invention]

本発明は、高クロム合金鋼製のタービンロータのスリー
ブやカップリングを焼きばめた部分にフレッティング疲
労によるき裂が発生することを防止する為に成されたタ
ービンロータを提供することにある。
An object of the present invention is to provide a turbine rotor made of high chromium alloy steel to prevent cracks from occurring due to fretting fatigue in the portion where the sleeve and coupling are shrink-fitted. .

〔発明の概要〕[Summary of the invention]

周知の様に、フレッティングという現象は、互いに接触
する金属同志が微小振巾で相対的に繰り返し運動をする
ことを言い、フレッティングが生じている接触面で繰り
返し摩擦力や外力に起因する繰り返し応力が存在して疲
労損傷が蓄積する状態がフレッティング疲労である。
As is well known, the phenomenon of fretting refers to the repeated relative movement of metal pieces that are in contact with each other with minute amplitudes, and the phenomenon of fretting caused by repeated frictional force or external force on the contact surface where fretting occurs. Fretting fatigue is a condition where stress exists and fatigue damage accumulates.

金属材料のフレッティング疲労耐久限は、通常の平滑材
の疲労耐久限に比べて大巾に低下することが知られてい
る。第2図は平行部が8nφの高クロム合金鋼から成る
試験片を用いて、回転曲げ疲労試験を実施した結果を8
−N曲線で示したものである。図中、Aは、通常の平滑
材の疲労試験結果であり、Bは、フレッティング疲労試
験結果である。後者の疲労耐久限は前者のそれに比べて
約40係に低下している。この様にフレッティング疲労
耐久限が通常の平滑材のそれに比べて大巾に低下するの
は、互いに接触する二種の金属の接触面で発生する剪断
力又は摩擦力が相対すベシの発生している領域と、相対
すベシの発生していない領域の境界で最大となシ、見掛
は上、外力によって発生する応力よりも低応力でき裂が
発生するからである〇 一方、通常の平滑材の疲労耐久限は圧縮残留応力の存在
によシ改良されることは良く知られていて、フレッティ
ング疲労についても同様の効果が期待される。第2図の
Cは、その様な観点から、上記の高クロム合金鋼の試験
片に鋼球によるショットピーニング処理を施こした後、
フレッティング疲労試験を実施した結果のS−N曲線で
ある。フレッティング疲労耐久限はショットピーニング
処理により大巾に改善され、通常の平滑材の疲労耐久限
の約90%にまで回復している。ショットピーニング処
理によって試験片表面に発生した圧縮残留応力がフレッ
ティング疲労耐久限の向上に著しく寄与してしることが
わかる。
It is known that the fretting fatigue durability limit of metal materials is significantly lower than that of ordinary smooth materials. Figure 2 shows the results of a rotating bending fatigue test using a specimen made of high chromium alloy steel with a parallel part of 8nφ.
-N curve. In the figure, A is the fatigue test result of a normal smooth material, and B is the fretting fatigue test result. The fatigue endurance limit of the latter is about 40 times lower than that of the former. The reason why the fretting fatigue durability limit is significantly lower than that of ordinary smooth materials is that the shearing force or frictional force generated at the contact surfaces of two metals that are in contact with each other is opposed. This is because cracks occur at the boundary between the area where the crack is applied and the area where no cracks occur, although the crack appears to be higher than that caused by an external force. It is well known that the fatigue durability limit of smooth materials is improved by the presence of compressive residual stress, and a similar effect is expected for fretting fatigue. From such a point of view, C in Figure 2 shows that after subjecting the above-mentioned high chromium alloy steel test piece to shot peening treatment with a steel ball,
It is an SN curve of the result of carrying out a fretting fatigue test. The fretting fatigue durability limit has been greatly improved by shot peening treatment, and has recovered to about 90% of the fatigue durability limit of ordinary smooth materials. It can be seen that the compressive residual stress generated on the surface of the test piece by the shot peening treatment significantly contributes to improving the fretting fatigue durability limit.

〔発明の実施例〕[Embodiments of the invention]

本発明は上記の様な一連の疲労試験結果にもとづいて成
されたもので以下、実施例を説明する。
The present invention was developed based on the results of a series of fatigue tests as described above, and examples thereof will be described below.

先ず、第1図に示す、スリーブ3とカップリング5のロ
ータ軸方向長さを十分カバーする範囲で、高クロム合金
鋼タービンロータに鋼球によるショットピーニング処理
を施行する。次に、クロム−モリブデン−バナジウム低
合金鋼のスリーブとカップリングft250〜300″
Oまで毎時20゛0の昇温速度で加熱し、3〜10時間
保持したのち、スリーブ、カップリングの順番に高クロ
ム合金鋼タービンロータに焼きばめる。
First, a high chromium alloy steel turbine rotor is subjected to shot peening treatment using steel balls in an area that sufficiently covers the length of the sleeve 3 and coupling 5 in the rotor axial direction as shown in FIG. Next, chromium-molybdenum-vanadium low alloy steel sleeve and coupling ft250~300''
After heating at a temperature increase rate of 200°/hour to 0.05°C and holding for 3 to 10 hours, the sleeve and coupling are shrink-fitted to a high chromium alloy steel turbine rotor in that order.

〔発明の効果〕〔Effect of the invention〕

以上、述べた様に本発明によれば、高クロム合金鋼ター
ビンロータのスリーブとカップリング焼きばめ部分はシ
ョットピーニングにより発生した圧縮残留応力が、ロー
タ回転中の曲げ応力や摩擦力に重畳して実質的にフレッ
ティング疲労耐久限を大巾に向上させ、従来、懸念され
て贋た様なフレッティング疲労によるき裂の発生を防止
することができる。
As described above, according to the present invention, compressive residual stress generated by shot peening is superimposed on bending stress and frictional force during rotor rotation in the sleeve and coupling shrink-fit portion of a high chromium alloy steel turbine rotor. This substantially improves the fretting fatigue durability limit and prevents the occurrence of cracks due to fretting fatigue, which have been a concern in the past.

同、ここでは、高クロムの合金鋼のロータとりロム−モ
リブデン−バナジウム低合金鋼のスリーブ、カップリン
グの1組合せの実施例で説明したが、他の鋼種のロータ
とスリーブ、カップリングの組合亡の場合にも有効であ
る。
Here, an example of a combination of a rotor made of high chromium alloy steel, a sleeve and a coupling made of ROM-molybdenum-vanadium low-alloy steel was explained, but combinations of rotors, sleeves and couplings made of other steel types were explained. It is also effective in the case of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のタービンロータのジャーナル部、カッ
プリング部を示す概略図、第2図は、高クロム合金鋼の
疲労試験結果を示すS−N曲線で、縦軸に使用応力と、
フレッティングがない場合の疲労耐久限応力との割合を
、横軸だ試験片破断繰り返し数を示す。 19.タービンロータ  2・・・ジャーナル部3 ・
スリーブ     49.軸受 5・カップリング部  6・・キー (7317)  代理人 弁理士 則 近 憲 佑 (
ほか1名)第1図 / 第2図 を式゛汐剣心Hq膀ツμしc1交Nf
Fig. 1 is a schematic diagram showing the journal part and coupling part of a conventional turbine rotor, and Fig. 2 is an S-N curve showing the fatigue test results of high chromium alloy steel.
The horizontal axis shows the number of repetitions of specimen failure, which is the ratio to the fatigue endurance limit stress without fretting. 19. Turbine rotor 2... Journal part 3 ・
Sleeve 49. Bearing 5/Coupling part 6...Key (7317) Agent: Patent Attorney Noriyuki Chika (
1 other person) Figure 1/Figure 2 is expressed as ゛Shio Kenshin Hq bladder μ and c1 intersection Nf

Claims (1)

【特許請求の範囲】 1、高クロム訃金鋼製タービンロータのジャーナル部と
カップリング部に鋼球によるショットピーニングを施行
した後、クロム−モリブデン−バナジウム低合金鋼製の
スリーブとカップリングを焼きばめて形成することを特
徴とするタービンロータ。 2、高クロム合金鋼製夕〜ビンロータのジャーナル部と
カップリング部に鋼球によるショットピーニングを施行
した後、クロム−モリブデン−バナジウム低合金鋼製の
スリーブとカップリングを加熱温度250〜300 ’
Oまで、毎時20℃の昇温速度で加熱し、3〜10時間
保持した後、ロータを焼きばめて形成することを特徴と
するタービンロータ。
[Claims] 1. After shot peening the journal part and coupling part of the turbine rotor made of high chromium alloyed steel with steel balls, the sleeve and coupling made of chromium-molybdenum-vanadium low alloy steel are baked. A turbine rotor characterized by being formed by fitting together. 2. After shot peening the journal part and coupling part of the high chromium alloy steel rotor with steel balls, heat the sleeve and coupling made of chromium-molybdenum-vanadium low alloy steel to a temperature of 250 to 300'.
1. A turbine rotor characterized in that the rotor is formed by heating the rotor at a heating rate of 20° C. per hour to a temperature of 20° C. and holding the temperature for 3 to 10 hours, and then shrink-fitting the rotor.
JP14484382A 1982-08-23 1982-08-23 Turbine rotor Pending JPS5934401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14484382A JPS5934401A (en) 1982-08-23 1982-08-23 Turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14484382A JPS5934401A (en) 1982-08-23 1982-08-23 Turbine rotor

Publications (1)

Publication Number Publication Date
JPS5934401A true JPS5934401A (en) 1984-02-24

Family

ID=15371712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14484382A Pending JPS5934401A (en) 1982-08-23 1982-08-23 Turbine rotor

Country Status (1)

Country Link
JP (1) JPS5934401A (en)

Similar Documents

Publication Publication Date Title
JP3351041B2 (en) Rolling bearing
US4566810A (en) Steam turbine rotor shaft
US4602411A (en) Method for fabricating a rotor disc assembly
US4497670A (en) Rotor shaft and manufacturing method thereof
EP0294813B1 (en) Antifriction bearing and alternator incorporating same for use in vehicles
Wulpi Failures of shafts
Shu et al. Experimental study on fretting damage in the interference fit area of high-speed train wheels and axles based on specimen
JPS5934401A (en) Turbine rotor
JPH108136A (en) Machine part and production thereof
Harris et al. On the fatigue life of M50 NiL rolling bearings
CA1136683A (en) Connecting-rod bearing
Kepple et al. Rolling element fatigue and macroresidual stress
JP3123055B2 (en) Rolling member
JPS59115128A (en) Shrink-fitted rotor
Miller et al. Failures of Shafts
JP3610598B2 (en) Method for manufacturing rolling ring bearing ring
Bhat et al. Past performance analysis of HPOTP bearings
CN219345245U (en) High-hardness wear-resistant crankshaft
Day Unisteel testing of aircraft engine bearing steels
JPS61149502A (en) Turbine rotor
JPS5944481B2 (en) steam turbine rotor system
Hampshire The role of materials in the design and application of rolling contact bearings
JPH0138969B2 (en)
JPS59120386A (en) Fixing method of inserting member onto shaft
JPH1162988A (en) Rolling bearing and machinery using rolling bearing