JPS5934135B2 - Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution - Google Patents

Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution

Info

Publication number
JPS5934135B2
JPS5934135B2 JP213881A JP213881A JPS5934135B2 JP S5934135 B2 JPS5934135 B2 JP S5934135B2 JP 213881 A JP213881 A JP 213881A JP 213881 A JP213881 A JP 213881A JP S5934135 B2 JPS5934135 B2 JP S5934135B2
Authority
JP
Japan
Prior art keywords
molybdenum
aqueous solution
oxine
activated carbon
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP213881A
Other languages
Japanese (ja)
Other versions
JPS57118031A (en
Inventor
雄三 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOHOKU KAGAKU KOGYO KK
Original Assignee
JOHOKU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOHOKU KAGAKU KOGYO KK filed Critical JOHOKU KAGAKU KOGYO KK
Priority to JP213881A priority Critical patent/JPS5934135B2/en
Publication of JPS57118031A publication Critical patent/JPS57118031A/en
Publication of JPS5934135B2 publication Critical patent/JPS5934135B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明はモリブデンを含む水溶液から、モリブデンを選
択的に分離、濃縮して回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively separating, concentrating, and recovering molybdenum from an aqueous solution containing molybdenum.

モリブデンは特殊合金の成分、石油製品のイオウ除去を
はじめとする各種触媒あるいは潤滑油の極圧向上剤等広
く使用されている。
Molybdenum is widely used as a component of special alloys, as a catalyst for removing sulfur from petroleum products, and as an extreme pressure improver for lubricating oils.

これらの廃棄物から有価な金属であるモリブデンを回収
することは省資源更に、資源再利用の面から、非常に重
要な問題である。
Recovery of molybdenum, a valuable metal, from these wastes is a very important issue from the viewpoint of resource conservation and resource reuse.

一般的にモリブデンの回収は上記諸物質を酸に溶解した
後、活性炭を用いて吸着回収する方法、アルカリに溶解
して晶析する方法、溶解の後有機溶媒で抽出分離する方
法(開本ら、公開特許53−113792 、53−1
17602 、53−115603.53−11379
4、)あるいはイオン交換樹脂による吸着回収方法等が
見られる。
In general, molybdenum is recovered by dissolving the above substances in acid and then adsorbing and recovering them using activated carbon, by dissolving them in alkali and crystallizing them, or by extracting and separating them with an organic solvent after dissolving them (Kaimoto et al. , Published Patent No. 53-113792, 53-1
17602, 53-115603.53-11379
4) or adsorption recovery methods using ion exchange resins.

しかしながら上記諸方法において例えば活性炭による吸
着法では吸着溶量が小さく、アルカリ晶析分離法、イオ
ン交換法ではモリブデンの分離は困難で他の金属の混合
物が回収されることになり、又有機溶媒による抽出法で
は連続操作が不可能であり、いずれも良法とはいい難い
However, among the above methods, for example, the amount of adsorbed solution is small in the adsorption method using activated carbon, it is difficult to separate molybdenum with the alkaline crystallization separation method and the ion exchange method, and a mixture of other metals is recovered; Continuous operation is not possible with the extraction method, and it is difficult to say that any method is good.

本発明者はかねてより有害重金属の除去ならびに有価金
属の回収に関する研究など行なってきたが、この度水溶
液中のモリブデンをきわめて容易に回収しうる画期的な
手法を発明したものである。
The present inventor has been conducting research on the removal of harmful heavy metals and the recovery of valuable metals for some time, and has now invented an epoch-making method that makes it extremely easy to recover molybdenum from aqueous solutions.

本発明の方法の原理はつぎのとおりきわめて簡単である
The principle of the method of the present invention is extremely simple as follows.

即ち、モリブデンを含有する物質を適当な手段で分解し
、水溶液とする。
That is, a substance containing molybdenum is decomposed by an appropriate means to form an aqueous solution.

この水溶液の水素イオン濃度をpH0,5〜5に調整し
たのち、8−ビトロオキシキノリン(以下オキシンとい
う)を吸着させた粒状又は破砕状活性炭(以後オキシン
炭という)カラムに通す。
After adjusting the hydrogen ion concentration of this aqueous solution to pH 0.5 to 5, it is passed through a column of granular or crushed activated carbon (hereinafter referred to as oxine carbon) adsorbed with 8-vitroxyquinoline (hereinafter referred to as oxine).

モリブデンは定量的にオキシンキレートを生成し活性炭
に吸着する。
Molybdenum quantitatively forms oxine chelate and is adsorbed on activated carbon.

ついで当該オキシン活性炭カラムを水酸化ナトリウム、
あるいはアンモニア水などのアルカリ水溶液で洗浄する
ことによりモリブデンを脱離せしめモリブデン酸ナトリ
ウムあるいはアンモニウム水溶液として回収する。
Then, the oxine activated carbon column was treated with sodium hydroxide,
Alternatively, molybdenum is removed by washing with an alkaline aqueous solution such as ammonia water and recovered as a sodium molybdate or ammonium aqueous solution.

オキシン炭カラムは水洗したのちくりかえし使用するこ
とが可能である。
Oxine charcoal columns can be used repeatedly after being washed with water.

ここで使用するオキシン活性炭はオキシンをエチルアル
コール、メチルアルコールなどの有機溶媒に溶解した溶
液に活性炭を浸漬し乾燥して作ることも出来るが、活性
炭と粉末オキシンとを直接混合して製造する方法(本島
ら、公開特許54−23093)が最も簡単である。
The oxine activated carbon used here can be made by immersing activated carbon in a solution of oxine dissolved in an organic solvent such as ethyl alcohol or methyl alcohol and drying it, but it can also be made by directly mixing activated carbon and powdered oxine ( Motojima et al., published patent application No. 54-23093) is the simplest.

なお、オキシンは通常の活性炭ならばその重量1に対し
0.35程度まで吸着するが本発明の目的には0.1〜
0.2量を吸着させたものが経済的にみても適当である
Note that if ordinary activated carbon is used, oxine adsorbs up to about 0.35% of its weight, but for the purpose of the present invention, it adsorbs up to 0.1 to
From an economic point of view, it is appropriate to adsorb 0.2 of the amount.

水溶液中のモリブデンはpH0,5〜5の範囲できわめ
てよくオキシン炭に吸着する。
Molybdenum in an aqueous solution is very well adsorbed to oxine charcoal within the pH range of 0.5 to 5.

しかしながら強酸性溶液では吸着しているオキシンの脱
離がみられるのでpHを0.8以下にすることはあまり
好ましくない。
However, in a strongly acidic solution, desorption of adsorbed oxins is observed, so it is not very preferable to lower the pH to 0.8 or less.

一方pHが1.5以上では、共存する重金属がオキシン
炭に吸着しモリブデンの吸着を妨げるので、重金属の共
存する場合には適当ではない。
On the other hand, if the pH is 1.5 or higher, the coexisting heavy metals will be adsorbed to the oxine charcoal and will hinder the adsorption of molybdenum, which is not suitable when heavy metals coexist.

このような理由で水溶液のpHはO9&〜1.3に調節
しておくのが最適でありこのpH領域では、他の重金属
イオンの吸着はほとんどない。
For this reason, it is optimal to adjust the pH of the aqueous solution to O9&~1.3, and in this pH range, there is almost no adsorption of other heavy metal ions.

オキシン炭に吸着させたモリブデンはpH8以上のアル
カリ性の水溶液で定量的に脱離することができる。
Molybdenum adsorbed on oxycharcoal can be quantitatively desorbed using an alkaline aqueous solution with a pH of 8 or higher.

この際希薄なアルカリ性水溶液では定量的なモリブデン
の脱離に多量の水溶液を必要としモリブデンを濃縮する
といった目的にそぐわず濃アルカリ溶液を用いるときは
脱離液中のモリブデンの回収に手数を要して不経済とな
る。
In this case, if a dilute alkaline aqueous solution is used, a large amount of aqueous solution is required for quantitative desorption of molybdenum, which is not suitable for the purpose of concentrating molybdenum, and when a concentrated alkaline solution is used, it takes time to recover the molybdenum in the desorbed liquid. It becomes uneconomical.

結局0.5〜INのアルカリ水溶液もしくはアンモニア
水溶液を用いくりかえし使用するのが適当である。
Ultimately, it is appropriate to repeatedly use an alkaline aqueous solution or an ammonia aqueous solution of 0.5 to IN.

モリブデン吸着時の通液最適条件については、用いる活
性炭の粒形、オキシンの吸着量あるいは用いるカラムの
形状によって異ってくるが、粒径24〜42メツシユの
活性炭にその1/10量のオキシン吸着せしめたオキシ
ン炭を用い高さ300mmのカラムを作った場合線速5
00 cm/ h rの速度で通液しオキシン炭1g当
り1001n9までのモリブデンを吸着捕集することが
出来る。
The optimum conditions for liquid passage during molybdenum adsorption vary depending on the particle shape of the activated carbon used, the adsorption amount of oxin, and the shape of the column used, but activated carbon with a particle size of 24 to 42 mesh adsorbs 1/10 of the amount of oxin. When a column with a height of 300 mm is made using oxidized oxine carbon, the linear velocity is 5.
It is possible to adsorb and collect molybdenum up to 1001n9 per gram of oxine coal by passing the liquid at a rate of 0.00 cm/hr.

なお、この際の吸着速度は室温より高温の方が効果的で
あり、60〜80℃で吸着を行なうならよい。
Note that the adsorption rate at this time is more effective at a higher temperature than room temperature, and adsorption may be carried out at a temperature of 60 to 80°C.

通過液の流速を室温の場合の2〜3倍にすることが可能
である。
It is possible to increase the flow rate of the through-liquid by 2 to 3 times that at room temperature.

オキシン炭よりモリブデンを脱離する際のアルカリ溶液
の通液速度は定量的にモリブデンを回収するため当然の
ことながらできるだけ小さい方が好ましく溶液は10〜
15回くりかえし使用するのが経済的である。
The alkaline solution flow rate when desorbing molybdenum from oxine carbon is naturally preferably as low as possible in order to recover molybdenum quantitatively.
It is economical to use it 15 times.

INの水酸化ナトリウムもしくはアンモニア水を用い、
吸着時の1/20の線流速でモリブデンの脱離を行ない
、用いたオキシン炭の溶精の4〜5倍量の水溶液中に定
量的にモリブデンを脱離回収することが出来る。
Using IN sodium hydroxide or ammonia water,
Molybdenum can be desorbed at a linear flow rate of 1/20 of that during adsorption, and molybdenum can be quantitatively desorbed and recovered in an aqueous solution with an amount 4 to 5 times the amount of the oxine charcoal used.

なお、反復使用したこのアルカリ溶液は加温濃縮するこ
とによりモリブデン酸ナトリウム、もしくはアンモニウ
ムの結晶を析出せしめ分離することが出来、母液は適当
量に希釈して再び脱離液に用いる。
By heating and concentrating this repeatedly used alkaline solution, sodium molybdate or ammonium crystals can be precipitated and separated, and the mother liquor is diluted to an appropriate amount and used again as a desorbed solution.

いうまでもなくモリブデンの脱離に水酸化カリウム水溶
液を用いても同様である。
Needless to say, the same effect can be obtained even if an aqueous potassium hydroxide solution is used to remove molybdenum.

以下実施例を掲げて本発明を詳述する。The present invention will be described in detail below with reference to Examples.

実施例 1 24〜48メツシユのヤシ殻破砕活性炭を用い其重量の
1/lOのオキシンを吸着せしめたオキシン炭を調製し
これを内径12.5mm長さ200mmのガラス管に1
00mmの高さに充填しカラムを作った。
Example 1 Oxine charcoal was prepared by adsorbing 1/1O of oxine using 24 to 48 mesh crushed coconut shell activated carbon, and the oxine charcoal was placed in a glass tube with an inner diameter of 12.5 mm and a length of 200 mm.
A column was prepared by packing to a height of 00 mm.

これにモリブデン100ppI11を含みpH1,0の
水溶液を240m1/hrの流速で通液し流出液をフラ
クションコレクターを用い、20dづつ分割して受はモ
リブデンを原子吸光分析して破過点を求めた。
An aqueous solution containing 100 ppl of molybdenum and having a pH of 1.0 was passed through the solution at a flow rate of 240 ml/hr, and the effluent was divided into 20 d portions using a fraction collector, and the breakthrough point was determined by atomic absorption spectroscopy of the molybdenum.

この際の実験装置の概略図1に、破過曲線を図2のAに
示す。
A schematic diagram of the experimental apparatus used in this case is shown in Fig. 1, and a breakthrough curve is shown in Fig. 2A.

図2のAから明らかなように流出液の4.11までモリ
ブデンの流出はみられず、このオキシン炭カラム中に、
500ηのモリブデンが捕集されたこと番示す。
As is clear from A in Figure 2, no molybdenum was observed in the effluent up to 4.11, and no molybdenum was observed in this oxine carbon column.
The number indicates that 500η of molybdenum was collected.

次にこのカラムにIN水酸化ナトリウム水溶液を流速0
.5 ml/mで流し吸着しているモリブデンを脱着し
流出液各5Mに含まれるモリブデンを定量した結果を図
3に示す。
Next, IN sodium hydroxide aqueous solution was added to this column at a flow rate of 0.
.. The adsorbed molybdenum was desorbed by flowing at a rate of 5 ml/m, and the molybdenum contained in each 5M effluent was quantified. The results are shown in FIG.

はぼ25m1までの流出水中にほとんどのモリブデンが
脱離していることがわかる。
It can be seen that most of the molybdenum is desorbed in the outflow water up to 25 m1.

カラムは水洗ののち再び最初と同じ条件でモリブデン水
溶液を通過せしめ、その破過曲線を求めた結果を図2の
Bに示す。
After washing the column with water, the aqueous molybdenum solution was passed through it again under the same conditions as at the beginning, and the breakthrough curve was determined, and the results are shown in FIG. 2B.

多少性能低下はみられるがほとんど同じ吸着性能を示し
ている。
Although there is a slight decrease in performance, they show almost the same adsorption performance.

更に5回この操作をくりかえした場合の破過曲線を図2
のCに示すが本実験結果よりオキシン炭がモリブデンの
吸、脱着に反復使用しうろことが明らかである。
Figure 2 shows the breakthrough curve when this operation is repeated five more times.
As shown in C, it is clear from the results of this experiment that oxine charcoal can be repeatedly used for adsorption and desorption of molybdenum.

実施例 2 8〜32メツシユのヤシ殻破砕活性炭を用いその重量の
15/100のオキシンを吸着せしめたオキシン炭を用
いて直径50朋高さ300mmのカラムを作りオキシン
炭200朋の高さにつめたオキシン炭カラムに50pI
)fitのモリブデンを含むpH0,8の水溶液360
1を121/hrの流速で通過せしめた。
Example 2 A column with a diameter of 50 mm and a height of 300 mm was made using oxine charcoal that had oxine charcoal adsorbed with 15/100 of its weight of oxine using 8 to 32 mesh crushed coconut shell activated carbon and packed to a height of 200 mm. 50 pI on the oxine charcoal column
) fit aqueous solution containing molybdenum at pH 0.8 360
1 at a flow rate of 121/hr.

その後このカラムに吸着したモリブデンはINアンモニ
ア水2.51を用いて流速0.51/hrで脱離した。
Thereafter, the molybdenum adsorbed on this column was desorbed using 2.51 IN ammonia water at a flow rate of 0.51/hr.

回収液中のモリブデン濃度は6.7〜/rnlで約13
0倍濃縮されたことになりその回収率は93%であった
The molybdenum concentration in the recovered liquid is 6.7~/rnl, approximately 13
This meant that the concentration was 0 times, and the recovery rate was 93%.

【図面の簡単な説明】[Brief explanation of drawings]

図1の説明、実施例1で用いた実験装置の概略図、 ■処理液ビン、■処理液原液、■定量ポンプ、■ガラス
カラム、■オキシン炭、■活栓、■フラクションコレク
ター。 図2の説明、オキシン炭充填カラムの反復使用における
オキシン炭の性能曲線、図3の説明、オキシン炭に吸着
したモリブデンの回収量のグラフ。
Explanation of FIG. 1, schematic diagram of the experimental equipment used in Example 1, ■Processing liquid bottle, ■Processing liquid stock solution, ■Meteritizing pump, ■Glass column, ■Oxine charcoal, ■Stopcock, ■Fraction collector. Description of FIG. 2, performance curve of oxine charcoal in repeated use of oxine charcoal-packed column, explanation of FIG. 3, graph of recovery amount of molybdenum adsorbed on oxine charcoal.

Claims (1)

【特許請求の範囲】[Claims] 1 モリブデン含有水溶液を弱酸性状態で8−ヒドロオ
キシキノリンを吸着せしめた活性炭に接触させ水溶液中
のモリブデンを選択的に上記活性炭に吸着させて濃縮し
たのち、当該活性炭をアルカリ性水溶液で洗浄すること
によりモリブデンを水層に移行させモリブデンを回収す
ることを特徴とする、モリブデン含有水溶液からモリブ
デンを分離、濃縮回収方法。
1. By bringing a molybdenum-containing aqueous solution into contact with activated carbon adsorbed with 8-hydroxyquinoline in a weakly acidic state, molybdenum in the aqueous solution is selectively adsorbed onto the activated carbon and concentrated, and then the activated carbon is washed with an alkaline aqueous solution. A method for separating, concentrating and recovering molybdenum from a molybdenum-containing aqueous solution, which is characterized by transferring molybdenum to an aqueous layer and recovering molybdenum.
JP213881A 1981-01-12 1981-01-12 Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution Expired JPS5934135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP213881A JPS5934135B2 (en) 1981-01-12 1981-01-12 Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP213881A JPS5934135B2 (en) 1981-01-12 1981-01-12 Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution

Publications (2)

Publication Number Publication Date
JPS57118031A JPS57118031A (en) 1982-07-22
JPS5934135B2 true JPS5934135B2 (en) 1984-08-20

Family

ID=11520971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP213881A Expired JPS5934135B2 (en) 1981-01-12 1981-01-12 Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution

Country Status (1)

Country Link
JP (1) JPS5934135B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427483B2 (en) * 2009-06-19 2014-02-26 株式会社化研 Concentration, elution recovery method, and system of radiotechnetium as a raw material for radiopharmaceuticals and their labeled compounds
JP5916083B2 (en) * 2011-12-23 2016-05-11 株式会社化研 99mTc recovery device
JP5916082B2 (en) * 2011-12-23 2016-05-11 株式会社化研 99mTc recovery method and 99mTc recovery device

Also Published As

Publication number Publication date
JPS57118031A (en) 1982-07-22

Similar Documents

Publication Publication Date Title
US4874525A (en) Purification of fluid streams containing mercury
CN101898937B (en) Method for adsorbing and recycling phenol in wastewater by polyamine macroporous resin
CN102553526B (en) Method for removing mercury ions from water by using silver-modified magnetic carbon nanotube and regeneration method
US3970737A (en) Metal, particularly gold, recovery from adsorbed cyanide complexes
JPH0125818B2 (en)
JP2560253B2 (en) Method for producing and regenerating ion exchanger for cesium separation
CN109364659A (en) The purification of thallium and recovery method and device in a kind of flue gas during smelting
US2478652A (en) Process for the recovery of precious metal values
JP2008029989A (en) Method for separating and recovering boron form boron-containing water
JPS5934135B2 (en) Molybdenum separation and concentration recovery method from molybdenum-containing aqueous solution
JP3303066B2 (en) How to purify scandium
CN106390963B (en) A kind of composite bentonite material desorption process for regenerating adsorbing ammonia nitrogen waste water
US3862292A (en) Recovery of rhenium
JP4143707B2 (en) Method for producing high purity sodium chloride crystals
JP4696333B2 (en) Boron recovery method
CN102516340A (en) Method for separating and purifying hydroxycobalamin by using D150 macroporous resin
JP2001104807A (en) Method for recovering boron
JP2002126543A (en) Processing method of ion-containing water
JPH01167203A (en) Collection of iodine in gas
TWI652227B (en) Method for recycling metal ions in arsenic-containing denitrification catalyst
RU2048560C1 (en) Method for extraction of molybdenum from tungsten-containing solutions
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
CN1011137B (en) Removal of molybdenum from sodium tungstate solution by active carbon adsorption process
JPS5839898B2 (en) Desorption method of uranium and strontium
US1893744A (en) Treating brines