JPS5934130B2 - Manufacturing method of silicon tetrafluoride - Google Patents

Manufacturing method of silicon tetrafluoride

Info

Publication number
JPS5934130B2
JPS5934130B2 JP8910480A JP8910480A JPS5934130B2 JP S5934130 B2 JPS5934130 B2 JP S5934130B2 JP 8910480 A JP8910480 A JP 8910480A JP 8910480 A JP8910480 A JP 8910480A JP S5934130 B2 JPS5934130 B2 JP S5934130B2
Authority
JP
Japan
Prior art keywords
reaction
sulfuric acid
silicon oxide
hydrogen fluoride
silicon tetrafluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8910480A
Other languages
Japanese (ja)
Other versions
JPS5717414A (en
Inventor
豊三 大塚
直道 木次
輝雄 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP8910480A priority Critical patent/JPS5934130B2/en
Priority to GB8119767A priority patent/GB2079262B/en
Priority to FR8112956A priority patent/FR2488238B1/en
Priority to DE3125989A priority patent/DE3125989C2/en
Priority to US06/279,614 priority patent/US4382071A/en
Priority to IT22716/81A priority patent/IT1137189B/en
Publication of JPS5717414A publication Critical patent/JPS5717414A/en
Publication of JPS5934130B2 publication Critical patent/JPS5934130B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は電子材料、太陽光発電素子等として期待されて
いるアモルファスシリコン製造原料として有用な高純度
四弗化珪素の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-purity silicon tetrafluoride, which is useful as a raw material for producing amorphous silicon, which is expected to be used as electronic materials, solar power generation devices, and the like.

四弗化珪素は一般に弗酸と酸化珪素の反応で下記反応式
(1)、 SiO□+4)IP−+siF’4+2H20・・・(
1)にしたがって生成するが、液体としての水が存在す
る場合は上記の反応(2)、 3SiF4+2H20→2H2S t Fa + S
t 02・・・(2)により珪弗化水素酸とゲル状の酸
化珪素が生成し、このゲル状酸化珪素により導管の閉塞
が生じるなど四弗化珪素の工業的製造には適さない。
Silicon tetrafluoride is generally produced by the reaction of hydrofluoric acid and silicon oxide using the following reaction formula (1), SiO□+4)IP-+siF'4+2H20...(
1), but in the presence of liquid water, the above reaction (2), 3SiF4+2H20→2H2S t Fa + S
t 02 (2) produces hydrosilicic fluoride acid and gel-like silicon oxide, and this gel-like silicon oxide causes clogging of conduits, making it unsuitable for industrial production of silicon tetrafluoride.

そこで弗化水素ガスと珪砂または石英破砕片等との反応
による四弗化珪素の製造法が知られており、例えはクオ
ルツ、クリストバライト、トリジマイト等の結晶性の酸
化珪素の充填層に気液相混在状態の水と弗化水素ガスを
同時に導入し80°C〜110℃の範囲に加熱し、四弗
化珪素、弗化水素、水の混在した反応生成物を得る方法
が提案されている(米国特許第3,674,431号明
細書)。
Therefore, there is a known method for producing silicon tetrafluoride by reacting hydrogen fluoride gas with silica sand or crushed quartz pieces. A method has been proposed in which a mixture of water and hydrogen fluoride gas is introduced simultaneously and heated to a temperature range of 80°C to 110°C to obtain a reaction product containing a mixture of silicon tetrafluoride, hydrogen fluoride, and water ( (U.S. Pat. No. 3,674,431).

しかしこの方法では気液相混在状態の水と弗化水素ガス
の同時導入が必要であり、操作が煩雑であるとともに8
0〜110°Cの範囲に加熱する必要があるなど好まし
いものではない。
However, this method requires the simultaneous introduction of water and hydrogen fluoride gas in a gas-liquid phase mixture, which makes the operation complicated and
This is not preferable as it requires heating to a temperature in the range of 0 to 110°C.

さらにグリセロール、エチレングリコール等を媒体とし
、これに結晶性シリカ粉末を懸濁し弗化水素ガスを導入
反応させて高純度の四弗化珪素を得る方法が知られてい
るが(米国特許第2,861,872号明細書)、反応
温度は120〜177℃とかなり高く、しかも該媒体の
揮発損失もあり実用性が低いという欠点がある。
Furthermore, a method is known in which highly pure silicon tetrafluoride is obtained by suspending crystalline silica powder in glycerol, ethylene glycol, etc. as a medium, introducing hydrogen fluoride gas, and causing a reaction (U.S. Patent No. 2, No. 861,872), the reaction temperature is quite high at 120 to 177°C, and there is also volatilization loss of the medium, making it impractical.

また米国特許第2,833,628号明細書には、20
〜28係の珪弗化水素酸を酸化珪素を含む硫酸中に添加
して四弗化珪素を得る方法が示されているが、この場合
硫酸中への四弗化珪素の溶存量は第2図に示すように硫
酸濃度65係以下では急増するので四弗化珪素の回収効
率を上げるには少なくとも硫酸濃度を65係以上とする
ことが望ましい。
Also, in U.S. Patent No. 2,833,628, 20
A method of obtaining silicon tetrafluoride by adding hydrofluorosilicic acid of Section 28 to sulfuric acid containing silicon oxide is shown, but in this case, the amount of silicon tetrafluoride dissolved in the sulfuric acid is As shown in the figure, when the sulfuric acid concentration is 65 parts or less, the concentration increases rapidly, so in order to increase the recovery efficiency of silicon tetrafluoride, it is desirable to make the sulfuric acid concentration at least 65 parts or more.

このような珪弗化水素酸を原料とする場合には水の持込
が多量であり硫酸の使用量が犬となると同時に装置容積
も大きくなり好ましいものではない。
When such hydrofluorosilicic acid is used as a raw material, a large amount of water is brought in, the amount of sulfuric acid used becomes large, and the volume of the apparatus becomes large, which is not preferable.

本発明は上記従来技術の欠点を解消した四弗化珪素の製
造法を提供することを目的とする。
An object of the present invention is to provide a method for producing silicon tetrafluoride that eliminates the drawbacks of the prior art described above.

この目的は珪素原料として特に非晶質の酸化珪素を用い
てこれを硫酸中に懸濁分散させ、得られた系に弗化水素
ガスを導入して反応させることにより実質的に四弗化珪
素のみから成る反応生成物を効率よく取得することによ
って達成することができる。
The purpose of this is to use amorphous silicon oxide as a silicon raw material, suspend and disperse it in sulfuric acid, and introduce hydrogen fluoride gas into the resulting system to cause a reaction, thereby substantially converting silicon tetrafluoride. This can be achieved by efficiently obtaining a reaction product consisting of only

本発明においては弗化水素ガスを用いるので反応系への
導入は容易であり、また原料として用いられる非晶質の
酸化珪素は、結晶性の酸化珪素、例えば天然珪砂または
水晶等に比較して極めて反応速度が速く、シかも完全に
化学量論的に反応が進行して完結する、たソし、硫酸中
に酸化珪素を均一に分散させるためには酸化珪素の粒度
は微細であることが必要で、一般には300μ以下、好
ましくは150μ以下とする。
In the present invention, since hydrogen fluoride gas is used, it is easy to introduce it into the reaction system, and the amorphous silicon oxide used as a raw material is better than crystalline silicon oxide, such as natural silica sand or quartz. The reaction rate is extremely fast, and the reaction proceeds completely stoichiometrically to completion.However, in order to uniformly disperse silicon oxide in sulfuric acid, the particle size of silicon oxide must be fine. Generally, it is 300μ or less, preferably 150μ or less.

結晶性酸化珪素の場合、微粉砕すると弗化水素ガス吹込
時に液表面に酸化珪素を吸着し泡膜が強化された微細な
泡沫群が発生し、攪拌によってもなかなか破壊されない
累積泡となり反応操作が非常に困難となるのに対し、非
晶質酸化珪素の場合は、泡沫群が発生し難く、かりに発
生しても泡膜表面に吸着した酸化珪素は泡膜を構成する
硫酸中に溶解した弗化水素と容易に反応し四弗化珪素と
して泡表面から除去されるために破泡し、累積泡として
生長しないので有利である。
In the case of crystalline silicon oxide, when it is finely pulverized, silicon oxide is adsorbed to the liquid surface when hydrogen fluoride gas is blown into the liquid, creating a group of fine bubbles with a strengthened bubble film, resulting in cumulative bubbles that are difficult to break down even with stirring, making it difficult to perform the reaction. On the other hand, in the case of amorphous silicon oxide, it is difficult to generate bubbles, and even if bubbles do occur, the silicon oxide adsorbed on the surface of the bubble film is replaced by the fluorine dissolved in the sulfuric acid that makes up the bubble film. This is advantageous because it easily reacts with hydrogen hydride and is removed from the foam surface as silicon tetrafluoride, which causes the foam to break and does not grow as an accumulated foam.

珪砂の場合は、第1図に示すように硫酸濃度が85係以
上では反応温度を80℃以上に維持しても殆んど反応が
進まないこと、硫酸濃度80係では50℃以下の温度で
は殆んど反応が進まないこ、:、75%以下の硫酸濃度
では室温で反応が進むが反応初期に比べて反応の進行と
共に漸次反応速度が低下することなどの欠点があり、そ
の他の結晶性酸化珪素の場合も同様の結果となった。
In the case of silica sand, as shown in Figure 1, if the sulfuric acid concentration is 85 parts or higher, the reaction will hardly proceed even if the reaction temperature is maintained at 80 degrees Celsius or higher, and if the sulfuric acid concentration is 80 parts or more, the reaction will hardly proceed at temperatures below 50 degrees Celsius. At sulfuric acid concentrations of 75% or less, the reaction proceeds at room temperature, but there are disadvantages such as the reaction rate gradually decreasing as the reaction progresses compared to the initial stage of the reaction. Similar results were obtained for silicon oxide.

これに対し、本発明によると、例えば珪弗化ソーダを原
料とする氷晶石製造工程で副生ずる酸化珪素の場合、硫
酸濃度の如何にか\わらず室温で激しく反応して酸化珪
素が消失するまで完全に反応し、導入した弗化水素は殆
んど定量的に四弗化珪素に転化することができ、その他
の非晶質酸化珪素を用いた場合にもは\゛同様あるとい
う利点がある。
In contrast, according to the present invention, for example, in the case of silicon oxide, which is produced as a by-product in the cryolite production process using sodium silicofluoride as a raw material, the silicon oxide reacts violently at room temperature regardless of the sulfuric acid concentration, and the silicon oxide disappears. The introduced hydrogen fluoride can be almost quantitatively converted into silicon tetrafluoride, and the same advantage exists when using other amorphous silicon oxides. There is.

なお第1図の各曲線は下記の条件で行なわれた結果を示
すものである。
Note that each curve in FIG. 1 shows the results obtained under the following conditions.

(横軸は5i02に対する添加HF当量係、縦軸はSi
O□に対する発生SiF4当量%)。
(The horizontal axis is the ratio of added HF equivalent to 5i02, the vertical axis is Si
SiF4 equivalent% generated relative to O□).

一方、酸化珪素と弗化水素との反応は(1)式に示すよ
うに水を生成するが、本発明の方法は硫酸を媒体とする
ため、反応で生成した水は媒体に吸収され、実質的には
四弗化珪素のみが反応生成物として取り出され、水分は
その時点での硫酸濃度に平衡する蒸気圧相当分であり、
極めて小量で通常の温度では露点に達することはない。
On the other hand, the reaction between silicon oxide and hydrogen fluoride produces water as shown in equation (1), but since the method of the present invention uses sulfuric acid as a medium, the water produced in the reaction is absorbed by the medium and substantially Specifically, only silicon tetrafluoride is extracted as a reaction product, and the water is equivalent to the vapor pressure that is in equilibrium with the sulfuric acid concentration at that time.
Very small amounts do not reach the dew point at normal temperatures.

したがって、(2)式による酸化珪素の生成によるスケ
ーリング等の問題は全く無視できる。
Therefore, problems such as scaling due to the formation of silicon oxide according to equation (2) can be completely ignored.

また反応で生成したH2Oは硫酸中に吸収され、H2S
O2濃度は希釈されると共に生成した四弗化珪素の一部
は、硫酸中に溶解するが硫酸中のSiF4の溶解度は第
2図に示すようにH2SO4濃温65%以下で急激に増
加することが知られた。
In addition, H2O generated in the reaction is absorbed into sulfuric acid, and H2S
As the O2 concentration is diluted, a part of the produced silicon tetrafluoride dissolves in sulfuric acid, but as shown in Figure 2, the solubility of SiF4 in sulfuric acid increases rapidly at a H2SO4 concentration of 65% or less. was known.

第2図は反応残液中のSiF4溶解量(40〜60℃)
を示すもので横軸は反応残液中のH2SO4濃度(係)
、縦軸は5IF4(Fとして、係)である。
Figure 2 shows the amount of SiF4 dissolved in the reaction residual liquid (40-60℃)
The horizontal axis is the H2SO4 concentration (related) in the reaction residual liquid.
, the vertical axis is 5IF4 (as F).

このため、四弗化珪素の回収効率を上げるためには反応
の全過程においてH2SO4濃度を65係以上、好まし
くは70係以上に維持することが必要である。
Therefore, in order to increase the recovery efficiency of silicon tetrafluoride, it is necessary to maintain the H2SO4 concentration at 65 parts or more, preferably 70 parts or more during the entire reaction process.

したがって、この反応系には持込の水の量が可及的に少
ないことが望ましく、この意味でも弗化水素ガスの使用
が好ましい。
Therefore, it is desirable that the amount of water brought into the reaction system be as small as possible, and in this sense, it is also preferable to use hydrogen fluoride gas.

さらに硫酸中においては弗化水素ガスの溶解は良好であ
り、しかも反応性に優れた非晶質酸化珪素を用いるので
未反応弗化水素が反応生成物中へ混入する量は極めて少
なく、弗化水素ガスの四弗化珪素への転化率ははx1o
O%に達するとともに生成物の精製負荷も甚だ小さい。
Furthermore, hydrogen fluoride gas dissolves well in sulfuric acid, and since amorphous silicon oxide with excellent reactivity is used, the amount of unreacted hydrogen fluoride mixed into the reaction product is extremely small. The conversion rate of hydrogen gas to silicon tetrafluoride is x1o
0% and the product purification load is extremely small.

本発明における反応条件は、常温、常圧において充分進
行しうるが、弗化水素ガスの添加と同時に反応熱により
液温か上昇する。
The reaction conditions in the present invention are that the reaction can proceed satisfactorily at normal temperature and normal pressure, but at the same time as hydrogen fluoride gas is added, the temperature of the liquid increases due to the heat of reaction.

本発明で用いる天然または人工の非晶質酸化珪素として
は、例えば活性白土、オパール、珪藻土等の天然物、珪
酸ゲル粉末、化学反応の過程で副生ずる微粉状酸化珪素
、ガラス粉末等の人工物が挙げられる。
Examples of the natural or artificial amorphous silicon oxide used in the present invention include natural products such as activated clay, opal, and diatomaceous earth, silicic acid gel powder, finely powdered silicon oxide produced as a by-product in the process of chemical reactions, and artificial products such as glass powder. can be mentioned.

酸化珪素に対する硫酸媒体の添加比(重量比9は分散状
態、反応効率からみて3〜10が望ましい。
Addition ratio of sulfuric acid medium to silicon oxide (weight ratio 9 is preferably 3 to 10 from the viewpoint of dispersion state and reaction efficiency.

また反応終了後の硫酸中には1〜2係のF分が含まれる
が、硫酸を循環使用する必要があればこれを所要濃度ま
で濃縮する過程で揮発回収が可能であり、あるいは湿式
法リン酸製造にそのま\使用することも可能である。
In addition, the sulfuric acid after the completion of the reaction contains 1 to 2 fractions of F, but if it is necessary to reuse the sulfuric acid, it can be recovered by volatilization during the process of concentrating it to the required concentration, or it can be recovered by evaporation in the process of concentrating it to the required concentration, or it can be collected by wet method. It can also be used as is for acid production.

以下本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例 1 Na25iFaを原料とする氷晶石製造工程で副生ずる
微粉末酸化珪素(SiO290%、乾燥基準)をよく乾
燥し、その50gを99係H2S02280g中に添加
混合し、次いでテフロン製反応容器中において弗化水素
ガスを16g/時の割合で供給しながら室温(18°C
)下で反応させた。
Example 1 Finely powdered silicon oxide (SiO2 90%, dry basis) produced as a by-product in the cryolite production process using Na25iFa as a raw material was thoroughly dried, 50 g of it was added and mixed into 280 g of 99% H2S02, and then placed in a Teflon reaction vessel. at room temperature (18°C) while supplying hydrogen fluoride gas at a rate of 16g/hour.
).

反応時の圧力は、2〜4 m H,gの加圧状態であり
弗化水素ガスの添加と同時に反応熱により液温は上昇し
最高55°Cに達した。
The pressure during the reaction was 2 to 4 m H.g, and at the same time as hydrogen fluoride gas was added, the liquid temperature rose due to the reaction heat and reached a maximum of 55°C.

発生したガスは99係濃硫酸中を通して脱湿し一130
℃に冷却し粉末状SiF4を回収した。
The generated gas is dehumidified by passing it through 99% concentrated sulfuric acid.
It was cooled to .degree. C. and powdered SiF4 was recovered.

添加した堂化水素ガス量は60gであり、回収したSi
F4は77.5.9であった。
The amount of hydrogen gas added was 60g, and the recovered Si
F4 was 77.5.9.

またこのガスの赤外吸収パターンからSiF4の確認を
行なった。
Furthermore, SiF4 was confirmed from the infrared absorption pattern of this gas.

反応終了時の媒体硫酸濃度は88.5%であり、残留F
濃度は0.1%であった。
The medium sulfuric acid concentration at the end of the reaction was 88.5%, and the residual F
The concentration was 0.1%.

生成ガス中の不純物の分析値は下記の通りであった。The analytical values for impurities in the produced gas were as follows.

802 20ppm 804 401l PO40,3// B O,31/ As O,I ll Fe O,5ppm Ni O,1// 実施例 2 60メツシュ全通の粒径に乾燥粉砕した活性白土(可溶
性5iO280係;全SiO□89%)50gに対し8
0係H2S04280gを混合してスラリーとし、この
スラリー中に弗化水素ガスち16g/時の速度で導入し
た。
802 20ppm 804 401l PO40,3// B O,31/ As O,Ill Fe O,5ppm Ni O,1// Example 2 Activated clay dried and crushed to a particle size of 60 mesh (soluble 5iO280); Total SiO□89%) 8 for 50g
4,280 g of 0% H2S0 were mixed to form a slurry, and hydrogen fluoride gas was introduced into the slurry at a rate of 16 g/hour.

液温20°C1圧力O〜2mH,9で弗化水素ガスの添
加と同時に液温の上昇が始まり最高53°Cに達した。
When the liquid temperature was 20°C and the pressure was O~2mH, 9, the liquid temperature started to rise simultaneously with the addition of hydrogen fluoride gas and reached a maximum of 53°C.

発生したガスは99係硫酸で洗浄後SiF4を回収した
The generated gas was washed with 99% sulfuric acid and SiF4 was recovered.

弗化水素添加量56gに対し生成したSiF4は71g
であり、反応終了時の媒体硫酸濃度は73.2%、F濃
度は0.4係であった。
71g of SiF4 was generated for 56g of hydrogen fluoride added.
The medium sulfuric acid concentration at the end of the reaction was 73.2%, and the F concentration was 0.4%.

【図面の簡単な説明】[Brief explanation of drawings]

添付の図面のうち、第1図は非晶質酸化珪素および結晶
質酸化珪素を原料として用いた場合の四弗化珪素の発生
量を硫酸濃度をパラメータとして示すグラフ、第2図は
反応残液中の硫酸濃度とS i F4の溶解量(40〜
60°C)との関係を示すグラフである。
Of the attached drawings, Figure 1 is a graph showing the amount of silicon tetrafluoride generated using sulfuric acid concentration as a parameter when amorphous silicon oxide and crystalline silicon oxide are used as raw materials, and Figure 2 is a graph showing the reaction residual liquid. The concentration of sulfuric acid in the solution and the amount of dissolved SiF4 (40~
60°C).

Claims (1)

【特許請求の範囲】[Claims] 1 天然または人工の非晶質酸化珪素を硫酸中に懸濁分
散させた系に弗化水素ガスを導入することを特徴とする
四弗化珪素の製造法。
1. A method for producing silicon tetrafluoride, which comprises introducing hydrogen fluoride gas into a system in which natural or artificial amorphous silicon oxide is suspended and dispersed in sulfuric acid.
JP8910480A 1980-07-02 1980-07-02 Manufacturing method of silicon tetrafluoride Expired JPS5934130B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8910480A JPS5934130B2 (en) 1980-07-02 1980-07-02 Manufacturing method of silicon tetrafluoride
GB8119767A GB2079262B (en) 1980-07-02 1981-06-26 Process of preparing silicon tetrafluoride by using hydrogen fluoride gas
FR8112956A FR2488238B1 (en) 1980-07-02 1981-07-01 PROCESS FOR THE PREPARATION OF SILICON TETRAFLUORIDE USING HYDROGEN GAS FLUORIDE
DE3125989A DE3125989C2 (en) 1980-07-02 1981-07-01 Process for the production of silicon tetrafluoride using gaseous hydrogen fluoride
US06/279,614 US4382071A (en) 1980-07-02 1981-07-01 Process of preparing silicon tetrafluoride by using hydrogen fluoride gas
IT22716/81A IT1137189B (en) 1980-07-02 1981-07-02 SILICON TETRAFLUORIDE PREPARATION PROCESS USING GASEOUS FLUORIDIC ACID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8910480A JPS5934130B2 (en) 1980-07-02 1980-07-02 Manufacturing method of silicon tetrafluoride

Publications (2)

Publication Number Publication Date
JPS5717414A JPS5717414A (en) 1982-01-29
JPS5934130B2 true JPS5934130B2 (en) 1984-08-20

Family

ID=13961574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8910480A Expired JPS5934130B2 (en) 1980-07-02 1980-07-02 Manufacturing method of silicon tetrafluoride

Country Status (1)

Country Link
JP (1) JPS5934130B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014451B2 (en) 2001-09-11 2007-11-28 セントラル硝子株式会社 Method for producing silicon tetrafluoride
DE102007013533A1 (en) 2006-12-28 2008-07-03 Ultrasonic Systems Gmbh Method and apparatus for dissolving gases in liquids comprises sonochemical dispersion of oxygen or ozone in liquid to kill, bacteria and viruses by targeted oxidation

Also Published As

Publication number Publication date
JPS5717414A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
GB2079262A (en) Process of preparing silicon tetrafluoride by using hydrogen fluoride gas
US20080223078A1 (en) Process For the Production of Monoliths by Means of the Invert Sol-Gel Process
CN104925817B (en) The preparation method of nanometer grade silica
CN101544374B (en) Method for preparing silicon tetrafluoride
CN102001666B (en) Method for producing high-purity silicon tetrafluoride in wet processing of phosphate ore
CN101795964A (en) Produce the method for polysilicon
US2588786A (en) Process for producing essentially silicon-free hydrofluoric acid from hydrofluosilicic acid
US6217840B1 (en) Production of fumed silica
US5888468A (en) Method for producing silicon tetrafluoride from uranium tetrafluoride
US2833628A (en) Manufacture of silicon tetrafluoride
JPS5826022A (en) Purifying method for gaseous silicon tetrafluoride
JPS5934130B2 (en) Manufacturing method of silicon tetrafluoride
CN102134078A (en) Method for closed-loop production of silicon tetrafluoride by utilizing sulfuric acid and quartz sand
US3674431A (en) Generation of silicon tetrafluoride
US2886414A (en) Process for producing finely-divided silica
US3764658A (en) Production of fluosilicic acid
US3178261A (en) Production of potassium fluoborate
RU2356834C2 (en) Method of obtaining polycrystalline silicon in form of spherical granules
JP2009143742A (en) Method for producing synthetic silica powder
JPH0692247B2 (en) Method for producing magnesium silicofluoride
CN115353113A (en) Clean production method of silicon product
JPH0336764B2 (en)
US3218127A (en) Process of producing hydrogen fluoride in a two-stage procedure and effecting a rapid evolution of the hydrogen fluoride by sweeping the second stage with an inert gas
JPH0450132A (en) Purification of silica-based raw material
RU2454366C2 (en) Method of producing silicon tetrafluoride and apparatus for realising said method