JPS5933512B2 - Liquid honing method - Google Patents

Liquid honing method

Info

Publication number
JPS5933512B2
JPS5933512B2 JP17881080A JP17881080A JPS5933512B2 JP S5933512 B2 JPS5933512 B2 JP S5933512B2 JP 17881080 A JP17881080 A JP 17881080A JP 17881080 A JP17881080 A JP 17881080A JP S5933512 B2 JPS5933512 B2 JP S5933512B2
Authority
JP
Japan
Prior art keywords
steel plate
liquid honing
nozzle
pressure water
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17881080A
Other languages
Japanese (ja)
Other versions
JPS57102755A (en
Inventor
脩三 福田
博明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP17881080A priority Critical patent/JPS5933512B2/en
Publication of JPS57102755A publication Critical patent/JPS57102755A/en
Publication of JPS5933512B2 publication Critical patent/JPS5933512B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、液体ホーニングにより鋼板の脱スケールなど
の研削処理をする場合に、研削効率を増大させる方法に
関するもので、研削に必要な動力の低減(高圧水のポン
プ動力)を図ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing grinding efficiency when performing grinding processes such as descaling of steel plates by liquid honing. ).

従来、鋼板表面などのスケールを除去する脱スケール方
法に、砂鉄スラリーなどの研削材を高圧流体により加速
して行ういわゆる液体ホーニング方法がある。
Conventionally, as a descaling method for removing scale from the surface of a steel plate, there is a so-called liquid honing method in which an abrasive material such as iron sand slurry is accelerated with a high-pressure fluid.

この液体ホーニング方法には研削材と高圧流体の混合方
式に大別して二つの方式がある。
There are two types of liquid honing methods that can be roughly divided into two methods: a method of mixing an abrasive material and a high-pressure fluid.

一つは内部混合方式であり、他の一つは外部混合方式で
ある。
One is an internal mixing method and the other is an external mixing method.

一般的に内部混合方式は、研削材が高速でノズル内部を
流れることから、ノズルの摩耗の問題が避けられない。
Generally, in the internal mixing method, the abrasive material flows inside the nozzle at high speed, so the problem of nozzle wear is unavoidable.

一方、外部混合方式は、ノズル外部で研削材の混合を行
うので、当然摩耗の問題はない。
On the other hand, in the external mixing method, since the abrasive is mixed outside the nozzle, there is naturally no problem with wear.

また、研削材によるノズルの目詰りの問題もなく、内部
混合方式に比較してすぐれた方式であるといえる。
Furthermore, there is no problem of nozzle clogging due to abrasive material, and it can be said that this method is superior to the internal mixing method.

第1図a、bは従来の外部混合方式による液体ホーニン
グ方法に用いるノズルを示す説明図であり、ノズルの構
造は高圧水の噴射用の部分イと砂鉄スラリー供給部分口
の二つから成っており、高圧水はb図に示す如く円筒状
の噴射用部分イに円心状に配置された複数(図では6個
)の開孔イ′力・ら1点に収束するように噴射される。
Figures 1a and 1b are explanatory diagrams showing a nozzle used in a conventional liquid honing method using an external mixing method. As shown in Figure b, high-pressure water is injected into a cylindrical injection part A through a plurality of holes (six holes in the figure) arranged in a circular manner so as to converge at one point. .

砂鉄スラリー流はスラリー流出孔ばから流出し、前記の
6本の高圧水ビームに包まれるような状態で流れて、高
圧水ビームの焦点において加速される。
The iron sand slurry flow flows out from the slurry outlet hole, flows in such a state that it is surrounded by the six high-pressure water beams, and is accelerated at the focal point of the high-pressure water beams.

そこで、被研削処理材である鋼板3を前記の如く高圧水
ビームの焦点近傍あるいは焦点以後の位置に配置すれば
、高圧水により加速された砂鉄粒が高速鋼板3に衝突し
、研削を行うことができる。
Therefore, if the steel plate 3, which is the material to be ground, is placed near or after the focus of the high-pressure water beam as described above, the iron sand grains accelerated by the high-pressure water will collide with the high-speed steel plate 3 and perform grinding. I can do it.

又、従来の外部混合方式の他の例として、先に発明者ら
のグループが開発して特公昭55−3103号をもって
提案した方法がある。
Further, as another example of the conventional external mixing method, there is a method previously developed by a group of the inventors and proposed in Japanese Patent Publication No. 3103/1983.

この方法は砂鉄など研削材のスラリー流をフラットスプ
レーノズルにより加速するものである。
In this method, a slurry flow of abrasive material such as iron sand is accelerated using a flat spray nozzle.

この方法は、前記の複数高圧水ビームによる方法などの
他の方法に比べ、研削効率やノズルの目詰りの問題など
、作業性の点ではすぐれている。
This method is superior to other methods, such as the method using multiple high-pressure water beams, in terms of workability, such as grinding efficiency and the problem of nozzle clogging.

しかしながら、他の方法に比較して研削効率が高℃フラ
ットスプレ一方式にも以下に述べるような問題がある。
However, the flat spray method, which has a higher grinding efficiency than other methods, also has the following problems.

それは、鋼板などの被研削処理材の空間的配置の仕方に
よって研削効率特性が異なり、垂直方向の場合の研削効
率は水平方向の場合よりも低くなる(但し、いずれの場
合も高圧流体の噴射方向は鋼板に対して上方から下向き
に設定されている)。
Grinding efficiency characteristics differ depending on the spatial arrangement of the material to be ground, such as a steel plate, and the grinding efficiency in the vertical direction is lower than in the horizontal direction (however, in both cases, the direction in which the high-pressure fluid is ejected is is set downward from above with respect to the steel plate).

第2図a、bは、特公昭55−3103号の方法の一例
を示した説明図である、1はフラットスプレーノズル、
2は研削材供給配管、3は被研削処理材の鋼板である。
Figures 2a and 2b are explanatory diagrams showing an example of the method disclosed in Japanese Patent Publication No. 55-3103. 1 is a flat spray nozzle;
2 is an abrasive supply pipe, and 3 is a steel plate as a material to be ground.

a図の鋼板3の搬送方向は垂直方向であって、フラット
スプレーノズル1の噴射角θは鋼板3の搬送方向(垂直
方向)と水平に交わる面を0とした場合にθ〉0となる
ように設定されており、またb図の鋼板3の搬送方向は
水平方向であって、フラットスプレーノズル2の噴射方
向は図の如く上方から下向きに設定されている。
The conveyance direction of the steel plate 3 in figure a is a vertical direction, and the spray angle θ of the flat spray nozzle 1 is such that θ>0, where the plane that intersects horizontally with the conveyance direction (vertical direction) of the steel plate 3 is set to 0. The conveying direction of the steel plate 3 in Figure b is horizontal, and the spraying direction of the flat spray nozzle 2 is set downward from above as shown in the figure.

このような鋼板3の空間配置の場合の研削特性即ち完全
脱スケールが行われる搬送速度は次の如くである。
In the case of such a spatial arrangement of the steel plate 3, the grinding characteristics, that is, the conveyance speed at which complete descaling is performed, are as follows.

(1)高圧水用ノズル:フラットスプレー型(2)噴射
圧カニ 20 o1y/crAG(3)噴射水量:30
J/mη (4)砂鉄スラリー流量:251/mvL(5)スラリ
ー濃度ニア0% (6)完全な脱スケール状態の熱延板送行速度:垂直方
向の搬送の場合は 20m/mm 水平方向の搬送の場合は 30m/mm 上記の搬送塵の違いで示される研削特性の違いは次に述
べる理由によるものと考えられる。
(1) High pressure water nozzle: Flat spray type (2) Injection pressure crab 20 o1y/crAG (3) Injection water amount: 30
J/mη (4) Iron sand slurry flow rate: 251/mvL (5) Slurry concentration near 0% (6) Hot-rolled plate feeding speed in complete descaling state: 20 m/mm for vertical conveyance, horizontal conveyance In the case of 30 m/mm, the difference in grinding characteristics shown by the difference in the amount of transported dust mentioned above is considered to be due to the following reasons.

先づ、a図の場合、フラットスプレーノズル1の噴射方
向が上方から下方への向きに設定されている場合を考え
ると、鋼板3が垂直方向に搬送されれば高圧水および高
圧水に加速された砂鉄スラリー流が鋼板3に衝突した後
、衝突部から下方へ流れ落ちる。
First, in the case of figure a, considering the case where the spray direction of the flat spray nozzle 1 is set from above to below, if the steel plate 3 is conveyed in the vertical direction, it will be accelerated by high-pressure water and high-pressure water. After the iron sand slurry flow collides with the steel plate 3, it flows downward from the collision part.

このとき鋼板3に沿ってすべてが流れ落ちるのではなく
、鋼板3と高圧水流とに挾まれた部分にスラリー流のよ
どみ部(図Aで示す)が生成する。
At this time, the slurry flow does not all flow down along the steel plate 3, but a stagnation portion (shown in Figure A) of the slurry flow is generated in a portion sandwiched between the steel plate 3 and the high-pressure water stream.

一方、鋼板3が水平方向に搬送されるb図の場合には以
上のような現象は見られず、高圧水流、砂鉄スラリー流
は鋼板3に沿って流れる。
On the other hand, in the case of figure b, where the steel plate 3 is conveyed in the horizontal direction, the above phenomenon is not observed, and the high-pressure water stream and iron sand slurry flow flow along the steel plate 3.

この垂直方向搬送のときに生ずる砂鉄スラリー流のよど
み部が研削効率の低下をもたらす主原因と考えられる。
The stagnation portion of the iron sand slurry flow that occurs during vertical conveyance is considered to be the main cause of the decrease in grinding efficiency.

つまり、よどみ部があるために、高圧水により加速され
た砂鉄粒が鋼板3に衝突する以前に残留砂鉄と衝突し、
その保有する運動量の一部が失われてしまうのであり、
従って、垂直搬送の方が水平搬送に比べて研削効率が著
しく低(なることが発明者らの研究により確認された。
In other words, because of the stagnation part, the iron sand particles accelerated by high-pressure water collide with the residual iron sand before colliding with the steel plate 3.
Some of the momentum it possesses is lost,
Therefore, it has been confirmed through research by the inventors that the grinding efficiency is significantly lower in vertical conveyance than in horizontal conveyance.

本発明は、上述の問題に鑑み、熱延鋼板の脱スケールの
ように鋼板表面のスケールを連続的に除去するプロセス
では、設備スペースやその規模などの観点から垂直方向
に鋼板を搬送せしめていることが多く、この場合でも、
水平方向の搬送の場合と同等もしくはそれに近い研削効
率を得るためになされたものであり、結果として研削に
必要な動力の低減を図り、併せて設備スペースを小さく
することを目的とするものである。
The present invention has been developed in view of the above-mentioned problems, and in the process of continuously removing scale from the surface of a steel plate, such as descaling of a hot-rolled steel plate, the steel plate is conveyed vertically from the viewpoint of equipment space and scale. Often, even in this case,
This was done in order to obtain grinding efficiency equivalent to or close to that of horizontal conveyance, and as a result, the purpose is to reduce the power required for grinding and also to reduce the equipment space. .

即ち、本発明は研削材の加速がフラットスプレーで行わ
れる液体ホーニングによる鋼板の脱スケール処理を、垂
直又は傾斜方向の鋼板搬送条件で行う場合に、前記フラ
ットスプレーの噴射角を一20°〜−70°の範囲にす
ることを特徴とする液体ホーニング方法である。
That is, in the present invention, when a steel plate is descaled by liquid honing in which the abrasive is accelerated by a flat spray, and the steel plate is conveyed in a vertical or inclined direction, the spray angle of the flat spray is set to -20° to -20°. This is a liquid honing method characterized by honing within a range of 70°.

第3図は本発明の液体ホーニング方法の実施例を示す説
明図であり、図の符号はすべて第2図と共通である。
FIG. 3 is an explanatory diagram showing an embodiment of the liquid honing method of the present invention, and all the reference numerals in the figure are the same as those in FIG. 2.

すなわち、1はフラットスプレーノズル、2は研削材供
給配管、3は被研削処理材の鋼板である。
That is, 1 is a flat spray nozzle, 2 is an abrasive supply pipe, and 3 is a steel plate as a material to be ground.

併して、前記フラットスプレーノズル1が鋼板3の垂直
搬送方向に対して噴射角θとして設定される角度は、従
来方法では水平方向に対し「+」の角度であったものを
、本発明の方法では「−」の角度に設定するものである
In addition, the angle at which the flat spray nozzle 1 is set as the spray angle θ with respect to the vertical conveyance direction of the steel plate 3 is a "+" angle with respect to the horizontal direction in the conventional method. In this method, the angle is set to "-".

次に、本発明の液体ホーニング方法の適用条件を示す。Next, conditions for applying the liquid honing method of the present invention will be shown.

(j)高圧流体用ノズル:フラットスプレー型(11)
噴射圧カニ 150に9/cr;IG(iii) 水
量(ノズル1個当り):801/TIti11(iV)
砂鉄スラリー量:607/mm (v) スラリー濃度:60〜70% (■1)熱延鋼板厚さ:2.3闘 上記の適用条件からも明らかなように、他の条件を一定
にした状態では、フラットスプレーノズルの噴射方向を
鋼板の搬送方向即ち垂直方向に対し下方から上方への向
き(第3図に示す如く)にとると、研削効率は向上する
(j) High pressure fluid nozzle: flat spray type (11)
Injection pressure: 150 to 9/cr; IG (iii) Water volume (per nozzle): 801/TIti11 (iV)
Iron sand slurry amount: 607/mm (v) Slurry concentration: 60-70% (■1) Hot-rolled steel plate thickness: 2.3 mm As is clear from the above application conditions, other conditions are held constant. If the spray direction of the flat spray nozzle is set from below to above (as shown in FIG. 3) with respect to the conveying direction of the steel plate, that is, the vertical direction, the grinding efficiency will be improved.

つまり、従来方法では噴射方向を上方から下向きに設定
していたのを本発明では研削効率の点からスプレーの噴
射方向を下方から上方への向きに設定し、しかもこの角
度を水平面となす角度で一20°〜−70°の範囲とす
るものである。
In other words, in the conventional method, the spray direction was set from above to downwards, but in the present invention, from the viewpoint of grinding efficiency, the spray direction is set from below to above, and this angle is set at an angle with the horizontal plane. The range is -20° to -70°.

そして、この角度が−20゜未満でも、また−70°を
超えても本発明の目的を達成する上で好ましくない。
It is not preferable to achieve the object of the present invention if this angle is less than -20° or more than -70°.

尚、本発明の液体ホーニング方法は、鋼板など被研削処
理材の搬送方向は垂直方向もしくはこれに近い傾斜方向
であればよく、その進行方向は上から下あるいは下から
上のいずれの進行方向でもよく、また使用するフラット
スプレーノズルの型式、圧力、流量などの他の条件の内
容に拘らず成立する。
In addition, in the liquid honing method of the present invention, the conveying direction of the material to be ground such as a steel plate may be a vertical direction or an inclined direction close to this, and the traveling direction may be either from top to bottom or from bottom to top. This is true regardless of the type of flat spray nozzle used, pressure, flow rate, etc.

第4図は本発明の方法により液体ホーニングを行った場
合のスプレー噴射角度θC)と完全脱スケール限界送行
速度(m/mm)の関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the spray injection angle θC) and the complete descaling limit feed speed (m/mm) when liquid honing is performed by the method of the present invention.

実施例 (a) 適用目的:熱延鋼板コイルの連続脱スケール
ライン (b) 熱延コイルサイズ:巾 850mm板厚 2
.3mm (e) 液体ホーニング条件: (+)高圧水用ノズル フラットスプレー型(11)噴
射圧力 150kg/C4G (iii) 噴射水量(ノズル1個当り) 907
/mm(iV) 砂鉄スラリー流量 701/ynj
A(V) 砂鉄スラリー濃度 60±5%(vi)
高圧水噴射角度 −45゜ (d) 処理量:熱延鋼板コイル送行速度最大300
m/m(完全脱スケールが可 能な限界速度) なお、従来方法で噴射角度を+45° とし、他の条件
を同一とした場合の熱延鋼板コイル送行速度最大(完全
脱スケールが可能な限界速度)は200m/mかであっ
た。
Example (a) Application purpose: Continuous descaling line for hot-rolled steel coils (b) Hot-rolled coil size: Width: 850 mm, plate thickness: 2
.. 3mm (e) Liquid honing conditions: (+) High pressure water nozzle Flat spray type (11) Injection pressure 150kg/C4G (iii) Injection water amount (per nozzle) 907
/mm (iV) Iron sand slurry flow rate 701/ynj
A(V) Iron sand slurry concentration 60±5%(vi)
High-pressure water injection angle -45° (d) Processing amount: Hot-rolled steel coil feeding speed max. 300
m/m (limit speed at which complete descaling is possible) Maximum hot-rolled steel coil feeding speed (limit speed at which complete descaling is possible) when using the conventional method with an injection angle of +45° and other conditions being the same ) was 200 m/m.

本発明の液体ホーニング方法は、デスケーリング以外に
も表面粗度調整、皮膜等の除去プロセス、キズ取りプロ
セス等にも応用できる。
The liquid honing method of the present invention can be applied not only to descaling but also to surface roughness adjustment, film removal process, scratch removal process, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の外部混合方式に用いるノズルの構造を示
すもので、aは縦断面図、bは下面図、第2図は従来方
法説明図であり、aは鋼板が垂直方向に搬送される例、
bは鋼板が水平方向に搬送される例、第3図は本発明方
法の説明図、第4図は本発明におけるスプレー噴射角度
と完全脱スケール限界送行速度の関係を示したグラフで
ある。
Figure 1 shows the structure of a nozzle used in the conventional external mixing method, where a is a vertical cross-sectional view, b is a bottom view, and Figure 2 is an explanatory diagram of the conventional method. For example,
FIG. 3 is an explanatory diagram of the method of the present invention, and FIG. 4 is a graph showing the relationship between the spray injection angle and the limit conveying speed for complete descaling in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 研削材の加速がフラットスプレーで行われる液体ホ
ーニングによる鋼板の脱スケール処理を、垂直又は傾斜
方向の鋼板搬送条件で行う場合に、前記フラットスプレ
ーの噴射角を一20°〜−70° の範囲にすることを
特徴とする液体ホーニング方法。
1 When descaling a steel plate by liquid honing in which the abrasive is accelerated by a flat spray, the spray angle of the flat spray is in the range of -20° to -70° when carrying the steel plate in a vertical or inclined direction. A liquid honing method characterized by:
JP17881080A 1980-12-19 1980-12-19 Liquid honing method Expired JPS5933512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17881080A JPS5933512B2 (en) 1980-12-19 1980-12-19 Liquid honing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17881080A JPS5933512B2 (en) 1980-12-19 1980-12-19 Liquid honing method

Publications (2)

Publication Number Publication Date
JPS57102755A JPS57102755A (en) 1982-06-25
JPS5933512B2 true JPS5933512B2 (en) 1984-08-16

Family

ID=16055045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17881080A Expired JPS5933512B2 (en) 1980-12-19 1980-12-19 Liquid honing method

Country Status (1)

Country Link
JP (1) JPS5933512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10960465B2 (en) 2015-10-30 2021-03-30 Seurat Technologies, Inc. Light recycling for additive manufacturing optimization
US11014302B2 (en) 2017-05-11 2021-05-25 Seurat Technologies, Inc. Switchyard beam routing of patterned light for additive manufacturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT387175B (en) * 1987-03-20 1988-12-12 Eckelt Josef METHOD AND DEVICE FOR EDGE-RELEASE COATING GLASS DISC FOR INSULATING GLASS PRODUCTION

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10960465B2 (en) 2015-10-30 2021-03-30 Seurat Technologies, Inc. Light recycling for additive manufacturing optimization
US10960466B2 (en) 2015-10-30 2021-03-30 Seurat Technologies, Inc. Polarization combining system in additive manufacturing
US10967566B2 (en) 2015-10-30 2021-04-06 Seurat Technologies, Inc. Chamber systems for additive manufacturing
US11014302B2 (en) 2017-05-11 2021-05-25 Seurat Technologies, Inc. Switchyard beam routing of patterned light for additive manufacturing

Also Published As

Publication number Publication date
JPS57102755A (en) 1982-06-25

Similar Documents

Publication Publication Date Title
CN102985193B (en) Derusting device
CN103447969A (en) Descaling, cleaning and air drying device of steel plate
Kantha Babu et al. Studies on recharging of abrasives in abrasive water jet machining
JPS5933512B2 (en) Liquid honing method
JP2764168B2 (en) Steam-water mist cooling device for hot rolled wire
US3348339A (en) Abrasive blasting wheels and vanes
CN205520970U (en) Equipment is descaled to wet -type steel band inacidity
CN219325114U (en) Zinc-aluminum die casting blank polishing mechanism
KR101353693B1 (en) Apparatus for treating surface of hot rolled strip
US3193975A (en) Spot blast apparatus
CN107009276A (en) Abrasive water-jet steel wire rust cleaning production line
AU607467B2 (en) Method of descaling metal strip
CN212798789U (en) Environment-friendly feed bin dust device
CN210938447U (en) Double-end-face grinding machine with material selecting function
JPH0724737A (en) Abrasive material supply method and device for abrasive water jet
US20020196892A1 (en) Method and device for removing radioactive deposits
CN111267006B (en) Metal plate and strip descaling equipment and method and sand thrower used by same
US7311846B2 (en) Apparatus and method for separating ferrous and non-ferrous metal particles suspended in a liquid
JPS5861461A (en) Spraying method for magnetic particle liquid in magnetic particle flaw detection
KR20240005672A (en) Scale removal device and method for removing scale
JPH09103960A (en) Negative-pressure suction blasting device and method
JP3426943B2 (en) Surface treatment apparatus and surface treatment method in metal material manufacturing process
JP2003181761A (en) Method of surface treatment for wire and bar, and its apparatus
SU1215967A1 (en) Method of abrasive machining of external surface
JPH0780773A (en) Density monitoring device of slurry for descaling