JPS5933121B2 - Manufacturing method of heavy metal ion adsorbent - Google Patents

Manufacturing method of heavy metal ion adsorbent

Info

Publication number
JPS5933121B2
JPS5933121B2 JP51104507A JP10450776A JPS5933121B2 JP S5933121 B2 JPS5933121 B2 JP S5933121B2 JP 51104507 A JP51104507 A JP 51104507A JP 10450776 A JP10450776 A JP 10450776A JP S5933121 B2 JPS5933121 B2 JP S5933121B2
Authority
JP
Japan
Prior art keywords
adsorbent
uranium
heavy metal
metal ion
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51104507A
Other languages
Japanese (ja)
Other versions
JPS5329393A (en
Inventor
裕子 谷口
博 中山
久司 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP51104507A priority Critical patent/JPS5933121B2/en
Publication of JPS5329393A publication Critical patent/JPS5329393A/en
Publication of JPS5933121B2 publication Critical patent/JPS5933121B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は水中に陽イオン、錯イオンとして溶解している
重金属イオンに対して選択的吸着能を有する重金属イオ
ン吸着剤の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heavy metal ion adsorbent having a selective adsorption ability for heavy metal ions dissolved in water as cations and complex ions.

従来金属イオン吸着剤としてはカチオン又はアニオン交
換樹脂やポリアミン系、イミノ酢酸系のキレート樹脂等
が知られている。これ等の樹脂は多種類の金属を無差別
に吸着して、特定の有用金属に対する選択吸着性に乏し
く例えば海水中に溶存するウランを吸着採取する場合、
吸着能を全く有していない。
Conventional metal ion adsorbents include cation or anion exchange resins, polyamine-based chelate resins, and iminoacetic acid-based chelate resins. These resins adsorb many types of metals indiscriminately and have poor selective adsorption properties for specific useful metals.For example, when collecting uranium dissolved in seawater by adsorption,
It has no adsorption capacity at all.

近時、該ウランに対して吸着能を有するものとしてチタ
ン酸、レゾルシンーヒ酸樹脂、トリアミノフエノールグ
リオキザール樹脂等が提案されているが吸着能は小さく
又水中での形状保持が不安定である等の理由により実用
化されていない。
Recently, titanic acid, resorcinol-arsenic acid resin, triaminophenol glyoxal resin, etc. have been proposed as having adsorption ability for uranium, but their adsorption ability is small and their shape retention in water is unstable. It has not been put into practical use for some reason.

本発明者等は上記せる問題点を解消すべく鋭意広範囲に
系統的研究を行ない本発明を完成したものであり、その
目的とするところは水中に溶存する重金属イオンに対し
て高吸着能を有し特にウランに対して優れた選択性と吸
着能を有する重金属イオン吸着剤の製造方法を提供する
にある。即ち、本発明は一般式(1) ゛□)コ (式中RはH又はOH基を示しXはNH、、O又はSを
示す)で表わされる4−ヒドロキシベンゾイミダゾール
、4−ヒドロキシベンゾオキサゾール、4−ヒドロキシ
ベンゾチアゾール又は該誘導体とホルムアルデヒドをア
ルカリ性もしくは酸性触媒の存在下40℃以上で重縮合
せしめることを特徴とする重金属イオン吸着剤の製造方
法である。
The present inventors have completed the present invention by diligently and extensively conducting systematic research to solve the above-mentioned problems. However, it is an object of the present invention to provide a method for producing a heavy metal ion adsorbent having excellent selectivity and adsorption ability, especially for uranium. That is, the present invention provides 4-hydroxybenzimidazole and 4-hydroxybenzoxazole represented by the general formula (1) , 4-hydroxybenzothiazole or its derivatives and formaldehyde are polycondensed at 40° C. or higher in the presence of an alkaline or acidic catalyst.

本発明で使用する前記一般式(1)で示される化合物と
しては、4−ヒドロキシベンゾイミダゾール、4・ 6
−ジヒドロキシペンゾイミダゾール、4−ヒドロキシベ
ンゾオキサゾール、4・6−ジヒドロキシベンゾオキサ
ゾール、4−ヒドロキシベンゾチアゾール、4・6−ヒ
ドロキシベンゾチアゾール等が挙げられる。
Examples of the compound represented by the general formula (1) used in the present invention include 4-hydroxybenzimidazole, 4.6
-dihydroxypenzimidazole, 4-hydroxybenzoxazole, 4,6-dihydroxybenzoxazole, 4-hydroxybenzothiazole, 4,6-hydroxybenzothiazole, and the like.

ホルムアルデヒドとしては、ホルマリン、パラホルムア
ルデヒド等である。該前記一般式(1)で示される化合
物をホルムアルデヒドと重縮合するには該一般式(1)
で示される化合物1モルに対してホルムアルデヒドを少
なくとも0.8モル好ましくは1〜20モルを0.00
1〜1モルの塩酸、リン酸、硫酸等の酸性触媒或は苛性
ソーダ等のアルカリ性触媒の存在下に40℃以上好まし
くは60〜120℃の温度範囲内で約5分〜15時間加
熱攪拌下に行なわれる。この場合反応媒体として水或ぱ
アルコール、アセトン等の有機溶媒を使用してもよい。
このように縮合重合反応した後の反応生成物は加熱濃縮
するか、反応途中で析出する樹脂を分別して水洗して捕
集する。
Examples of formaldehyde include formalin and paraformaldehyde. To polycondensate the compound represented by the general formula (1) with formaldehyde, use the general formula (1)
At least 0.8 mol of formaldehyde, preferably 1 to 20 mol, per 1 mol of the compound represented by 0.00
Heat and stir in the presence of 1 to 1 mol of an acidic catalyst such as hydrochloric acid, phosphoric acid, or sulfuric acid or an alkaline catalyst such as caustic soda at a temperature of 40°C or higher, preferably 60 to 120°C, for about 5 minutes to 15 hours. It is done. In this case, water or an organic solvent such as alcohol or acetone may be used as the reaction medium.
The reaction product after the condensation polymerization reaction is concentrated by heating, or the resin precipitated during the reaction is separated and collected by washing with water.

この反応で得られた水不溶性樹脂は淡褐色ないし黒褐色
を呈し不融性を有する。前記一般式(1)に示す化合物
とホルムアルデヒドとの重縮合反応生成物である吸着剤
は使用する一般式(1)の化合物に於いて4−ヒドロキ
シベンゾイミダゾール及び該誘導体〉4−ヒドロキシベ
ンゾオキサゾール及び該誘導体〉4−ヒドロキシベンゾ
チアゾール及び該誘導体の順に吸着能が大である。本発
明方法により得られる重金属イオン吸着剤は、水溶液中
の鉄、銅、亜鉛、カドミウム、鉛、ニツケル、クロム、
ウラン等の重金属を吸着し、とりわけウラニルイオンに
対して撰択性を示す。
The water-insoluble resin obtained by this reaction exhibits a light brown to blackish brown color and is infusible. The adsorbent, which is a polycondensation reaction product of the compound represented by the general formula (1) and formaldehyde, contains 4-hydroxybenzimidazole and its derivatives>4-hydroxybenzoxazole and Derivatives>4-hydroxybenzothiazole and the derivatives have the highest adsorption capacity in this order. The heavy metal ion adsorbent obtained by the method of the present invention can absorb iron, copper, zinc, cadmium, lead, nickel, chromium, etc. in an aqueous solution.
It adsorbs heavy metals such as uranium and is particularly selective towards uranyl ions.

本発明方法により得られる吸着剤を使用して重金属イオ
ンを吸着するに際しては、該吸着剤をカラムに充填して
、叉は繊維状、薄膜状等の形状で重金属イオン含有水と
適当時間接触せしめる。また重金属イオン含有水が多量
のアルカリ、酸を含有する場合はPH4〜9.5に調整
してから使用することが望ましい。例えば産業廃水中の
重金属を除去回収する場合は、水不溶性物質を除去して
からPHを5〜9に調整して使用することが好ましい。
重金属イオン含有水と接触せしめた吸着剤は、酸(例え
ば硫酸、硝酸、塩酸等の鉱酸)、又金属によつてはアル
カリ(例えば苛性ソーダ、アンモニア水等)、水溶性炭
酸塩(例えば炭酸ナトリウム、炭酸アンモン等)、水溶
性重炭酸塩(例えば重炭酸ナトリウム等)を含有する水
溶液中に浸漬して吸着重金属イオンを脱離溶解して回収
することができる。
When adsorbing heavy metal ions using the adsorbent obtained by the method of the present invention, the adsorbent is packed in a column and brought into contact with heavy metal ion-containing water in the form of fibers, thin films, etc. for an appropriate period of time. . Further, when the heavy metal ion-containing water contains a large amount of alkali or acid, it is desirable to adjust the pH to 4 to 9.5 before use. For example, when removing and recovering heavy metals from industrial wastewater, it is preferable to remove water-insoluble substances and then adjust the pH to 5 to 9 before use.
The adsorbent that has been brought into contact with water containing heavy metal ions may contain acids (e.g. mineral acids such as sulfuric acid, nitric acid, hydrochloric acid, etc.), alkalis (e.g. caustic soda, aqueous ammonia, etc.) depending on the metal, water-soluble carbonates (e.g. sodium carbonate), etc. , ammonium carbonate, etc.) and a water-soluble bicarbonate (e.g., sodium bicarbonate, etc.), the adsorbed heavy metal ions can be desorbed and dissolved and recovered.

本発明方法により得られる吸着剤は廃水処理或は海水か
ら有用重金属特にウランの回収等、工業的利用価値は極
めて大きいものである。以下実施例について説明する。
実施例 1 4・6−ジヒドロキシベンゾイミダゾール57(0.0
333モル)、37%ホルマリン1.57(0.050
モル)にエチルアルコール10CC1水10CC1塩酸
0,5yを加え80℃で6時間攪拌して縮合反応せしめ
、黒褐色の4・6−ジヒドロキシベンゾイミダゾール−
ホルムアルデヒド樹脂を得た。
The adsorbent obtained by the method of the present invention has extremely high industrial utility value, such as wastewater treatment or recovery of useful heavy metals, especially uranium, from seawater. Examples will be described below.
Example 1 4,6-dihydroxybenzimidazole 57 (0.0
333 mol), 37% formalin 1.57 (0.050
mol) was added with 10 CC of ethyl alcohol, 10 CC of water, and 0.5 Y of hydrochloric acid, and stirred at 80°C for 6 hours to cause a condensation reaction, resulting in a dark brown 4,6-dihydroxybenzimidazole.
A formaldehyde resin was obtained.

該樹脂は130℃以上に加熱しても融解しない。該樹脂
100ワを稀塩酸に、短時間浸漬処理した後、これを吸
着剤としてウラン500μ7を含有する海水51に加え
、30℃で4日間攪拌した後樹脂を沈降分離し水洗後0
.5N塩酸10CCに、60℃で30分間浸漬して吸着
したウランを脱着し、脱着液中のウランをフツ化ナトリ
ウム球法により紫外螢光を測定して定量した結果、全ウ
ラン量の70%に相当する350μ7のウランを吸着し
たことがわかつた。
The resin does not melt even when heated to 130°C or higher. After immersing 100 watts of the resin in dilute hydrochloric acid for a short time, it was added as an adsorbent to seawater 51 containing 500 μ7 of uranium, stirred at 30°C for 4 days, the resin was separated by sedimentation, and washed with water.
.. The adsorbed uranium was desorbed by immersion in 10 cc of 5N hydrochloric acid at 60°C for 30 minutes, and the uranium in the desorption solution was quantified by measuring ultraviolet fluorescence using the sodium fluoride sphere method. It was found that an equivalent amount of 350 μ7 of uranium was adsorbed.

これは吸着剤7当り換算3.5牧のウランを吸着したこ
とになる。比較例として既知吸着剤であるチタン酸、レ
ゾルシンーヒ酸樹脂の各々100mノを吸着剤として前
記方法と同様に吸着テストを行なつた結果、それぞれの
ウラン吸着量は吸着剤y当り1.8rr19、1.9ワ
であつた。
This means that 3.5 mg of uranium was adsorbed per 7 adsorbents. As a comparative example, an adsorption test was conducted in the same manner as in the above method using 100 m of each of known adsorbents titanic acid and resorcinol-arsenic acid resin as adsorbents. As a result, the amount of uranium adsorbed for each was 1.8 rr19 and 1 per y of adsorbent. .9W was hot.

但しチタン酸は、四塩化チタン塩酸溶液を苛性ソーダで
中和して得られたものである。
However, titanic acid is obtained by neutralizing titanium tetrachloride hydrochloric acid solution with caustic soda.

又、レゾルシンーヒ酸樹脂はレゾルシンーヒ酸を通常の
方法でホルマリン重合して得られたものである。本発明
の方法による吸着剤は該既知吸着剤と比較して優れた吸
着能を示した。叉本発明の該吸着剤に吸着されたウラン
は、希薄な塩酸、硫酸、硝酸等の酸あるいは苛性ソーダ
アンモニア水等のアルカリあるいは炭酸ナトリウム、炭
酸アンモン、重炭酸ナトリウム等の炭酸塩重炭酸塩で容
易に脱着される。
Further, resorcinol-arsenic acid resin is obtained by formalin polymerization of resorcinol-arsenic acid in a conventional manner. The adsorbent according to the method of the present invention showed superior adsorption capacity compared to the known adsorbent. The uranium adsorbed by the adsorbent of the present invention can be easily absorbed using dilute acids such as hydrochloric acid, sulfuric acid, and nitric acid, alkalis such as caustic soda and aqueous ammonia, or carbonates and bicarbonates such as sodium carbonate, ammonium carbonate, and sodium bicarbonate. It is attached and detached.

脱着処理は脱着液10m1に樹脂を浸漬して50゜Cで
30分放置する方法を2回くり返して行なつ結果を第1
表に示す。
The desorption process was performed twice by immersing the resin in 10ml of desorption liquid and leaving it for 30 minutes at 50°C.
Shown in the table.

実施例 2 実施例1と同様に前記一般式(1)に示す化合物とホル
ムアルデヒドを重縮合せしめて樹脂を得た。
Example 2 In the same manner as in Example 1, the compound represented by the general formula (1) and formaldehyde were polycondensed to obtain a resin.

得られた樹脂を夫々100即について実施例1と同様に
ウラン500μ7を含む海水51に加え30℃で4時間
撹拌して海水中のウランを吸着せしめた。次にウランを
吸着したこの樹脂を実施例1と同様に脱着処理してウラ
ンを分析した結果をまとめて第2表に示す。これより4
−ヒドロキシベンゾイミダゾール誘導体〉4−ヒドロキ
シベンゾオキサゾール誘導体〉4−ヒドロキシベンゾチ
アゾール誘導体の順に吸着剤のウランに対する吸着量は
高く、つまり4−ヒドロキシベンゾイミダゾール及び4
・6−ジヒドロキシベンゾイミダゾールは、特に優れた
ウラン吸着剤であることがわかる。
100 pieces of each of the obtained resins were added to 51 pieces of seawater containing 500μ7 of uranium in the same manner as in Example 1, and stirred at 30°C for 4 hours to adsorb uranium in the seawater. Next, this resin that had adsorbed uranium was subjected to desorption treatment in the same manner as in Example 1, and the results of uranium analysis are summarized in Table 2. From this 4
-Hydroxybenzimidazole derivatives>4-hydroxybenzoxazole derivatives>4-hydroxybenzothiazole derivatives The adsorption amount of uranium by the adsorbent is higher in this order, that is, 4-hydroxybenzimidazole and 4-hydroxybenzothiazole derivatives.
・6-Dihydroxybenzimidazole is found to be a particularly excellent uranium adsorbent.

又、これに対して市販されているフエニルスルホン酸系
、脂肪族系カルボン酸系のカチオン交換樹脂、アミン系
、第4級アンモニウム塩系の各アニオン交換樹脂、ある
いはポリアミン系、イミノジ酢酸系のキレート樹脂は、
ウラン吸着能力が低実施例 3硝酸鉛、硝酸第二水銀、
硝酸カドミウへ硝酸第二クロムを金属イオンとしてそれ
ぞれ10ppm含むモデル廃水21に、実施例1と同様
に製造した吸着剤17を加え、30℃で3時間撹拌し、
接触せしめたのち、金属イオンを吸着した吸着剤を▲別
した。
In addition, commercially available phenyl sulfonic acid-based, aliphatic carboxylic acid-based cation exchange resins, amine-based, quaternary ammonium salt-based anion exchange resins, or polyamine-based and iminodiacetic acid-based cation exchange resins are available. Chelate resin is
Examples with low uranium adsorption capacity 3 Lead nitrate, mercuric nitrate,
Adsorbent 17 produced in the same manner as in Example 1 was added to model wastewater 21 containing 10 ppm of cadmium nitrate and chromic nitrate as metal ions, and stirred at 30°C for 3 hours.
After contact, the adsorbent adsorbing metal ions was separated.

金属イオンを吸着した該吸着剤を1N−塩酸に60℃で
30分間浸漬し、吸着している金属イオンを脱着して溶
出せしめたのち、吸着剤を沢別し、溶出液中の金属イオ
ンの定量を行なつた。すなわち、鉛、水銀、カドミウム
イオンについては溶出液の一部をとり、中和の後、これ
にジエチルジチオカルバミン酸ナトリウム水溶液を加え
て、生じたキレート沈殿をろ紙上に捕集し これを蛍光
X線により分析した。またクロムイオンについては原子
吸光光度法に従い、測定した。結果をまとめて第3表に
示す。第3表の結果から明らかなように本発明の方法に
よる該吸着剤は重金属の吸着能が優れている。実施例
4 硫酸ウラニル、塩化第二銅、塩化第二鉄、塩化ニッケル
を仝属イオンとしてそれぞれ0.1ppm添加した海水
51に実施例1と同様様に製造した吸着剤100Tf1
9を加え、30℃で4日間攪拌し接触せしめた。
The adsorbent that has adsorbed metal ions is immersed in 1N hydrochloric acid at 60°C for 30 minutes to desorb and elute the adsorbed metal ions, and then the adsorbent is separated and the metal ions in the eluate are separated. Quantification was performed. Specifically, for lead, mercury, and cadmium ions, a portion of the eluate is taken, and after neutralization, an aqueous solution of sodium diethyldithiocarbamate is added to it, and the resulting chelate precipitate is collected on filter paper, which is then analyzed using fluorescent X-rays. Analyzed by. Further, chromium ions were measured according to atomic absorption spectrophotometry. The results are summarized in Table 3. As is clear from the results in Table 3, the adsorbent produced by the method of the present invention has an excellent ability to adsorb heavy metals. Example
4 Adsorbent 100Tf1 produced in the same manner as in Example 1 to seawater 51 to which 0.1 ppm each of uranyl sulfate, cupric chloride, ferric chloride, and nickel chloride were added as non-metallic ions.
9 was added, and the mixture was stirred at 30° C. for 4 days to bring them into contact.

Claims (1)

【特許請求の範囲】 1 一般式(1) ▲数式、化学式、表等があります▼ (式中RはH又はOH基を示しXはNH、O又はSを示
す)で表わされる4−ヒドロキシベンゾイミダゾール、
4−ヒドロキシベンゾオキサゾール、4−ヒドロキシベ
ンゾチアゾール又は該誘導体とホルムアルデヒドをアル
カリ性もしくは酸性触媒の存在下40℃以上で重縮合せ
しめることを特徴とする重金属イオン吸着剤の製造方法
[Claims] 1 General formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R represents H or OH group and X represents NH, O or S) 4-hydroxybenzo imidazole,
1. A method for producing a heavy metal ion adsorbent, which comprises polycondensing 4-hydroxybenzoxazole, 4-hydroxybenzothiazole, or a derivative thereof with formaldehyde at 40° C. or higher in the presence of an alkaline or acidic catalyst.
JP51104507A 1976-08-31 1976-08-31 Manufacturing method of heavy metal ion adsorbent Expired JPS5933121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51104507A JPS5933121B2 (en) 1976-08-31 1976-08-31 Manufacturing method of heavy metal ion adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51104507A JPS5933121B2 (en) 1976-08-31 1976-08-31 Manufacturing method of heavy metal ion adsorbent

Publications (2)

Publication Number Publication Date
JPS5329393A JPS5329393A (en) 1978-03-18
JPS5933121B2 true JPS5933121B2 (en) 1984-08-14

Family

ID=14382399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51104507A Expired JPS5933121B2 (en) 1976-08-31 1976-08-31 Manufacturing method of heavy metal ion adsorbent

Country Status (1)

Country Link
JP (1) JPS5933121B2 (en)

Also Published As

Publication number Publication date
JPS5329393A (en) 1978-03-18

Similar Documents

Publication Publication Date Title
US2104501A (en) Manufacture and use of synthetic resins
US7504036B2 (en) Method of making and using modified anion exchange materials with metal inside the materials
JPH0356783B2 (en)
JPH0445213B2 (en)
JPS603082B2 (en) Manufacturing method of heavy metal adsorbent
Siddiqui et al. Synthesis, characterization and ion exchange properties of zirconium (IV) tungstoiodophosphate, a new cation exchanger
US4481087A (en) Process for removing chromate from solution
JPS5933121B2 (en) Manufacturing method of heavy metal ion adsorbent
DK155020B (en) PROCEDURE FOR RECOVERING MOLYBDA IN THE FORM OF Aqueous SOLUTION OF PURE MOLYBDAIC ACID FROM MOLYBDA-CONTAINING CATALYSTS
RU2479651C1 (en) Method for extraction and separation of platinum and rhodium in sulphate solutions
US3321521A (en) Regeneration of chelating solutions
CN112777672B (en) Functionalized silica modified defluorination material and preparation and application thereof
JPH02207839A (en) Combustible cesium adsorbent and production thereof
JPS61171535A (en) Lithium adsorbent, its preparation and recovery of lithium using said adsorbent
JPS5946252B2 (en) Manufacturing method of heavy metal ion adsorbent
JPS6028534B2 (en) Manufacturing method of heavy metal ion adsorbent
JP6933360B2 (en) Antimony separation and recovery methods
JP3079257B2 (en) Arsenic ion adsorption removal method
JPH0568969A (en) Adsorption and removal of phosphate ion
RU2219133C1 (en) Method for purification of preparation radionuclide nickel-63
JPH0446622B2 (en)
US20240150511A1 (en) Weak base anion resin polymers comprising alkylamine segments and cross-linking segments, and their methods of use in ion exchange
JPS63287547A (en) Adsorbent for fluoride ion
JPH0354118A (en) Method for recovering rhenium
JPH0194948A (en) Fluorine ion removal method