JPS5946252B2 - Manufacturing method of heavy metal ion adsorbent - Google Patents

Manufacturing method of heavy metal ion adsorbent

Info

Publication number
JPS5946252B2
JPS5946252B2 JP10233076A JP10233076A JPS5946252B2 JP S5946252 B2 JPS5946252 B2 JP S5946252B2 JP 10233076 A JP10233076 A JP 10233076A JP 10233076 A JP10233076 A JP 10233076A JP S5946252 B2 JPS5946252 B2 JP S5946252B2
Authority
JP
Japan
Prior art keywords
group
heavy metal
uranium
acid
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10233076A
Other languages
Japanese (ja)
Other versions
JPS5327692A (en
Inventor
裕子 谷口
博 中山
久司 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP10233076A priority Critical patent/JPS5946252B2/en
Publication of JPS5327692A publication Critical patent/JPS5327692A/en
Publication of JPS5946252B2 publication Critical patent/JPS5946252B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は水中に陽イオン、錯イオンとして溶解している
重金属イオンに対して選択的吸着能を有する重金属イオ
ン吸着剤の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heavy metal ion adsorbent having a selective adsorption ability for heavy metal ions dissolved in water as cations and complex ions.

従来金属イオン吸着剤としてはカチオン又はアニオン交
換樹脂やポリアミン系・イミノ酢酸系のキレート樹脂等
が知られている。これ等の樹脂は多種類の金属を無差別
に吸着して特定の有用金属に対する選択吸着性に乏しく
、例えば海水中に溶存するウランを吸着採取する場合吸
着能を全く有していない。
Conventional metal ion adsorbents include cation or anion exchange resins, polyamine-based and iminoacetic acid-based chelate resins, and the like. These resins adsorb many types of metals indiscriminately and have poor selective adsorption ability for specific useful metals, and have no adsorption ability at all when collecting uranium dissolved in seawater, for example.

近時該ウランに対して吸着能を有するものとしてチタン
酸、レゾルシンヒ酸樹脂、トリアミノフエノールグリオ
キザール樹脂等が提案されているが吸着能は小さく又水
中での形状保持が不安定である等の理由により実用化さ
れていない。
Recently, titanic acid, resorcinol arsenate resin, triaminophenol glyoxal resin, etc. have been proposed as having adsorption ability for uranium, but their adsorption ability is small and their shape retention in water is unstable, etc. It has not been put into practical use.

本発明者等は上記せる問題点を解消すべく鋭意広範囲に
系統的研究を行い本発明を完成したものであり、その目
的とするところは水中に溶存する重金属イオンに対して
高級着能を有し特にウランに対して優れた選択性と吸着
能を有する重金属イオン吸着剤の製造方法を提供するに
ある。
In order to solve the above problems, the present inventors conducted extensive systematic research and completed the present invention. However, it is an object of the present invention to provide a method for producing a heavy metal ion adsorbent having excellent selectivity and adsorption ability, especially for uranium.

即ち本発明は一般式(1) R、 R□3(l) CONH−R4 (式中R1、R2、R3は水素又は水酸基を示し、その
うち少なくとも一つは水酸基である。
That is, the present invention has the general formula (1) R, R□3(l) CONH-R4 (wherein R1, R2, and R3 represent hydrogen or a hydroxyl group, and at least one of them is a hydroxyl group).

R4は1位又は2位にカルボキシ基を有する低級アルキ
ル基、又はカルボキシル基を有するアリール基を示す)
で表わされる安息香酸アミド誘導体とホルムアルデヒド
をアルカリ性もしくは酸性触媒の存在下40℃以上で重
縮合せしめることを特徴とする重金属イオン吸着剤の製
造方法である。本発明に用いる前記一般式(1)で示さ
れる安息香酸アミド誘導体としては2−ヒドロキシ馬尿
酸、2・4−ジヒドロキシ馬尿酸、N−(1−カルボキ
シエチル)−サリチル酸アミド、N−(1−カルボキシ
エチル)−レゾルシン酸アミド、N一(2−カルボキシ
エチル)−サリチル酸アミド、N−(2−カルボキシエ
チル)−レゾルシン酸アミド、N−(2−カルボキシ)
−フエニルーサリチル酸アミド、N−(2−カルボキシ
)−フエニルーレゾルシン酸アミド、N−(4−カルボ
キシ)フエニルーサリチル酸アミド、N−(4−カルボ
キシ)−フエニルーレゾルシン酸アミド、N一(4−カ
ルボキシ−3−ヒドロキシ)−フエニルーサリチル酸ア
ミド、N−(4−カルボキシ−3ヒドロキシ)−フエニ
ルーレゾルシン酸アミド等が挙げられる。
R4 represents a lower alkyl group having a carboxyl group at the 1st or 2nd position, or an aryl group having a carboxyl group)
This is a method for producing a heavy metal ion adsorbent, which is characterized by polycondensing a benzoic acid amide derivative represented by the formula and formaldehyde at 40° C. or higher in the presence of an alkaline or acidic catalyst. The benzoic acid amide derivatives represented by the general formula (1) used in the present invention include 2-hydroxyhippuric acid, 2,4-dihydroxyhippuric acid, N-(1-carboxyethyl)-salicylic acid amide, N-(1- carboxyethyl)-resorcinamide, N-(2-carboxyethyl)-salicylic acid amide, N-(2-carboxyethyl)-resorcinamide, N-(2-carboxy)
-Phenyl-salicylic acid amide, N-(2-carboxy)-phenyl-resorcinamide, N-(4-carboxy)-phenyl-salicylic acid amide, N-(4-carboxy)-phenyl-resorcinamide, N-(4-carboxy)-phenyl-resorcinamide, -carboxy-3-hydroxy)-phenyl-salicylic acid amide, N-(4-carboxy-3-hydroxy)-phenyl-resorcinamide, and the like.

更にホルムアルデヒドとしては、ホルマリン、パラホル
ムアルデヒド等である。前記の一般式で示される安息香
酸アミド誘導体と、ホルムアルデヒドとの重縮合反応は
安息香酸アミド誘導体1モルに対してホルムアルデヒド
を少なくとも0.8モル好ましくは1〜20モルを0.
001〜1モルの塩酸、硫酸、燐酸等の酸性触媒或は苛
性ソーダ等のアルカリ触媒の存在下に40℃以上好まし
くは60〜120℃の温度範囲内で約5分〜15時間加
熱攪拌下に行われる。この場合、反応媒体として、水あ
るいはアルコール、アセント等の有機溶媒を使用しても
よい。該重縮合反応により得られた生成物は加熱濃縮す
るか、反応途中で析出する樹脂を分別して水洗して、捕
集する。
Furthermore, examples of formaldehyde include formalin and paraformaldehyde. The polycondensation reaction between the benzoic acid amide derivative represented by the above general formula and formaldehyde is performed using at least 0.8 mol of formaldehyde, preferably 1 to 20 mol, of formaldehyde per 1 mol of the benzoic acid amide derivative.
001 to 1 mole of an acidic catalyst such as hydrochloric acid, sulfuric acid, or phosphoric acid, or an alkali catalyst such as caustic soda, at a temperature of 40°C or higher, preferably 60 to 120°C, for about 5 minutes to 15 hours while stirring. be exposed. In this case, water or an organic solvent such as alcohol or ascent may be used as the reaction medium. The product obtained by the polycondensation reaction is concentrated by heating, or the resin precipitated during the reaction is separated, washed with water, and collected.

得られた水不溶性の樹脂は淡褐色ないし黒褐色を呈し、
不融性を有する。該方法により得られる吸着剤に於いて
安息香酸アミド誘導体の中でも特にR3が水酸基の場合
特に優れた吸着能を示し、2・4−ジヒドロキシ馬尿酸
とN−(1−カルボキシエチル)−レゾルシン酸アミド
は2位についたヒドロキシル基及び末端についたカルボ
キシル基が配位子となりキレート形成能が著しく優れて
おり又、2位と4位のヒドロキシル基によりホルマリン
と重合しやすい。
The resulting water-insoluble resin exhibits a light brown to blackish brown color,
It has infusibility. The adsorbent obtained by this method shows particularly excellent adsorption ability among benzoic acid amide derivatives, especially when R3 is a hydroxyl group, and 2,4-dihydroxyhippuric acid and N-(1-carboxyethyl)-resorcinic acid amide The hydroxyl group at the 2-position and the carboxyl group at the end serve as ligands, and the chelate-forming ability is extremely excellent, and the hydroxyl group at the 2- and 4-positions makes it easy to polymerize with formalin.

又、R4が4−カルボキシ−3−ヒドロキシル基を含む
もの例えばN−(4−カルボキシ−3−ヒドロキシ)−
フエニルレゾルシン酸アミドは酸アミドと隣接した水酸
基が配位子となり重金属の吸着能を高め又、フエニル基
の3位についた水酸基と4位についたカルボキシル基が
キレート生成能を有するため非常に吸着能がすぐれてい
る。また、これらの吸着剤は重金属のうちでも特にウラ
ンの吸着に高い選択性を有している。
Also, those in which R4 contains a 4-carboxy-3-hydroxyl group, such as N-(4-carboxy-3-hydroxy)-
In phenyl resorcinamide, the hydroxyl group adjacent to the acid amide acts as a ligand, increasing the ability to adsorb heavy metals, and the hydroxyl group at the 3-position and the carboxyl group at the 4-position of the phenyl group have chelate-forming ability, making it highly adsorbable. His ability is excellent. Furthermore, these adsorbents have high selectivity for adsorbing uranium, especially among heavy metals.

本発明方法により得られる重金属吸着剤は、水溶液中の
鉄、銅、亜鉛、カドミウム、鉛、ニツケル、クロム、ウ
ラン等の重金属を吸着し、とりわけウラニルイオンに選
択性を示す。
The heavy metal adsorbent obtained by the method of the present invention adsorbs heavy metals such as iron, copper, zinc, cadmium, lead, nickel, chromium, and uranium in an aqueous solution, and is particularly selective to uranyl ions.

本発明方法により得られる吸着剤を使用して重金属イオ
ンを吸着するに際しては、該吸着剤をカラムに充填して
又は繊維状、薄膜状等の形状で重金属イオンを含有水と
適当時間接触せしめる。
When adsorbing heavy metal ions using the adsorbent obtained by the method of the present invention, the adsorbent is packed in a column or in the form of a fiber, a thin film, etc., and is brought into contact with water containing heavy metal ions for an appropriate period of time.

また重金属イオン含有水が多量のアルカリ、酸を含有す
る場合はPH4〜9.5に調整してから使用することが
望ましい。例えば産業廃水中の重金属を除去回収する場
合は、水不溶性物質を除去してから使用することが好ま
しい。重金属イオン含有水と接触せしめた吸着剤は、酸
(例えば・・・・・・の鉱酸)、又金属によつてはアル
カリ(例えば苛性ソーダ、アンモニア水等)、水溶性炭
酸塩(例えば、炭酸ナトリウム、炭酸アンモン等)、水
溶性重炭酸塩(例えば、重炭酸ナトリウム等)を含有す
る水溶液中に浸漬して吸着重金属イオンを脱離溶解して
回収することができる。
Further, when the heavy metal ion-containing water contains a large amount of alkali or acid, it is desirable to adjust the pH to 4 to 9.5 before use. For example, when removing and recovering heavy metals from industrial wastewater, it is preferable to remove water-insoluble substances before use. The adsorbent that has been brought into contact with water containing heavy metal ions may contain acids (e.g. mineral acids), alkalis (e.g. caustic soda, aqueous ammonia, etc.) depending on the metal, water-soluble carbonates (e.g. It is possible to recover the adsorbed heavy metal ions by desorbing and dissolving them by immersing them in an aqueous solution containing water-soluble bicarbonate (eg, sodium bicarbonate, etc.) and water-soluble bicarbonate (eg, sodium bicarbonate, etc.).

本発明方法により得られる吸着剤は廃水処理或は海水か
らの有用重金属特にウランの回収等、工業的利用価値は
極めて大きいのである。以下実施例について説明する。
The adsorbent obtained by the method of the present invention has extremely high industrial utility value, such as wastewater treatment or recovery of useful heavy metals, especially uranium, from seawater. Examples will be described below.

実施例 1 2・4−ジヒドロキシ馬尿酸107(0.0474モル
)に37%ホルマリン6.2?(0.0711モル)エ
チルアルコール10CCを加え、80℃で攪拌して溶解
せしめて次に塩酸0.37を加えて80℃で5時間攪拌
して重縮合反応せしめて黒褐色の2・4−ジヒドロキシ
馬尿酸−ホルムアルデヒド樹脂を得た。
Example 1 2,4-dihydroxyhippuric acid 107 (0.0474 mol) and 37% formalin 6.2? (0.0711 mol) Add 10 CC of ethyl alcohol, stir at 80°C to dissolve, then add 0.37% hydrochloric acid and stir at 80°C for 5 hours to cause a polycondensation reaction, resulting in a dark brown 2,4-dihydroxy A hippuric acid-formaldehyde resin was obtained.

この樹脂は130℃以上に加熱しても融解せず、赤外吸
収スペクトルでは1650?−1にカルボニル基に基づ
く吸収が認められる等の特徴を持つ。次に樹脂100T
!19を希塩酸に短時間浸漬処理した後これを吸着剤と
してウラン500p?を含有する海水51に加え30℃
で4日間攪拌した後樹脂を沈降分離し、水洗後0.5N
塩酸10CCに60℃で30分間浸漬して吸着したウラ
ンを脱着し、脱着液中のウランをフツ化ナトリウム球法
により紫外螢光を測定して定量した結果、全ウラン量の
80%に相当する4001クのウランを吸着したことが
わかつた。これは吸着剤?当り換算40ワのウランを吸
着したことになる。又、比較例として既知吸着剤である
チタン酸、レゾルシンーヒ酸樹脂の各々粉末100W!
9を吸着剤として前記方法と同様に吸着テストを行なつ
た結果吸着剤?当り換算でそれぞれ1.8TIZg、1
,9ηのウランの吸着を示した。但し、チタン酸は四塩
化チタン塩酸溶液を苛性ソーダで中和して得られたもの
である。又、レゾルシンヒ酸樹脂はレゾルシンーヒ酸を
通常の方法でホルマリン重合して得られたものである。
上記せる如く本発明方法による吸着剤はウランに対して
優れた吸着能を有している。実施例 2 実施例1と同様に2−ヒドロキシ馬尿酸、3−ヒドロキ
シ馬尿酸、4−ヒドロキシ馬尿酸、2・4−ヒドロキシ
馬尿酸、N−(1−カルボキシエチル)−サリチル酸ア
ミド、N−(2−カルボキシエチル)−サリチル酸アミ
ド、又比較例としてN−メチル−サリチル酸アミド、N
−エチル−サリチル酸アミド、5−アミノ−サリチル酸
アミドを各々ホルムアルデヒドを重縮合させて樹脂を得
た。
This resin does not melt even when heated to 130°C or higher, and its infrared absorption spectrum is 1650? -1 has characteristics such as absorption based on carbonyl group. Next, 100T resin
! After immersing 19 in dilute hydrochloric acid for a short time, this was used as an adsorbent to absorb 500p of uranium. In addition to seawater 51 containing
After stirring for 4 days, the resin was separated by sedimentation, and after washing with water,
The adsorbed uranium was desorbed by immersion in 10 cc of hydrochloric acid at 60°C for 30 minutes, and the uranium in the desorption solution was quantified by measuring ultraviolet fluorescence using the sodium fluoride sphere method. As a result, it was found to be equivalent to 80% of the total amount of uranium. It was discovered that 4,001 ku of uranium had been adsorbed. Is this an adsorbent? This means that 40 watts of uranium was adsorbed per unit. In addition, as a comparative example, powders of titanic acid and resorcinol-arsenic acid resin, which are known adsorbents, were each used at 100 W!
An adsorption test was conducted in the same manner as above using 9 as an adsorbent. Converted to 1.8 TIZg and 1, respectively.
,9η of uranium adsorption. However, titanic acid is obtained by neutralizing titanium tetrachloride hydrochloric acid solution with caustic soda. Further, resorcinol arsenic acid resin is obtained by formalin polymerization of resorcinol arsenic acid in a conventional manner.
As mentioned above, the adsorbent produced by the method of the present invention has an excellent ability to adsorb uranium. Example 2 Same as Example 1, 2-hydroxyhippuric acid, 3-hydroxyhippuric acid, 4-hydroxyhippuric acid, 2,4-hydroxyhippuric acid, N-(1-carboxyethyl)-salicylic acid amide, N-( 2-carboxyethyl)-salicylic acid amide, and as a comparative example, N-methyl-salicylic acid amide, N
A resin was obtained by polycondensing -ethyl-salicylic acid amide and 5-amino-salicylic acid amide with formaldehyde.

得られた樹脂夫々100ワを実施例1と同様にウラン5
00μ?を含む海水51に加え、30℃で4時間攪拌し
て海水中のウランを吸着せしめた。
100 W of each of the obtained resins was added with uranium 5 in the same manner as in Example 1.
00μ? The mixture was added to seawater 51 containing 51% of the total amount of uranium and stirred at 30° C. for 4 hours to adsorb uranium in the seawater.

次にウランを吸着したこの樹脂を実施例1と同様に脱着
処理してウランを分析した結果をまとめて第1表に示す
。これよりN一置換基は、カルボキシメチル基〉1−カ
ルボキシエチル基〉2−カルボキシエチル基〉5−アミ
ノ−ヘキシル基の順に、吸着能は高くなりα或いはβ位
にカルボキシル基を有する場合が特にすぐれていること
がわかる。又、酸アミド基にカルボキシル基を有するオ
キシフエニル基の場合、2●4−ジオキシフエニル基〉
2−オキシフエニル〉4−オキシフエニル基、3−オキ
シフエニル基の順に吸着量ぱ高くなる。又、これに対し
て市販されているフエニルスルホン酸系、脂肪族系カル
ボン酸系のカチオン交換樹脂、アミン系、第4級アンモ
ニウム塩系の各アニオン交換樹脂あるいはポリアミン系
イミノジ酢酸系のキレート樹脂は、ウラン吸着能力が低
いか又は吸着能力は殆んど認められなかつた。実施例
3 実施例1と同様にして前記一般式(1)に示す安息香酸
アミド誘導体のN一置換基が芳香族カルボン酸であるオ
キシ安息香酸アミド誘導体又、比較例としてN−フエニ
ルオキシ安息香酸アミド誘導体をホルムアルデヒドと重
縮合させて得られた樹脂100ηについて、ウランの吸
着テストを実施例1と同じ条件下で行なつた結果得られ
たウランの吸着量を夫々の吸着剤について第2表に示し
た。
Next, this resin that had adsorbed uranium was subjected to desorption treatment in the same manner as in Example 1, and the results of uranium analysis are summarized in Table 1. From this, the adsorption capacity increases in the order of N-substituents: carboxymethyl group > 1-carboxyethyl group > 2-carboxyethyl group > 5-amino-hexyl group, especially when it has a carboxyl group at the α or β position. I can see that it is excellent. In addition, in the case of an oxyphenyl group having a carboxyl group in the acid amide group, 2●4-dioxyphenyl group>
2-Oxyphenyl> The adsorption amount increases in the order of 4-oxyphenyl group and 3-oxyphenyl group. In addition, commercially available phenylsulfonic acid-based, aliphatic carboxylic acid-based cation exchange resins, amine-based, quaternary ammonium salt-based anion exchange resins, or polyamine-based iminodiacetic acid-based chelate resins The uranium adsorption capacity was low or almost no adsorption capacity was observed. Example
3 In the same manner as in Example 1, an oxybenzoic acid amide derivative having the N-substituent of the benzoic acid amide derivative shown in the general formula (1) is an aromatic carboxylic acid, and an N-phenyloxybenzoic acid amide derivative as a comparative example. A uranium adsorption test was conducted on 100η of the resin obtained by polycondensation with formaldehyde under the same conditions as in Example 1, and the amount of uranium adsorbed for each adsorbent is shown in Table 2.

第2表よりオキシ安息香酸アミドについては、実施例2
で得られた結果同様2・4−ジオキシフエニル基〉2−
オキシフエニル基〉4−オキシフエニル基≠3−オキシ
フエニル基の順に吸着能が高いことが解る。又、N一置
換基については4−カルボキシ−3オキシフエニル基〉
4−カルボキシフエニル基〉2−カルボキシフエニル基
の順に吸着が高い。実施例 4 硝酸鉛、硝酸第二水銀、硝酸カドミウム、硝酸第二クロ
ムを金属イオンとしてそれぞれ10ppm含むモデル廃
水21に、実施例1で製造した吸着剤1yを加え、30
℃で3時間攪拌して接触せしめたのち、金属イオンを吸
着した吸着剤を▲別した。
From Table 2, for oxybenzoic acid amide, Example 2
2,4-dioxyphenyl group〉2-
It can be seen that the adsorption capacity is higher in the order of oxyphenyl group>4-oxyphenyl group≠3-oxyphenyl group. In addition, for the N-substituent, 4-carboxy-3oxyphenyl group>
Adsorption is highest in the order of 4-carboxyphenyl group>2-carboxyphenyl group. Example 4 Adsorbent 1y produced in Example 1 was added to model wastewater 21 containing 10 ppm each of lead nitrate, mercuric nitrate, cadmium nitrate, and chromic nitrate as metal ions.
After stirring and contacting at ℃ for 3 hours, the adsorbent adsorbing metal ions was separated.

金属イオンを吸着した該吸着剤を1N一塩酸に60℃で
30分間浸漬し、吸着している金属イオンを脱着して溶
出せしめたのち、吸着剤を▲別し、溶出液中の金属イオ
ンの定量を行なつた。すなわち、水銀、カドミウムイオ
ンについては溶出液の一部を中和の後、これにジエチル
ジチオカルバミン酸ナトリウム水溶液を加えて、生じた
キレート沈澱を▲紙上に捕集し、これを螢光X線により
分析した。またクロムイオンについては、原子吸光光度
法に従い測定した。結果をまとめて第3表に示す。
The adsorbent that has adsorbed metal ions is immersed in 1N monohydrochloric acid at 60°C for 30 minutes to desorb and elute the adsorbed metal ions.The adsorbent is then separated and the metal ions in the eluate are separated. Quantification was performed. Specifically, for mercury and cadmium ions, after neutralizing a portion of the eluate, an aqueous solution of sodium diethyldithiocarbamate is added to it, the resulting chelate precipitate is collected on paper, and this is analyzed using fluorescent X-rays. did. Furthermore, chromium ions were measured according to atomic absorption spectrometry. The results are summarized in Table 3.

第3表の結果から明らかなように本発明方法による吸着
剤は重金属に対して優れた吸着性能を示した。実施例
5 硫酸ウラニル、塩化第二銅、塩化第二鉄、塩化ニッケル
を金属イオンとしてそれぞれ0.1ppm添加した海水
51?に実施例で製造した吸着剤100ワを加え30′
Cで4日間攪拌して接触せしめた。
As is clear from the results in Table 3, the adsorbent according to the method of the present invention exhibited excellent adsorption performance for heavy metals. Example
5 Seawater with 0.1 ppm each of uranyl sulfate, cupric chloride, ferric chloride, and nickel chloride added as metal ions 51? Add 100 watts of the adsorbent prepared in Example to 30'
The mixture was stirred and brought into contact at C for 4 days.

Claims (1)

【特許請求の範囲】 1 一般式(1) ▲数式、化学式、表等があります▼(1)(式中R_1
、R_2、R_3は水素又は水酸基を示し、そのうち少
なくとも一つは水酸基である。 R_4は1位又は2位にカルボキシル基を有する低級ア
ルキル基、又はカルボキシル基を有するアリール基を示
す)で表わされる安息香酸アミド誘導体とホルムアルデ
ヒドをアルカリ性もしくは酸性触媒の存在下40℃以上
で重縮合せしめることを特徴とする重金属イオン吸着剤
の製造方法。2 一般式(1)に於いてR_3が水酸基
である特許請求の範囲第1項記載の重金属イオン吸着剤
の製造方法。 3 一般式(1)に於いてR_4が4−カルボキシ−3
−ヒドロキシフェニル基である特許請求の範囲第1項記
載の重金属イオン吸着剤の製造方法。
[Claims] 1 General formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1) (R_1 in the formula
, R_2 and R_3 represent hydrogen or a hydroxyl group, at least one of which is a hydroxyl group. R_4 represents a lower alkyl group having a carboxyl group at the 1st or 2nd position, or an aryl group having a carboxyl group) and formaldehyde are polycondensed at 40°C or higher in the presence of an alkaline or acidic catalyst. A method for producing a heavy metal ion adsorbent, characterized by: 2. The method for producing a heavy metal ion adsorbent according to claim 1, wherein R_3 in general formula (1) is a hydroxyl group. 3 In general formula (1), R_4 is 4-carboxy-3
-A method for producing a heavy metal ion adsorbent according to claim 1, which is a hydroxyphenyl group.
JP10233076A 1976-08-26 1976-08-26 Manufacturing method of heavy metal ion adsorbent Expired JPS5946252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10233076A JPS5946252B2 (en) 1976-08-26 1976-08-26 Manufacturing method of heavy metal ion adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10233076A JPS5946252B2 (en) 1976-08-26 1976-08-26 Manufacturing method of heavy metal ion adsorbent

Publications (2)

Publication Number Publication Date
JPS5327692A JPS5327692A (en) 1978-03-15
JPS5946252B2 true JPS5946252B2 (en) 1984-11-12

Family

ID=14324511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10233076A Expired JPS5946252B2 (en) 1976-08-26 1976-08-26 Manufacturing method of heavy metal ion adsorbent

Country Status (1)

Country Link
JP (1) JPS5946252B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569203B1 (en) * 1984-08-16 1989-12-22 Produits Ind Cie Fse PROCESS FOR THE TREATMENT BY CHEMICAL CONVERSION OF SUBSTRATES IN ZINC OR IN ONE OF ITS ALLOYS, CONCENTRATE AND BATH USED FOR THE IMPLEMENTATION OF THIS PROCESS

Also Published As

Publication number Publication date
JPS5327692A (en) 1978-03-15

Similar Documents

Publication Publication Date Title
US4876232A (en) Supported heteropolycyclic compounds in the separation and removal of late transition metals
US3969244A (en) Method of adsorbing heavy metals
JPH0356783B2 (en)
JPS603082B2 (en) Manufacturing method of heavy metal adsorbent
Hubicki et al. Application of ion exchange methods in recovery of Pd (II) ions—a review
Shah et al. Synthesis, characterization, and analytical applications of o-substituted benzoic acid chelating resin
Baba et al. Adsorption Equilibria of Silver (I) and Copper (II) Ions on N-(2-Hy dr oxylbenzy l) chitosan D erivative
JPS5946252B2 (en) Manufacturing method of heavy metal ion adsorbent
Hase et al. Preconcentration of trace metals with dithiocarbamate-chitin
JPS61171535A (en) Lithium adsorbent, its preparation and recovery of lithium using said adsorbent
JPS5933121B2 (en) Manufacturing method of heavy metal ion adsorbent
JPH02207839A (en) Combustible cesium adsorbent and production thereof
JPS6028534B2 (en) Manufacturing method of heavy metal ion adsorbent
JP6933360B2 (en) Antimony separation and recovery methods
JPS6226819B2 (en)
JP2539413B2 (en) Adsorbent for gallium recovery
JP3256740B2 (en) Selenium (IV) adsorption removal method
Jain et al. Selective separation of copper (II) on a cobalt hexacyanoferrate (III) ion-exchange column
JPH1147505A (en) Method for adsorptive removal of arsenic ion
JPH0354118A (en) Method for recovering rhenium
JP3097928B2 (en) Cation adsorbent
JPH01155947A (en) Permission tannin-aldehyde-water or persimmon tannin-acid-water hydrated gel composition and method for adsorbing nuclear fuel element and organic matter containing iron using said composition
RU2219133C1 (en) Method for purification of preparation radionuclide nickel-63
JP2641239B2 (en) Silver adsorbent and method of using the same
JPS60186522A (en) Purification of epoxy compound