JPS5933118A - Manufacture of cylindrical molded item - Google Patents

Manufacture of cylindrical molded item

Info

Publication number
JPS5933118A
JPS5933118A JP57144337A JP14433782A JPS5933118A JP S5933118 A JPS5933118 A JP S5933118A JP 57144337 A JP57144337 A JP 57144337A JP 14433782 A JP14433782 A JP 14433782A JP S5933118 A JPS5933118 A JP S5933118A
Authority
JP
Japan
Prior art keywords
resin
mold
reinforcing material
roll
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57144337A
Other languages
Japanese (ja)
Other versions
JPH0317664B2 (en
Inventor
Shuya Tsuji
修也 辻
Yoshichika Kawabata
川端 善周
Rokuro Yamamoto
山本 六郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Yamamoto Kogyo KK
Original Assignee
Yamamoto Kogyo KK
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Kogyo KK, Dainippon Ink and Chemicals Co Ltd filed Critical Yamamoto Kogyo KK
Priority to JP57144337A priority Critical patent/JPS5933118A/en
Priority to GB08322444A priority patent/GB2129764B/en
Priority to DE19833330065 priority patent/DE3330065A1/en
Priority to FR8313555A priority patent/FR2531905B1/en
Priority to US06/525,405 priority patent/US4611980A/en
Publication of JPS5933118A publication Critical patent/JPS5933118A/en
Publication of JPH0317664B2 publication Critical patent/JPH0317664B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a cylindrical molded item free from voids and the strength of which is rather uniform, by feeding a fiber reinforcing material and a resin into a cylindrical mold, and pressing them by rolls located inside the cylindrical mold so that the reinforcing material is well impregnated with the resin. CONSTITUTION:The cylindrical mold A is rotated at such a velocity (e.g. a rotational velocity of 1-15 r.p.m or a circumferential velocity of 0.5-300m/min) that a centrifugal force that is lower than twice the gravity is generated, a fiber reinforcing material and a liquid thermosetting resin are fed to the inner surface of the rotating cylindrical mold A, at least one press roll F that is freely rotated is allowed under its own weight to press the surface of the molding material consisting of the fiber reinforcing material and the resin so that the reinforcing material is impregnated with the resin and thereafter the resin is thermoset to be molded.

Description

【発明の詳細な説明】 本発明は繊維強化熱硬化性樹脂(以下、FRPと略す)
製筒状成形物の製造法に関するものである。
[Detailed Description of the Invention] The present invention is a fiber-reinforced thermosetting resin (hereinafter abbreviated as FRP).
This invention relates to a method for producing a cylindrical molded product.

従来、FRP製筒状成形物の製造法は、筒状型の外側に
成形するフィラメントワインデイング法(FW法)とこ
れとは逆に筒状型の内側で遠心力を利用して成形する遠
心成形法が知られている。
Conventionally, the manufacturing methods for FRP cylindrical molded products are the filament winding method (FW method), in which the molding is performed on the outside of the cylindrical mold, and the centrifugal method, in which the molding is performed inside the cylindrical mold using centrifugal force. Molding methods are known.

FW法は古くから広範囲に採用された方法ではあるが、
材料の歩留り、作業環境、ボイドの発生し易さ、繊維強
化材の単一方向性等の欠点を有する。
Although the FW method has been widely adopted since ancient times,
It has drawbacks such as material yield, working environment, ease of generating voids, and unidirectionality of fiber reinforcement.

一方、遠心成形法は一般に強化材と樹脂とを均一に混合
するために、例えば直径2mの円筒体を成形する際の回
転       仁′:。
On the other hand, the centrifugal molding method is generally used to uniformly mix the reinforcing material and the resin, for example when molding a cylindrical body with a diameter of 2 m.

数を60回転/分以上、即ち重力の約4倍以上の遠心力
が生じるような回転速度で実施されており、成形された
管状成形物がボイドの存在が少なく、外周寸法が一定に
生産でき、しかも外観が美麗であり、また材料の飛散が
少ないため材料歩留りに優れ作業環境もよいという利点
がある。しかし、この遠心成形法は高速回転させるため
、多大なエネルギーを必要とし、しかも型自体の精度、
強度をより厳密にしなければならない欠点がある。又、
致命的な欠陥として供給された繊維強化材が円周方向に
並んでしまりため、成形物が軸方向と周方向との強度比
に於いて著しく異なり、即ち一般に1/2〜1/3とな
り強度バランスの悪いものとなることである。更に回転
数や繊維強化剤、主としてガラス繊維と液状の樹脂の比
重差によりそれぞれの二層に分離してしまうという恐れ
が残る。
The process is carried out at a rotation speed of 60 revolutions per minute or more, that is, a centrifugal force of about 4 times the force of gravity, and the molded tubular product has few voids and can be produced with a constant outer dimension. Moreover, it has a beautiful appearance, and has the advantage of a good material yield and a good working environment because there is little material scattering. However, this centrifugal molding method requires a large amount of energy because it rotates at high speed, and the precision of the mold itself
There is a drawback that the strength must be made more strict. or,
A fatal flaw is that the fiber reinforcement material supplied is lined up in the circumferential direction, resulting in a molded product having a significantly different strength ratio between the axial direction and the circumferential direction, that is, generally 1/2 to 1/3 of the strength. This results in an imbalance. Furthermore, there remains a fear that the fibers will separate into two layers due to the rotational speed, the fiber reinforcing agent, and mainly the difference in specific gravity between the glass fiber and the liquid resin.

かかる欠陥を改良するために、特開昭54−11157
7号では型に対してFRP成形成形用材料供給相対的に
移動できるように設置し、1〜4回転回転と平行5〜1
0m/分)で型を回転させ、型の中心軸線と平行にかつ
その中心軸線より下げられた抑圧ロールを設置し、又、
円筒状型の回転と押圧ロールの回転とを駆動部よりチェ
ーンホイールを用いて同じ回転速度に調節して成形し、
しかも押圧ロール上部にはエアーシリンダーを設置して
エア圧力によりロールを上下動させ、すなわち押圧した
り、押圧を解除したりして調節しながら供給材料を抑圧
含浸させて成形する方法が提案されている。この方法は
従来の遠心成形法に比較して小さい重力源で、しかも簡
単な型体で成型でき、更に材料強度に方向性によるバラ
ツキが少ない点では非常に優れた筒状成形物を与える製
造法である。
In order to improve this defect, Japanese Patent Application Laid-Open No. 54-11157
In No. 7, the material supply for FRP molding is installed so that it can move relative to the mold, and it rotates 1 to 4 rotations and 5 to 1 rotation in parallel.
The mold is rotated at a speed of 0 m/min), a suppression roll is installed parallel to the central axis of the mold and lowered from the central axis, and
The rotation of the cylindrical mold and the rotation of the pressure roll are adjusted to the same rotational speed using a chain wheel from the drive unit, and molding is performed.
Moreover, a method has been proposed in which an air cylinder is installed on the top of the press roll and the roll is moved up and down by air pressure, that is, pressurized or released to adjust the pressure while suppressing and impregnating the supplied material and forming the roll. There is. This method uses a smaller gravity source than the conventional centrifugal molding method, can be molded with a simple mold, and is an excellent manufacturing method that produces cylindrical molded products with less variation in material strength due to directionality. It is.

しかし、この成形方法は完全に型体と押圧ロールの回転
速度を同一にして行わなければならず不都合な点がある
However, this molding method has the disadvantage that it must be carried out at exactly the same rotational speed of the mold and the pressure roll.

即ち、完全に同調して回転させることは実際上型体と抑
圧ロールとの直径が異なり、しかも円筒体内径が段々と
小さくなるため非常に困難であり、微妙な回転速度のず
れで型内面の供給材料がダンゴ状になったり、ささくれ
だったりしてしまう。特に内径1.5〜3mで周速度1
0m/分以上の場合、問題となり易い。このような場合
、エアーシリンダーを上昇させダンゴ状の部分な一担回
避し、再度ロールで押圧するという手段がとられる。こ
の方法で押圧したり、解除したりして成形するのでは操
作が面倒で生産効率が悪く、加えて均一な肉厚の成形物
が得がたい。又、この方法で型体寸法が変ると、その都
度型体と抑圧ロールの回転速度を同一にするための調節
が必要になり、さらにエアーシリンダーを用いて抑圧含
浸しているため繊維強化材の含有量、外気温等の影響に
よる樹脂粘度のわずかなバラツキで押圧力の調整が必要
となるが、上記要因の変化に即応して加圧条件を変えて
いくことは生産上極めて困難である。更にまた押圧力の
動力源は空気圧を用いるために機構的にも複雑で、かつ
チェーンホイールを用いて抑圧ロールを型に同調させて
いるので成形終了時の清掃が非常に困難となる。
In other words, it is extremely difficult to rotate them in perfect synchrony because the diameters of the mold body and the suppression roll are different, and the diameter of the cylindrical body gradually decreases. The supplied material becomes lumpy or has hangnails. Especially when the inner diameter is 1.5 to 3 m, the circumferential speed is 1.
If the speed is 0 m/min or more, problems tend to occur. In such a case, the method is to raise the air cylinder to avoid the bump-shaped part and press it again with a roll. Molding by pressing and releasing in this manner is cumbersome and inefficient in production, and in addition, it is difficult to obtain a molded product with uniform wall thickness. In addition, if the mold dimensions change using this method, it is necessary to adjust the rotational speed of the mold and the pressure roll to be the same each time.Furthermore, since the pressure impregnation is performed using an air cylinder, the fiber reinforcement material Slight variations in resin viscosity due to the influence of content, outside temperature, etc. require adjustment of the pressing force, but it is extremely difficult in terms of production to immediately change the pressurizing conditions in response to changes in the above factors. Furthermore, since the power source for the pressing force is pneumatic pressure, it is mechanically complex, and since a chain wheel is used to synchronize the pressure roll with the mold, cleaning at the end of molding is extremely difficult.

そのまま放置したのでは樹脂が硬化し、その後の製造か
できなくなる。
If left as is, the resin will harden and subsequent production will no longer be possible.

本発明者等は小さい遠心力で回転する、すなわち1〜3
0回転/分、周速度0.5〜200m/分の低速回転で
成形でき、かつ成形材料中の含有空気泡を取り除き、軸
方向/周方向の強度比が一定で肉厚が均一であり、しか
も簡単な装置でFRP製筒状成形物を成形する方法を鋭
意研究した結果、上記条件を満足する製造法を見い出す
に至った。
We rotate with small centrifugal force, i.e. 1 to 3
It can be molded at low rotation speeds of 0 rotations/min and circumferential speeds of 0.5 to 200 m/min, removes air bubbles contained in the molding material, has a constant axial/circumferential strength ratio, and has a uniform wall thickness. Moreover, as a result of intensive research into a method of molding a cylindrical FRP product using a simple device, we have discovered a manufacturing method that satisfies the above conditions.

即ち一本発明は重力の2倍より小さい遠心力が生じる速
度で回転する筒状型の内壁面に繊維強化材と液状熱硬化
性樹脂とを供給し、かがる強化材と樹脂とからなる材料
表面を、自在に回転する少くとも1個の抑圧ロールの自
重で押圧した樹脂を強化材に十分に含浸せしめ成形する
ことを特徴とする筒状成形物の製造方法を提供する。
That is, one aspect of the present invention is to supply a fiber reinforcing material and a liquid thermosetting resin to the inner wall surface of a cylindrical mold that rotates at a speed that generates a centrifugal force smaller than twice the force of gravity. To provide a method for producing a cylindrical molded article, characterized in that the surface of the material is sufficiently impregnated with a reinforcing material with a resin pressed by the weight of at least one freely rotating presser roll, and then molded.

本発明で用いられる筒状の型は回転軸方向に沿って少な
くとも二ツ割にでき、外側で締付はボルトによって閉じ
ることができるものが好ましく、通常その断面が円、楕
円、多角形およびこれらの部分的に欠けたものである。
It is preferable that the cylindrical mold used in the present invention can be divided into at least two parts along the direction of the rotation axis, and the outside can be closed with bolts, and the cross section is usually a circle, an ellipse, a polygon, or any of these shapes. It is partially missing.

この型め材質は金属、木、プラスチック、石等であるが
、とりわけ金属が好ましい。又、この型の大きさは特に
制限はないが、型内面で成形することと成形物の運搬を
考慮して通常内径1〜4m、長さ1〜10m程度である
。勿論径や長さを上記範囲以外にすることもできる。
The molding material may be metal, wood, plastic, stone, etc., but metal is particularly preferred. The size of this mold is not particularly limited, but it is usually about 1 to 4 m in inner diameter and 1 to 10 m in length, taking into account the molding inside the mold and the transportation of the molded product. Of course, the diameter and length can also be outside the above range.

本発明に於いては上記型の内側に繊維強化材および液状
熱硬化性樹脂の供給部が置かれ、その供給部が前後に自
在に移動するか、又はかかる供給部が固定されて糠自体
が前後に移動するように設計される。
In the present invention, a supply section for the fiber reinforcing material and liquid thermosetting resin is placed inside the mold, and the supply section can be moved freely back and forth, or the supply section is fixed and the bran itself is Designed to move back and forth.

又、本発明での型はモーターで駆動される複数個のロー
ラーによって回転される。その際の回転速度は重力の2
倍より小さい遠心力が生じる速度が選択され、好ましく
は重力の1.2倍以下、最適には重力より小さい遠心力
が生じる速度である。
Further, the mold according to the present invention is rotated by a plurality of rollers driven by a motor. The rotation speed at that time is 2 of gravity
A speed is selected that produces a centrifugal force less than twice that of gravity, preferably less than 1.2 times that of gravity, optimally a centrifugal force that is less than 1.2 times that of gravity.

一般に、回転体に於ける壁面での遠心力はF=mγω2
により求められる。この場合、Fは遠心力、mは単位賀
量、γは回転体め内径、ωは角速度である。仮に2mの
内径の円筒型を60回転/分の速度で回転させてFRP
製円筒成彫物を作製する際の成形物の1cm3単位に働
く遠心力は成形材料の比重を焼く1.8とすると7.0
9g・cm/s2となり、これに対して重力がF=mα
・・・(注:αは加速度)で計算され、1.8g・cm
/s2となることから重力の約4倍となる。この場合、
遠心力が重力の2倍となるには回転数が30回転/分、
周速度が188ん・分程度である。尚、本発明者らの実
験によれば、一般的な遠心成型法においては供給した成
形材が型体より落下しないようにするには重力の2倍を
越える、好ましくは4倍以上の遠心力が必要であり、遠
心力がそれより少ないと成形材料を壁体に押圧すること
が難しくなる。
Generally, the centrifugal force on the wall of a rotating body is F=mγω2
It is determined by In this case, F is the centrifugal force, m is the unit force, γ is the inner diameter of the rotating body, and ω is the angular velocity. Suppose that a cylindrical shape with an inner diameter of 2 m is rotated at a speed of 60 revolutions/minute to produce FRP.
When making a cylindrical carved object, the centrifugal force acting on a unit of 1 cm3 of the molded object is 7.0, assuming the specific gravity of the molding material is 1.8.
9g・cm/s2, whereas the gravity is F=mα
...(Note: α is acceleration), calculated as 1.8g・cm
/s2, so it is about 4 times the force of gravity. in this case,
For the centrifugal force to be twice the gravity, the rotation speed must be 30 revolutions/minute.
The circumferential speed is about 188 mm/min. According to experiments conducted by the present inventors, in order to prevent the supplied molding material from falling from the mold body in the general centrifugal molding method, a centrifugal force of more than twice the gravity, preferably more than four times the gravity, is required. is necessary, and if the centrifugal force is less than that, it will be difficult to press the molding material against the wall.

上述から、本発明の型体は内径によって変わるため必ず
しも正確ではないが、1〜30回転/分、好ましくは1
〜18回転/分、より好ましくは1〜15回転/回転度
の回転速度、或いは周速度0.5〜300m/分で回転
される。
From the above, it can be seen that the mold body of the present invention has a speed of 1 to 30 revolutions per minute, preferably 1 to 30 revolutions per minute, although it is not necessarily accurate because it varies depending on the inner diameter.
It is rotated at a rotational speed of ~18 revolutions/min, more preferably from 1 to 15 revolutions/degree of rotation, or at a circumferential speed of 0.5 to 300 m/min.

本発明で用いられる繊維強化材はガラス繊維、炭素繊維
、アラミド繊維(デュポン社製、ケプラー繊維)等の公
知の繊維強化材を挙げることができ、特にガラス繊維が
好ましい。かかる強化材はマット状、ローピング状、ロ
ービングを適当な長さに切断したチョップ状のもの等が
使用され、それらの組合せで使用することも、可能であ
る。又、本発明での強化材の使量は通常、成形物中10
芝80重量%、好ましくは15〜60重量%、より好ま
しくは20〜50重量%となる量が適当である。
Examples of the fiber reinforcing material used in the present invention include known fiber reinforcing materials such as glass fiber, carbon fiber, and aramid fiber (manufactured by DuPont, Kepler fiber), with glass fiber being particularly preferred. Such reinforcing materials may be in the form of mats, ropings, chopped rovings cut into appropriate lengths, etc., and it is also possible to use a combination thereof. In addition, the amount of reinforcing material used in the present invention is usually 10% in the molded product.
A suitable amount is 80% by weight of grass, preferably 15-60% by weight, more preferably 20-50% by weight.

本発明で用いられる液状熱硬化性樹脂としては、不飽和
ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ビ
ニルエステル樹脂等の公知の液状熱硬化性樹脂が挙げら
れ、特に不飽和ポリエステル樹脂が好ましい。この不飽
和ポリエステル樹脂を用いる場合には、触媒として過酸
化物等および硬化促進剤として金属塩、アミン等を併用
して硬化する方法が好ましい。かかる触媒および降下促
進剤は型内面の繊維強化材上に樹脂とは別々に、又は予
め混合されて供給されても良い。
Examples of the liquid thermosetting resin used in the present invention include known liquid thermosetting resins such as unsaturated polyester resins, epoxy resins, phenol resins, and vinyl ester resins, with unsaturated polyester resins being particularly preferred. When using this unsaturated polyester resin, it is preferable to use a method of curing using a combination of a peroxide or the like as a catalyst and a metal salt, an amine, or the like as a curing accelerator. Such catalysts and degradation accelerators may be supplied onto the fiber reinforcement on the inner surface of the mold separately from the resin or in a premixed manner.

又、液状熱硬化樹脂は繊維強化材への含浸性、たれ現象
等から粘度が重要となる。即ち、樹脂粘度が低過ぎる場
合は成形物が白化したり、たれ現象が生じやすく、逆に
高過ぎる場合には含浸性が悪く、そのため成形材料をロ
ーラーで押圧しても型面に附着せず落下してしまい成形
できなくなる。このような点からかかる樹脂の粘度は通
常、0.5〜20ポイズ/25℃(ブルック・フィール
ド粘度)、好ましくは1.0〜15ポイズ/25℃、更
に好ましくは2〜10ポイズから適宜選択される。
In addition, the viscosity of the liquid thermosetting resin is important from the viewpoint of impregnation into the fiber reinforcing material, sagging phenomenon, etc. In other words, if the resin viscosity is too low, the molded product tends to whiten or sag, while if it is too high, impregnating properties are poor, so even when the molding material is pressed with a roller, it does not stick to the mold surface. It will fall and will not be able to be molded. From this point of view, the viscosity of the resin is usually selected appropriately from 0.5 to 20 poise/25°C (Brookfield viscosity), preferably 1.0 to 15 poise/25°C, and more preferably 2 to 10 poise. be done.

本発明の成形方法に於いて、重要な工程は成形材料の表
面を、自在に回転する押圧ロールの自重で押圧して液状
熱硬化性樹脂を繊維強化材に含浸せしめる工程である。
In the molding method of the present invention, an important step is the step of impregnating the fiber reinforcement with the liquid thermosetting resin by pressing the surface of the molding material with the weight of a freely rotating press roll.

この工程は、特開昭54−111577号に示される如
き径が大幅に異る型体と押圧ロールとをチェーンホイー
ル等を用いて強制的に回転速度を同一にさせ、含浸脱泡
を行なう工程とは全く異なる。すなわち、本発明では第
5図の様に抑圧ロールが自在に回転する様な機構である
。この際、抑圧ロールは前後の適当な幅で自由に移動で
きるように少くとも1個のクランクによるか、適当な幅
で可動する軸棒によるか、又はそれらの組合せによって
調節されるのが望ましい。かかるロールが成形材料を押
圧する際には押圧ロールはその回転が人為的に操作され
ずに、型体の回転に同調しながらも成形材料の抵抗等に
よる回転速度の変調に対応できる。
This process involves impregnating and degassing a mold and a press roll, which have significantly different diameters, by forcing them to rotate at the same speed using a chain wheel or the like, as shown in JP-A-54-111577. It's completely different. That is, in the present invention, the mechanism is such that the suppression roll rotates freely as shown in FIG. At this time, it is preferable that the pressure roll be adjusted by at least one crank, a shaft that is movable in an appropriate width, or a combination thereof so that it can freely move forward and backward with an appropriate width. When such a roll presses the molding material, the rotation of the press roll is not artificially manipulated, and can respond to modulation of rotational speed due to resistance of the molding material, etc., while being synchronized with the rotation of the mold.

本発明に於いては成形材料中の液状熱硬化性樹脂を繊維
強化材に十分含浸させるのに抑圧ロールの自重が採用さ
れる。勿論、押圧ロー化の自由な回転を妨げない範囲で
多少の荷重を掛けることは差しつかえないが、荷重が大
き過ぎるか、ロール自身の重さが犬となると、型体の回
転速度が遅いためロールが成形材相中に沈み込んで樹脂
がしばり出されて樹脂含量の低い成形物となるので好ま
しくない。又、逆圧抑圧ロールの重さが小さいと樹脂の
含浸が不十分となり、成形材料中に空気泡が残り型面よ
り該材料が落下し成形できなくなる。そのため、本発明
で用いられる抑圧ロールは通常、長さ10〜100cm
、好ましくは30〜70cmのものであり、その自重と
してロールの長さ当り20g〜600g、好ましくは5
0〜400g、更に好ましくは80〜300gの荷重、
すなわち押圧力が成形材料面にかかるものが適する。か
かるロールで樹脂の含浸、空気泡の脱泡を効率よく達成
させるために、本発明に於いては上記ロールを適当な間
隔で3本以上用いた方が良い。
In the present invention, the weight of the suppression roll is used to sufficiently impregnate the fiber reinforcement with the liquid thermosetting resin in the molding material. Of course, it is okay to apply some load as long as it does not interfere with the free rotation of the pressure row, but if the load is too large or the weight of the roll itself becomes too much, the rotation speed of the mold will be slow. This is not preferable because the roll sinks into the molding material phase and the resin is squeezed out, resulting in a molded product with a low resin content. Furthermore, if the weight of the counterpressure suppression roll is small, impregnation of the resin will be insufficient, air bubbles will remain in the molding material, and the material will fall from the mold surface, making molding impossible. Therefore, the suppression roll used in the present invention usually has a length of 10 to 100 cm.
, preferably 30 to 70 cm, and its own weight is 20 to 600 g per roll length, preferably 5
A load of 0 to 400 g, more preferably 80 to 300 g,
In other words, one that applies pressing force to the surface of the molding material is suitable. In order to efficiently achieve resin impregnation and air bubble defoaming using such rolls, it is preferable to use three or more of the above rolls at appropriate intervals in the present invention.

上記押圧ロールの形状としては、その長さは上記の如く
であるが、成形物の長さに対応して適宜変えることがで
き、又、その径は型体の内径より小さく、型体中で自任
に回転できる寸法であればよく、通常直径5〜40cm
が適当である。又、押圧時成形材料と接触するロール外
周面には溝が有った方が良く、その溝の形状はロール軸
方向に直線状螺旋状、碁盤目状等自由に選択でき、その
深さも自由に選択できる。更に、押圧ロールはその外周
面に網目状のネットが被覆されたものでも良い。
As for the shape of the pressure roll, its length is as described above, but it can be changed as appropriate depending on the length of the molded product, and its diameter is smaller than the inner diameter of the mold body, so that It only needs to be of a size that can be rotated at will, usually 5 to 40 cm in diameter.
is appropriate. In addition, it is better to have grooves on the outer peripheral surface of the roll that comes into contact with the molding material during pressing, and the shape of the grooves can be freely selected such as linear, spiral, or checkerboard in the roll axis direction, and the depth can also be freely selected. can be selected. Furthermore, the pressure roll may have a mesh-like net coated on its outer peripheral surface.

本発明で用いへれるロールの材質は上記押圧力を生じ得
るものであればよく、例えば鉄、アルミニウム、ステン
レス、銅、木、プラスチック等の公知のものが鍵げられ
、これらを組合せたものであっても差しつかえない。尚
、ロール内部は空どうであってもなくてもいずれでもよ
い。
The material of the roll used in the present invention may be any material as long as it can generate the above-mentioned pressing force, and examples thereof include known materials such as iron, aluminum, stainless steel, copper, wood, and plastic, and combinations thereof. It's okay to have one. Note that the inside of the roll may or may not be empty.

次いで、本発明の製造法の例を図面により説明する。Next, an example of the manufacturing method of the present invention will be explained with reference to the drawings.

第1図に示される如き、成形用型体Aがモーター4の回
転を伝えるローラー5によって回転され、その内部に抑
圧ロール、成形材料供給部等を有する往復摺動体Cが片
持式梁体Bに沿って前後に移動できる装置が用いられる
。又は、第3図に示される如き、成形材料供給部および
抑圧ロールの取付は部■が片持式像体Bに沿って移動せ
ずに固定され、且つ成形用型体Aが回転し、同時に形成
が進むにつれて自走モーター制御盤15によってコント
ロールされた型移動用モーター11によって前後に移動
することができる装置が用いられる。
As shown in FIG. 1, a molding mold body A is rotated by a roller 5 that transmits the rotation of a motor 4, and a reciprocating sliding body C having a suppression roll, a molding material supplying part, etc. therein is connected to a cantilevered beam body B. A device is used that can move back and forth along the Alternatively, as shown in FIG. 3, the molding material supply part and the suppression roll are mounted so that part (2) is fixed without moving along the cantilevered image body B, and the molding die body A is rotated and at the same time A device is used that can be moved back and forth by a mold movement motor 11 controlled by a self-propelled motor control panel 15 as forming progresses.

化材上に供給される。その後抑圧ロールFが成形材料上
を押圧していく。
It is supplied onto the treated material. After that, the pressing roll F presses the molding material.

その際、押圧ロールFは、第5図に示される如き押圧ロ
ール軸受30およびクランク29によって遊びが生じる
ようになっている。
At this time, the pressure roll F is designed to have some play due to the pressure roll bearing 30 and crank 29 as shown in FIG.

型体A又は往復摺動体Cが成形が進むにつれて移動して
成形物が形成され、液状熱硬化性樹脂の硬化後に筒秋物
が作製される。その後、型体Aの締付はボルト2,3が
はずされ、型体Aが二ツ割に開かれて成形された筒状成
形物が取り出される。
As the molding progresses, the mold body A or the reciprocating sliding body C moves to form a molded product, and after the liquid thermosetting resin is cured, a cylindrical article is produced. Thereafter, the bolts 2 and 3 are removed from tightening the mold body A, the mold body A is opened in half, and the cylindrical molded product is taken out.

本発明の製造法によれば、得られる筒状成形物がFRP
製であるか、更にプラスチック発泡体、レジンコンクリ
ート等が供給できるようにして二層、三層(ザンドイツ
チ状)等の多層形状の筒状成形物の成形も可能である。
According to the manufacturing method of the present invention, the obtained cylindrical molded product is made of FRP
By supplying plastic foam, resin concrete, etc., it is also possible to mold multi-layered cylindrical molded products such as two-layered or three-layered (Sanderman-style).

本発明により得られる筒状成形物は樹脂の含浸むらがな
く、繊維強化材が均一に分散しているため強度に優れた
ものであり、タンク、浄化槽、サイロ等め筒状容器とし
て用いることができる。
The cylindrical molded product obtained by the present invention has excellent strength because there is no uneven resin impregnation and the fiber reinforcing material is uniformly dispersed, and it can be used as a cylindrical container such as a tank, septic tank, or silo. can.

実施例 内径2m、長さ6mの型体を用いて第1、2、4および
5図の如き製造装置によりFRP製筒状成形物を得た。
EXAMPLE Using a mold having an inner diameter of 2 m and a length of 6 m, a cylindrical FRP molded product was obtained using the manufacturing apparatus shown in FIGS. 1, 2, 4, and 5.

先づ、6回転/分(周速度53m/分)の速度で回転す
る鉄製型の表面にガラスロービングSP−3(旭ファイ
バーグラス社製)を50mm長さに切断して4.5kg
/分の割合で供給し、次いで予め硬化促進剤として6重
量%のナフテン酸コバルト(大日本インキ化学社製)を
0.4重量%混合した粘度6ボイズ/25℃の不飽和ポ
リエステル樹脂液(ポリライトFG−104、大日本イ
ンキ化学社製)と、触媒としての55重量%MEKPO
(日本油脂社製)を1.5重量%混合した粘度5ボイズ
/25℃の不飽和ポリエステル樹脂液(同上)とを別々
に調製し、各々をポンプを用いて2インチ径の導管を通
して5kg/分の割合でガラス繊維の上に供給した。
First, glass roving SP-3 (manufactured by Asahi Fiberglass Co., Ltd.) was cut into a length of 50 mm and weighed 4.5 kg on the surface of an iron mold rotating at a speed of 6 rotations/min (peripheral speed 53 m/min).
/min, and then an unsaturated polyester resin liquid (viscosity 6voices/25°C) containing 0.4% by weight of 6% by weight cobalt naphthenate (manufactured by Dainippon Ink Chemical Co., Ltd.) as a curing accelerator ( Polylite FG-104, manufactured by Dainippon Ink Chemical Co., Ltd.) and 55% by weight MEKPO as a catalyst.
An unsaturated polyester resin liquid (same as above) with a viscosity of 5 voids/25°C containing 1.5% by weight of (manufactured by NOF Corporation) was prepared separately, and each was passed through a 2-inch diameter conduit using a pump to give 5 kg/ It was fed onto the glass fiber at a rate of 100 min.

その後に、長さ50cm、直径15cm、重量11.5
kgであり、円周方向に溝が設けられたステンレス製押
圧ロールで押圧した。その際、抑圧ロールはほぼ10c
mのロール間隔で3本用い、各押圧ロールの自重による
押圧力は約230g/cmであった。
After that, length 50cm, diameter 15cm, weight 11.5
kg, and was pressed using a stainless steel pressing roll provided with grooves in the circumferential direction. At that time, the suppression roll is approximately 10c
Three press rolls were used with a roll interval of m, and the pressing force due to the weight of each press roll was about 230 g/cm.

尚、ガラス繊維、樹脂等の供給部および押圧ロールが取
り付けられた往復摺動体は型回転軸に沿って30cm/
分の速度で移動させた。
In addition, the reciprocating sliding body to which the glass fiber, resin, etc. supply section and press roll are attached is 30 cm/30 cm along the mold rotation axis.
Moved at a speed of 1 minute.

得られた筒状成形物は長さ6m、直径2.8m、肉厚8
mmのものであった。このものから軸方向、円周方向の
試片を切り出し、強度を測定した。その結果は表−1に
示す。又、本成形物の空どう率も測定し、表−2に示す
The obtained cylindrical molded product has a length of 6 m, a diameter of 2.8 m, and a wall thickness of 8 m.
It was mm. Samples were cut out from this material in the axial and circumferential directions, and the strength was measured. The results are shown in Table-1. In addition, the void ratio of the molded product was also measured and is shown in Table 2.

比較例1 内径2m、長さ4mの回転型を有する遠心成形機(ハル
  。
Comparative Example 1 A centrifugal molding machine (hull) having a rotary mold with an inner diameter of 2 m and a length of 4 m.

トマン社製V−1.8−2.5−100型)を使用し、
型回転数90回転/分、周速度565.2m/分、実施
例と同様の樹脂液およびガラス繊維の供給速度をそれぞ
れ22kg/分、9.8kg/分で成形して肉厚8mm
、長さ4mのFRP製筒状成形物を得た。実施例と同様
に試験し、その結果を表−1に示した。
Using Toman V-1.8-2.5-100 type),
The mold rotation speed was 90 revolutions/min, the circumferential speed was 565.2 m/min, and the same resin liquid and glass fiber supply rates as in the example were set at 22 kg/min and 9.8 kg/min, respectively, to form a mold with a wall thickness of 8 mm.
A cylindrical FRP molded product having a length of 4 m was obtained. Tests were conducted in the same manner as in Examples, and the results are shown in Table 1.

比較例2 押圧ロールを型と同調しく回転するふうに変えた以外実
施例と同様の装置を用いてFRP製筒状成形物を得た。
Comparative Example 2 An FRP cylindrical molded product was obtained using the same apparatus as in Example except that the press roll was changed to rotate in synchronization with the mold.

型回転数、樹脂液およびガラス繊維の種類および供給蓋
等の条件は実施例と同様にしたが、成形中押圧ロール部
分で成形材料がダンゴ状になり、度々該ロールを成形材
料から離して行った。このため、効率が非常に悪く、実
施例と同様の成形物を製造するのに時間が多く要した。
The conditions such as the mold rotation speed, the type of resin liquid and glass fiber, and the supply lid were the same as in the examples, but during molding, the molding material became lumpy at the press roll, and the roll was frequently separated from the molding material. Ta. For this reason, the efficiency was very low, and it took a lot of time to produce a molded product similar to that of the example.

得られた成形物の物性を表−1に示す。又、この成形物
の空どう率を測定し、表−2に示す。
Table 1 shows the physical properties of the molded product obtained. In addition, the void ratio of this molded product was measured and is shown in Table 2.

試験例 実施例および比較例2に於いて、樹脂およびガラス繊維
の供給量を調節して各肉厚3mm、直径2m、長さ3m
のFRP製筒状成形物を成形した。これらの成形物の前
後をFRPで水漏れしないように蓋をし、水道水が流入
するようにした。次いで、水道水を導入して水圧を上げ
、水漏れについて試験した。その結果を表−3に示す。
In Test Example Example and Comparative Example 2, the amount of resin and glass fiber supplied was adjusted so that each wall thickness was 3 mm, diameter was 2 m, and length was 3 m.
A cylindrical FRP molded article was molded. The front and back of these molded products were covered with FRP to prevent water leakage, and tap water was allowed to flow in. Tap water was then introduced to increase the water pressure and tested for water leaks. The results are shown in Table-3.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明にかかる成形物の製造法を実施するのに当
り使用する装置の一例を示し、第1図は成形材料供給部
、抑圧ロール等が装備された往復摺動体が片持式梁体に
沿って移動し得る成形装置の縦断面正面図であり、第2
図は第1図の装置の側面図、第3図は成形材料供給部、
抑圧ロール等が移動せず、型体が可動し得る成形装置の
縦断面正面図であり、第4図は抑圧ロールが取り付けら
れた部分の正面図であり、第5図は第4図の部分側面図
である。 記 A・・・成形用型体、B・・・片持式梁体C・・・往復
摺動体、D・・・繊維強止材供給装置E・・・液状熱硬
化性樹脂供給装置 F・・・押圧ロール、G・・・型体架台部H・・・成形
材料供給部および抑圧ロールの取付は部、I・・・レー
ル、 1・・・螺着部、2・・・締付けボルト3・・・締付け
ボルト、4・・・モーター5・・・ローラー、6.・・
・支持体 7・・・繊維強化材受入れ口、8・・・強止材カッター
9・・・繊維強化材落下口、10・・・型内面11・・
・型回転モーター、12・・・型回転用減速機13・・
・型移動用モーター、14・・・型移動用減速機15・
・・自走モーター制御盤、16・・・軸受ベアリング1
7・・・トラバース用フォームギア、18・・・強化材
カッター駆動モーター 19・・・樹脂供給ノズル20
・・・エアーシリンダー 21・・・アーム22・・・
強止材切断樹脂製押えローラー、23・・・繊維強化材
 24・・・強止材抜け防止用鉄製押えローラー 25・・・強止材切断用エアシリンダ−26・・・強止
材切断用回転プーリー 27・・・モーター 28・・・樹脂供給ノズル29・
・・クランク 30・・・押圧ロール軸受31・・・押
圧ロール軸棒 特許出願人 : 大日本インキ化学工業株式命社〃 :
山本工業株式会社 −26−
The drawings show an example of an apparatus used to carry out the method for manufacturing a molded article according to the present invention, and FIG. FIG.
The figure is a side view of the device in Figure 1, Figure 3 is a molding material supply section,
FIG. 4 is a front view of a longitudinal cross-section of a molding device in which the mold body can move without the suppression rolls etc. moving; FIG. 4 is a front view of a portion where the suppression rolls are attached; and FIG. FIG. Note A: Molding mold body, B: Cantilever beam body C: Reciprocating sliding body, D: Fiber reinforcing material supply device E: Liquid thermosetting resin supply device F. ...Press roll, G...Mold body mounting section H...For mounting of molding material supply part and suppression roll, I...Rail, 1...Threaded part, 2...Tightening bolt 3 ...Tightening bolt, 4...Motor 5...Roller, 6.・・・
・Support 7...Fiber reinforced material receiving port, 8...Reinforcing material cutter 9...Fiber reinforced material falling port, 10...Mold inner surface 11...
・Mold rotation motor, 12...Mold rotation reducer 13...
・Mold movement motor, 14...Mold movement reducer 15・
...Self-propelled motor control panel, 16...Bearing 1
7... Form gear for traverse, 18... Reinforcement cutter drive motor 19... Resin supply nozzle 20
...Air cylinder 21...Arm 22...
Resin press roller for cutting reinforcing material, 23...Fiber reinforced material 24...Iron press roller for preventing the reinforcing material from coming off 25...Air cylinder for cutting reinforcing material 26...For cutting reinforcing material Rotating pulley 27...Motor 28...Resin supply nozzle 29.
...Crank 30...Press roll bearing 31...Press roll shaft patent applicant: Dainippon Ink & Chemicals Co., Ltd. Meisha:
Yamamoto Industries Co., Ltd. -26-

Claims (1)

【特許請求の範囲】[Claims] 重力の2倍より小さい遠心力か生じる速度で回転する筒
状型の内壁面に繊維化材と液状熱硬化性樹脂とを供給し
、かかる強化材と樹脂とからなる材料の表面を、自在に
回転する少なくとも1個の押圧ロールの自重で押圧して
樹脂を強化材に十分に含浸せしめ成形することを特徴と
する筒状成形物の製造法。
A fibrous material and a liquid thermosetting resin are supplied to the inner wall surface of a cylindrical mold that rotates at a speed that generates a centrifugal force less than twice the force of gravity, and the surface of the material made of the reinforcing material and resin is freely shaped. 1. A method for producing a cylindrical molded article, which comprises pressing with the weight of at least one rotating press roll to sufficiently impregnate a reinforcing material with resin and molding the reinforcing material.
JP57144337A 1982-08-20 1982-08-20 Manufacture of cylindrical molded item Granted JPS5933118A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57144337A JPS5933118A (en) 1982-08-20 1982-08-20 Manufacture of cylindrical molded item
GB08322444A GB2129764B (en) 1982-08-20 1983-08-19 Apparatus and method for the manufacture of fibre-reinforced cylindrical products
DE19833330065 DE3330065A1 (en) 1982-08-20 1983-08-19 DEVICE AND METHOD FOR PRODUCING CYLINDRICAL PARTS FROM FIBER-REINFORCED HEAT-RESISTABLE RESIN
FR8313555A FR2531905B1 (en) 1982-08-20 1983-08-22 APPARATUS FOR MANUFACTURING CYLINDRICAL PRODUCTS IN FIBER REINFORCED THERMOSETTING RESIN AND METHOD FOR MANUFACTURING SAID PRODUCTS
US06/525,405 US4611980A (en) 1982-08-20 1983-08-22 Fiber reinforced thermosetting resin cylindrical shape product manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144337A JPS5933118A (en) 1982-08-20 1982-08-20 Manufacture of cylindrical molded item

Publications (2)

Publication Number Publication Date
JPS5933118A true JPS5933118A (en) 1984-02-22
JPH0317664B2 JPH0317664B2 (en) 1991-03-08

Family

ID=15359759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144337A Granted JPS5933118A (en) 1982-08-20 1982-08-20 Manufacture of cylindrical molded item

Country Status (1)

Country Link
JP (1) JPS5933118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639169A (en) * 1992-05-22 1997-06-17 Seiko Epson Corporation Printer and method of control
US6141028A (en) * 1992-05-22 2000-10-31 Seiko Epson Corporation Printer and control method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078671A (en) * 1973-11-14 1975-06-26
JPS53117066A (en) * 1977-03-24 1978-10-13 Sekisui Chem Co Ltd Manufacture of composition
JPS54111578A (en) * 1978-02-21 1979-08-31 Yamamoto Kougiyou Kk Method of making ribbed frp pipe
JPS54111577A (en) * 1978-02-21 1979-08-31 Yamamoto Kougiyou Kk Method of forming frp product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078671A (en) * 1973-11-14 1975-06-26
JPS53117066A (en) * 1977-03-24 1978-10-13 Sekisui Chem Co Ltd Manufacture of composition
JPS54111578A (en) * 1978-02-21 1979-08-31 Yamamoto Kougiyou Kk Method of making ribbed frp pipe
JPS54111577A (en) * 1978-02-21 1979-08-31 Yamamoto Kougiyou Kk Method of forming frp product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639169A (en) * 1992-05-22 1997-06-17 Seiko Epson Corporation Printer and method of control
US6141028A (en) * 1992-05-22 2000-10-31 Seiko Epson Corporation Printer and control method therefor

Also Published As

Publication number Publication date
JPH0317664B2 (en) 1991-03-08

Similar Documents

Publication Publication Date Title
US3150219A (en) Process of making plastic pipes
US3778322A (en) Process of forming spirally wound product
JPH05504111A (en) fiber reinforced composite
DK144864B (en) PROCEDURE FOR THE PREPARATION OF A CUTTING BODY OF CEMENTAL MATERIALS ARMED WITH GLASS FIBER WIRE AND APPARATUS FOR USE IN EXERCISING THE PROCEDURE
US3679337A (en) Manufacture of plastic articles
US4611980A (en) Fiber reinforced thermosetting resin cylindrical shape product manufacturing apparatus
JPS5933118A (en) Manufacture of cylindrical molded item
KR0148824B1 (en) Process for manufacturing reinforced duroplastic pipes in a centrifugal process and installation for carrying out the process
CN1277669C (en) Making apparatus and method for wet type sanding and enwinding glass fibre reinforced plastic pipe from underside
US3226273A (en) Method and apparatus for making reinforced plastic tubing
US3150026A (en) Apparatus for placing and bonding weft strands to continuous warp strands
JPS59204516A (en) Preparation of high strength cylindrical molded article
CN216506222U (en) A mould for glass steel production
SE446163B (en) HANDLY ARMED CONCRETE PILLAR AND SET AND APPARATUS FOR ITS MANUFACTURING
GB2058711A (en) Filament winding of non-linear plastic articles
CN113306063B (en) Foaming equipment for producing polyurethane foam plastic and production process
JPH0243616B2 (en)
US3507011A (en) Apparatus for manufacturing reinforced tubular plastics material
JP2956472B2 (en) Apparatus and method for molding fiber-reinforced plastic pipe
JPH039858B2 (en)
US3555614A (en) Tube forming apparatus
US3687587A (en) Apparatus for forming fiber preforms
CA1134115A (en) Method and apparatus for producing reinforced synthetic resin pipe
CN111590931A (en) Continuously-woven and wound pultruded glass fiber reinforced plastic composite pipe, production method and production line
JPH039859B2 (en)