JPH039858B2 - - Google Patents

Info

Publication number
JPH039858B2
JPH039858B2 JP57184083A JP18408382A JPH039858B2 JP H039858 B2 JPH039858 B2 JP H039858B2 JP 57184083 A JP57184083 A JP 57184083A JP 18408382 A JP18408382 A JP 18408382A JP H039858 B2 JPH039858 B2 JP H039858B2
Authority
JP
Japan
Prior art keywords
resin
fiber
mold
molding
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57184083A
Other languages
Japanese (ja)
Other versions
JPS5973919A (en
Inventor
Shuya Tsuji
Yoshichika Kawabata
Rokuro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Yamamoto Kogyo KK
Original Assignee
Yamamoto Kogyo KK
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Kogyo KK, Dainippon Ink and Chemicals Co Ltd filed Critical Yamamoto Kogyo KK
Priority to JP57184083A priority Critical patent/JPS5973919A/en
Priority to GB08322444A priority patent/GB2129764B/en
Priority to DE19833330065 priority patent/DE3330065A1/en
Priority to US06/525,405 priority patent/US4611980A/en
Priority to FR8313555A priority patent/FR2531905B1/en
Publication of JPS5973919A publication Critical patent/JPS5973919A/en
Publication of JPH039858B2 publication Critical patent/JPH039858B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発泡樹脂層を有する繊維強化樹脂筒状
成形物の製造法に関するものである。 従来、発泡樹脂層を有する繊維強化樹脂筒状成
形物は保温性能向上、剛性性能向上等を目的とし
て水タンク、耐熱容器等に実用化されている。 その成形方法として実施されている方法は、ガ
ラス繊維等の強化材と不飽和ポリエステル樹脂等
の液状熱硬化性樹脂とをハンドレーアツプ法、遠
心成形法、フイラメントワインデイング法等の各
種成形手段により、先づ繊維強化樹脂成形体を成
形し、その後該成形体に各種合成樹脂発泡体の定
尺板を接着剤等を用いて張り付ける方法が一般的
である。サンドイツチ成形体の場合は更に次の工
程で発泡体外周面に繊維強化樹脂成形層を構成
し、複合成形体を得ている。 この方法は、定尺の発泡体を1枚づつ接着剤を
塗布して張り付ける作業のためわずらわしく、所
望の作業時間も多大である。更に技術的な問題点
として発泡体面に継目が有るためその継目をパテ
等で埋めてやる必要があり、その手間がかかる
上、保温性能が低下してくることが挙げられる。
また筒状形状の場合、わん曲部が発生するのでそ
の曲率半径に合致させて定尺発泡体を屈曲させて
張付ける必要があり、その際発泡体といえども剛
性を有しているためはね返り現象があり、完全に
曲率を一致させて接着させることは困難である。
一般に平面状物で繊維強化樹脂体に発泡体を張り
付ける作業は重し等で加圧して、接着性を向上さ
せる手段が用いられるが、わん曲部を有する筒状
成形物の場合重しで加圧するにしても一定間隔ず
つ回数を重ねて作業する必要があるので1個の成
形品を完成させるのに有する作業所要時間はぼう
大なものになる。仮に発泡体の接着性を向上せし
めるため油圧力等で行なう方法も考えられるが要
する設備が大がかりとなり経済的にも問題であ
る。 かかる問題点を解決するのに、発泡用樹脂をス
プレー機等を用いて繊維強化樹脂成形体の外側よ
り吹付け発泡し、発泡体層を構成させることは容
易に想像出来る。しかし、外側より吹き付け発泡
させる場合周知の様に供給材料の約30%はミスト
として空気中に飛散するため省資源指向に逆行
し、作業環境上極めて問題で、特にウレタン発泡
の場合イソシアネート類が有毒性であり、作業者
の衛生上の問題も発生する。 上記の如き欠点を改良するために特開昭49−
8562号では回転する円筒型体の内側に離型用シー
トを装着し、この離型用シートの内側に発泡合成
樹脂層を形成させ、次にロービング状の強化繊維
を円筒状型体の軸方向のほぼ中央に型体の長さと
ほぼ同じ寸法のガラス繊維等のロービング状強化
繊維を巻いた軸状体を設置し、前記発泡層の内側
に遠心力を用いて巻装し、その巻き移しが終了し
た後、今度は樹脂を供給するためのノズルを設け
た軸状体を強化材を供給する場合と同様に、型体
軸のほぼ中央に型体の長さとほぼ同寸法の軸状体
を固定してノズルを通して樹脂を繊維上に吹きつ
け、遠心力を利用して樹脂を繊維強化材に含浸さ
せて、前記発泡層の内周面を覆つた複合管を得る
遠心成形方法が提案されている。この方法は発泡
体樹脂層と繊維強化樹脂層を連続的に成形し、し
かも発泡樹脂層に継目がなく、作業環境面、経済
性面で効果のある内巻き成形という点では優れた
成形法である。 しかし、周知の如く強化繊維と呼ばれるガラス
繊維や炭素繊維は一般的に樹脂の比重より大きく
概略2倍以上の比重である。そのため、該特許の
実施例の如く、遠心力が働く様な状態に於いて回
転型体に比重の異る2種類の物質を供給すると、
比重の大きい物質に位置してしまうのである。即
ち、最初に比重の大きいガラス繊維を外側に置
き、その上から吹き付けられた樹脂は比重が小さ
いため、ガラス繊維と全く分離してしまうことに
なり、かかる樹脂がガラス繊維中に浸透すること
が出来ず、繊維強化樹脂層と発泡層とは全く接着
しないことになる。また、この方法は、型体と概
略同一長さの樹脂と繊維強化材の別々の軸状体を
型体の中心軸附近に固定させ、別々の工程で繊維
強化材と樹脂を供給することになつているが、実
際に成形する際にどの様に軸状体を移動させ、か
つ稼動させるのが具体的でなく、極めて実現性の
乏しいものである。 本発明者等は、発泡体樹脂層と繊維強化樹脂層
を継目なく連続的に生産し、環境衛生面で優れる
内巻き成形で、しかも経済性、性能の面で優れた
筒状成形物の成形方法を鋭意研究の結果、本発明
に到達した。 即ち、本発明は(A)重力の2倍より小さい遠心力
が生じる速度で回転する筒状型の内壁面に於い
て、(A)繊維強化熱硬化性樹脂を供給し、その上を
自在に回転する少くとも1個の押圧ロールの自重
で押圧し、成形する工程及び(B)発泡性樹脂を供給
して発泡成形する工程、必要により上記(A)及び(B)
工程の繰り返し工程により成形することを特徴と
する発泡樹脂層を有する繊維強化樹脂筒状成形物
の製造法を提供する。 本発明で用いられる筒状の型は回転軸方向に沿
つて少なくとも二ツ割にでき、外側で締付けボル
トによつて閉じることができるものが好ましく、
通常その断面が円、楕円、多角形およびこれらの
部分的に欠けたものである。この型の材質は金
属、木、プラスチツク、石等であるが、とりわけ
金属が好ましい。又、この型の大きさは特に制限
はないが、型内面で成形することと成形物の運搬
を考慮して通常内径1〜4m、長さ1〜10m程度
である。勿論径や長さを上記範囲以外にすること
もできる。 本発明に於いては上記型の内側に繊維強化熱硬
化性樹脂、即ち繊維強化材および液状熱硬化性樹
脂の供給部が置かれ、その供給部が前後に自在に
移動するか、又はかかる供給部が固定されて型自
体が前後に移動するように設計される。 又、本発明での型はモーターで駆動される複数
個のローラーによつて回転される。その際の回転
速度は重力の2倍より小さい遠心力が生じる速度
が選択され、好ましくは重力の1.2倍以下、最適
には重力より小さい遠心力が生じる速度である。 一般に、回転体に於ける壁面での遠心力はF=
mγω2により求められる。この場合、Fは遠心
力、mは単位質量、γは回転体の半径、ωは角速
度である。仮に2mの内径の円筒型を60回転/分
の速度で回転させてFRP製円筒成形物を作製す
る際の成形物の1cm3単位に働く遠心力は成形材料
の比重を約1.8とすると7.24g・cm/s2となり、こ
れに対して重力がF=mα……(注:αは加速度)
で計算され、1.8g・cm/s2となることから重力の
約4倍となる。この場合、遠心力が重力の2倍と
なるには回転数が42回転/分、周速度が266m/
分程度である。尚、本発明者らの実験によれば、
一般的な遠心成形法に於いては、供給した成形材
が型体より落下しないようにするには重力の2倍
を越える、好ましくは4倍以上の遠心力が必要で
あり、遠心力がそれより少ないと成形材料を壁体
に押圧することが難しくなる。 上述から、本発明の型体は内型によつて変わる
ため必ずしも正確ではないが、1〜30回転/分、
好ましくは1〜18回転/分、より好ましくは1〜
15回転/分程度の回転速度、或いは周速度0.5〜
300m/分で回転される。 繊維強化熱硬化性樹脂に用いられる繊維強化材
はガラス繊維、炭素繊維、アラミド繊維(デユポ
ン社製、ケブラー繊維)等の公知の繊維強化材を
挙げることができ、特にガラス繊維が好ましい。
かかる強化材はマツト状、ロービング状、ロービ
ングを適当な長さに切断したチヨツプ状のもの等
が使用され、それらの組合せで使用することも可
能である。又、かかる強化材の使用量は通常、成
形物中10〜80重量%、好ましくは15〜60重量%、
より好ましくは20〜50重量%となる量が適当であ
る。 又、繊維強化熱硬化樹脂に用いられる液状熱硬
化性樹脂としては、不飽和ポリエステル樹脂、エ
ポキシ樹脂、フエノール樹脂、ビニルエステル樹
脂等の公知の液状熱硬化性樹脂が挙げられ、特に
不飽和ポリエステル樹脂が好ましい。この不飽和
ポリエステル樹脂を用いる場合には、触媒として
過酸化物等および硬化促進剤としての金属塩、ア
ミン等を併用して硬化する方法が好ましい。かか
る触媒および硬化促進剤は型内面の繊維強化材上
に樹脂とは別々に、又は予め混合されて供給され
ても良い。 この液状熱硬化樹脂は繊維強化材への含浸性、
たれ現象等から粘度が重要となる。即ち、樹脂粘
度が低過ぎる場合は成形物が白化したり、たれ現
象が生じやすく、逆に高過ぎる場合には含浸性が
悪く、そのため成形材料をローラーで押圧しても
型面に附着せず落下してしまい成形できなくな
る。このような点からかかる樹脂の粘度は通常、
0.5〜20ポイズ/25℃(ブルツク・フイールド粘
度)、好ましくは1.0〜15ポイズ/25℃、更に好ま
しくは2〜10ポイズから適宜選択される。 本発明の成形方法に於ける繊維強化熱硬化性樹
脂の成形は未硬化の該樹脂の表面を、自在に回転
する押圧ロールの自重で押圧して液状熱硬化性樹
脂を繊維強化材に含浸せしめ、次いで硬化せしめ
ることにより行なわれる。この成形方法は、特開
昭54−111577号に示される如き径が大幅に異る型
体と押圧ロールとをチエーンホイール等を用いて
強制的に回転速度を同一にさせ、含浸脱泡を行な
う方法とは全く異なる。すなわち、本発明では第
5図の様に押圧ロールが自在に回転する様な機構
である。この際、押圧ロールは前後の適当な幅で
自由に移動できるように少くとも1個のクランク
によるか、適当な幅で可動する軸棒によるか、又
はそれらの組合せによつて調節されるのが望まし
い。かかるロールが成形材料を押圧する際には押
圧ロールはその回転が人為的に操作されずに、型
体の回転に同調しながらも成形材料の抵抗等によ
る回転速度の変調に対応できるものである。 上記繊維強化熱硬化性樹脂を成形の際に、液状
熱硬化性樹脂を繊維強化材に十分含浸させるのに
押圧ロールの自重が採用される。勿論、押圧ロー
ルの自由な回転を妨げない範囲で多少の荷重を掛
けることは差しつかえないが、荷重が大き過ぎる
か、ロール自身の重さが大となると、型体の回転
速度が遅いためロールが成形材料中に沈み込んで
樹脂がしぼり出されて樹脂含量の低い成形物とな
るので好ましくない。又、逆に押圧ロールの重さ
が小さいと樹脂の含浸が不十分となり、成形材料
中に空気泡が残り型面より該材料が落下し成形で
きなくなる。そのため、本発明で用いられる押圧
ロールは通常、長さ10〜100cm、好ましくは30〜
70cmのものであり、その自重としてロールの長さ
1cm当り20g〜600g、好ましくは50〜400g、更に
好ましくは80〜300gの荷重、すなわち押圧力が
成形材料面にかかるものが適する。かかるロール
で樹脂の含浸、空気泡の脱泡を効率よく達成させ
るために、本発明に於いては上記ロールを適当な
間隔で3本以上用いた方が良い。 上記押圧ロールの形状としては、その長さは上
記の如くであるが、成形物の長さに対応して適宜
変えることができ、又、その径は型体の内径より
小さく、型体内で自在に回転できる寸法であれば
よく、通常直径5〜40cmが適当である。又、押圧
時成形材料と接触するロール外周面には溝が有つ
た方が良く、その溝の形状はロール軸方向に直線
状、螺旋状、碁盤目状自由に選択でき、その深さ
も自由に選択できる。更に、押圧ロールはその外
周面に網目状のネツトが被覆されたものでも良
い。 本発明で用いられるロールの材質は上記押圧力
が生じ得るものであればよく、例えば鉄、アルミ
ニウム、ステンレス、銅、木、プラスチツク等の
公知のものが挙げられ、これらを組合せたもので
あつても差しつかえない。尚、ロール内部は空ど
うであつてもなくてもいずれでもよい。 本発明方法では、繊維強化熱硬化性樹脂層の成
形前又は成形後、発泡性樹脂を供給して発泡成形
が行なわれる。 その際用いられる発泡用樹脂としては、液状樹
脂で供給し、その後反応して発泡する機構の樹脂
であれば一般公知の樹脂を自由に選択出来る。例
えば硬質ウレタン樹脂、尿素樹脂、フエノール樹
脂等があり、更に熱可塑性樹脂の様に供給材料は
粉粒体状であつても熱溶融機構を取付けること
で、溶融状となつて発泡する樹脂でも成形は可能
である。例えばアクリル樹脂、ポリエチレン樹
脂、ポリスチレン樹脂および前述の樹脂の共重合
体発泡体品等一般公知の発泡用熱可塑樹脂も可能
である。 これら発泡用樹脂は樹脂単独で使用してもよい
し、樹脂に各種無機質充填剤、微小中空球体、強
化繊維等を混合させて使用してもよい。又、使用
する発泡体の発泡倍率は使用する目的によつて自
由に選択することが可能であるが、一般的には2
〜60倍程度が好ましい。 尚、発泡層の厚さが均一でない場合にカツター
等で切削して均一の厚さにするのが好ましい。 本発明での発泡樹脂供給方法は発泡樹脂の種類
によつて適宜選択される。いずれの発泡用樹脂を
使用するにしても、一般的にはかかる樹脂は2液
混合タイプであるため、通常供給用原料タンクを
筒状型体の外部に設置させ、トランスフアーポン
プ等を利用してホースを通じて筒状型体の内部に
セツトした供給装置固定用の染体の先端部に取付
けた、混合システムを内在するガン本体から未発
泡樹脂を供給する方法が採られる。 この発泡用液状樹脂を供給する方法は上記スプ
レー方式以外に単に重力を利用する落下方式、発
泡樹脂層を形成するように空間部を設けて注入発
泡する方式等でも良い。 前述の成形による繊維強化熱硬化性樹脂層及び
発泡樹脂層の組合せは自由に選択出来る。例えば
繊維強化熱硬化性樹脂層を内層とし、発泡樹脂層
を外層とするか、その逆も可で有り、又それらの
外層の上に他方の層を積層した三層以上のものも
差しつかえない。好ましくは繊維強化熱硬化性樹
脂層間に発泡体層が入つた三層構造である。尚、
発泡樹脂層が最外層となる場合にはその外側に金
属、プラスチツク、紙等を筒状成形物の成形後被
覆するか、又は成形前に予め型内面に張り付けて
おいて成形と同時に被覆しても良い。後者の場
合、他の被覆材は型体と発泡樹脂層との離型用基
材として作用する利点がある。 次いで、本発明に於ける繊維強化熱硬化性樹脂
層の成形例を図面により説明する。 第1図に示される如き、成形用型体Aがモータ
ー4の回転を伝えるローラー5によつて回転さ
れ、その内部に押圧ロール、成形材料供給部等を
有する往復摺動体Cが片持式染体Bに沿つて前後
に移動できる装置が用いられる。又は、第3図に
示される如き、成形材料供給部および押圧ロール
の取付け部Iが片持式染体Bに沿つて移動せずに
固定され、且つ成形用型体Aが回転し、同時に形
成が進むにつれて自走モーター制御盤15によつ
てコントロールされた型移動用モーター11によ
つて前後に移動することができる装置が用いられ
る。 型体A中で、先づ繊維強化材受入れ口7から入
つた強化材が強化材カツター8によつて裁断され
て型内面に落下され、次いで液状熱硬化樹脂供給
装置Eから樹脂および触媒等が強化材上に供給さ
れる。その後押圧ロールFが成形材料上を押圧し
ていく。 その際、押圧ロールFは、第5図に示される如
き押圧ロール軸受30およびクランク29によつ
て遊びが生じるようになつている。 型体A又は往復摺動体Cが成形が進むにつれて
移動して成形物が形成され、液状熱硬化性樹脂の
硬化後に筒状物が作製される。 この様にして成形した発泡樹脂層をもつた繊維
強化樹脂筒状物は従来の方法によるものと異なり
連続的に生産され、しかも発泡層に継目がないた
め断熱性能に優れ、更に接着性能が優れているた
め強度の高いものであり、繊維強化材が均一に分
散しているため強度に優れたものであり、タン
ク、浄化層、サイロ等の筒状容器として用いるこ
とができる。 実施例 1 内径2.8m、長さ6mの筒状型体を用いて第1,
2,4および5図の如き製造装置により先づ繊維
強化熱硬化性樹脂層を成形した。 6回転/分(周速度53m/分)の速度で回転す
る鉄製型の表面にガラスロービングSP−3(旭フ
アイバーグラス社製)を50mm長さに切断して6
Kg/分の割合で供給し、次いで予め硬化促進剤と
して6重量%のナフテン酸コバルト溶液(大日本
インキ化学社製)を0.4重量%混合した粘度6ポ
イズ/25℃の不飽和ポリエステル樹脂液(ポリラ
イトFG−104、大日本インキ化学社製)と、触媒
としての55重量%MEKPO溶液(日本油脂社製)
を1.5重量%混合した粘度5ポイズ/25℃の不飽
和ポリエステル樹脂液(同上)とを別々に調製
し、各々をポンプを用いて2インチ径の導管を通
して5Kg/分の割合でガラス繊維の上に供給し
た。 その後に、長さ50cm、直径15cm、重量11.5Kgで
あり、円周方向に溝が設けられたステンレス製押
圧ロールで押圧した。その際、押圧ロールはほぼ
10cmのロール間隔で3本用い、各押圧ロールの自
重による押圧力は約230g/cmであつた。 尚、ガラス繊維、樹脂等の供給部および押圧ロ
ールが取り付けられた往復摺動体は型回転軸に沿
つて30cm/分の速度で移動させた。 得られた繊維強化熱硬化性樹脂層を有する筒状
成形物は長さ6m、直径2.8m、肉厚8mmのもので
あつた。 かかる樹脂層が硬化した後、型を上記と同様に
回転させながら該樹脂層上にポリイソシアネート
成分としてハイプロツクスSP−290(大日本イン
キ化学社製)及びポリオール成分としてハイプロ
クツスRR−986C(大日本インキ化学社製)が吹
付け発泡装置ミニプロブラー(日本ランズバーグ
社製)により混合され、吹付けられた。この装置
のガン本体は第1図の往復摺動動体Cに下向きに
取付けられた。又、両成分はヒーターホースによ
り49℃に加温され、700/分のコンプレツサー
により6Kg/cm2の圧力で吹付けられた。 得られた硬質ウレタン発泡層の厚みは約40mmで
あつたが、その表面が3〜8mmの凹凸状となつた
ため、集塵カバー内に取付けた超硬刃ホイールカ
ツターを用いてその表面を約10mm切削し、均一厚
(30mm)の硬質ウレタン発泡層を形成した。尚、
かかる発泡層の仕上り密度は0.067Kg/cm3であつ
た。 発泡層成形後、直ちに該発泡層の上に前述と同
様にして繊維強化熱硬化性樹脂層を形成せしめ、
繊維強化熱硬化性樹脂層間にウレタン発泡層を含
む三層構造の筒状成形物を得た。 実施例 2 第6図に示す如き、長さ6m、内径2.8m及び弦
の長さ1mの欠円状の筒状の型を用い、実施例1
と同様にして繊維強化熱硬化性樹脂層を形成した
後、その上に硬質ウレタン発泡層を形成して二層
構造の筒状成形物を得た。この成形物は繊維強化
熱硬化性樹脂層の厚さ8mm、ウレタン発泡層の長
さ30mmのものであつた。 応用例(浄化槽の作製) 実施例1で成形した筒状成形物を第8図に示す
如く直径60cmの穴を3個ダイヤモンドカツターで
開け、その部分をヤスリで平滑にした後、予めハ
ンドレー成形された外径60cmのFRP製マンホー
ル(使用樹脂:55重量%メチルエチルケトンパー
オキサイド溶液を1重量%含有ポリライトFH−
123−大日本インキ化学社製;使用ガラスチヨツ
プドマツト:450g/m2、8プライ)を各開口部
に不飽和ポリエステル樹脂製パテ、補強用として
450g/m2のガラスチヨツプドマツト4プライ及
び液状不飽和ポリエステル樹脂を用いて接合し
た。又、筒状成形物の前後の開口部に、予め成形
したFRP製鏡を上記マンホールと同様にして接
合した。この際のFRP製鏡は450g/m2のガラス
チヨツプドマツトを8プライ使用し、上記マンホ
ールを成形する際の樹脂と同じ樹脂を用いて成形
したもので、厚さ8mm、曲面部の半径4mの円弧
である。 得られた浄化槽について物性を調べた。 (1) 筒状成形物の機械的強度
The present invention relates to a method for manufacturing a fiber-reinforced resin cylindrical molded article having a foamed resin layer. Conventionally, fiber-reinforced resin cylindrical molded products having a foamed resin layer have been put to practical use in water tanks, heat-resistant containers, etc. for the purpose of improving heat retention performance, rigidity performance, etc. The molding method used is a reinforcing material such as glass fiber and a liquid thermosetting resin such as unsaturated polyester resin, using various molding methods such as hand lay-up method, centrifugal molding method, and filament winding method. A common method is to first form a fiber-reinforced resin molded body, and then attach a fixed length plate of various synthetic resin foams to the molded body using an adhesive or the like. In the case of a Sanderutsch molded product, a fiber-reinforced resin molded layer is further formed on the outer peripheral surface of the foam in the next step to obtain a composite molded product. This method is cumbersome and requires a long working time, as it involves applying an adhesive to each foam of a fixed length one by one. Another technical problem is that since there are seams on the foam surface, it is necessary to fill the seams with putty or the like, which is time-consuming and reduces heat retention performance.
In addition, in the case of a cylindrical shape, a curved part occurs, so it is necessary to bend and attach the standard length foam to match the radius of curvature. Due to this phenomenon, it is difficult to adhere with perfectly matched curvatures.
Generally, when attaching a foam to a fiber-reinforced resin body using a flat object, pressure is applied with a weight to improve adhesion, but in the case of a cylindrical molded object with a curved part, a weight is applied. Even when applying pressure, it is necessary to repeat the work several times at regular intervals, so the time required to complete one molded product becomes enormous. Although it is possible to use hydraulic pressure or the like to improve the adhesion of the foam, it requires large-scale equipment and is economically problematic. In order to solve this problem, it can be easily imagined that a foaming resin is sprayed from the outside of the fiber-reinforced resin molded body using a spray machine or the like to form a foam layer. However, when blowing foam from the outside, about 30% of the supplied material is dispersed into the air as mist, which goes against resource conservation and is extremely problematic in terms of the working environment.Especially in the case of urethane foaming, isocyanates are present. It is toxic and poses health problems for workers. In order to improve the above-mentioned drawbacks, JP-A-49-
In No. 8562, a mold release sheet is attached to the inside of a rotating cylindrical body, a foamed synthetic resin layer is formed inside this mold release sheet, and then roving-shaped reinforcing fibers are attached in the axial direction of the cylindrical body. A shaft-like body wrapped with roving-like reinforcing fibers such as glass fibers with approximately the same dimensions as the length of the mold body is installed approximately in the center of the mold body, and is wound inside the foam layer using centrifugal force, so that the winding is transferred. After finishing the process, insert a shaft-like body with a nozzle for supplying resin and a shaft-like body with approximately the same size as the length of the mold body, in the same way as when supplying reinforcing material, in the center of the mold body axis. A centrifugal molding method has been proposed in which a resin is sprayed onto the fibers through a fixed nozzle, and centrifugal force is used to impregnate the fiber reinforcement with the resin to obtain a composite tube that covers the inner peripheral surface of the foam layer. There is. This method is an excellent molding method in that the foam resin layer and the fiber-reinforced resin layer are continuously molded, and there is no seam in the foam resin layer, and the inner-roll molding is effective in terms of the working environment and economy. be. However, as is well known, glass fibers and carbon fibers called reinforcing fibers generally have a specific gravity that is approximately twice or more than that of resin. Therefore, if two types of substances with different specific gravities are supplied to the rotating body in a state where centrifugal force is exerted, as in the example of the patent,
It is located in substances with high specific gravity. That is, first, the glass fiber with a high specific gravity is placed on the outside, and the resin sprayed over it has a low specific gravity, so it completely separates from the glass fiber, and the resin does not penetrate into the glass fiber. This results in no adhesion between the fiber reinforced resin layer and the foam layer. In addition, this method fixes separate shaft-like bodies of resin and fiber reinforcement material, each having approximately the same length as the mold body, near the central axis of the mold body, and supplies the fiber reinforcement material and resin in separate processes. However, it is not concrete how to move and operate the shaft-shaped body during actual molding, and it is extremely difficult to realize. The present inventors have successfully produced a foam resin layer and a fiber-reinforced resin layer seamlessly and continuously, and formed a cylindrical molded product that is superior in terms of environmental hygiene and in terms of economy and performance. As a result of intensive research on the method, the present invention was arrived at. That is, the present invention provides (A) a fiber-reinforced thermosetting resin on the inner wall surface of a cylindrical mold that rotates at a speed that generates a centrifugal force smaller than twice the force of gravity; A step of pressing and molding with the weight of at least one rotating press roll; (B) a step of supplying a foamable resin and foam-molding; as necessary, the above (A) and (B)
Provided is a method for manufacturing a fiber-reinforced resin cylindrical molded article having a foamed resin layer, which is characterized in that the molding is performed through repeated steps. The cylindrical mold used in the present invention is preferably one that can be split into at least two parts along the rotation axis direction and can be closed on the outside with a tightening bolt.
Usually, the cross section is a circle, ellipse, polygon, or partially missing one of these. Materials for this mold include metal, wood, plastic, stone, etc., with metal being particularly preferred. The size of this mold is not particularly limited, but it is usually about 1 to 4 m in inner diameter and 1 to 10 m in length, considering the molding inside the mold and the transportation of the molded product. Of course, the diameter and length can also be outside the above range. In the present invention, a fiber-reinforced thermosetting resin, that is, a fiber-reinforced material and a liquid thermosetting resin supply section is placed inside the mold, and the supply section can freely move back and forth, or The part is fixed and the mold itself is designed to move back and forth. Further, the mold according to the present invention is rotated by a plurality of rollers driven by a motor. The rotational speed at this time is selected to be a speed that generates a centrifugal force smaller than twice the gravity, preferably 1.2 times the gravity or less, and optimally a speed that generates a centrifugal force smaller than the gravity. Generally, the centrifugal force on the wall of a rotating body is F=
It is determined by mγω 2 . In this case, F is centrifugal force, m is unit mass, γ is radius of the rotating body, and ω is angular velocity. If a cylindrical mold with an inner diameter of 2 m is rotated at a speed of 60 revolutions per minute to produce an FRP cylindrical molded product, the centrifugal force acting on a 1 cm 3 unit of the molded material will be 7.24 g, assuming the specific gravity of the molding material is approximately 1.8.・cm/s 2 , and the gravity is F=mα... (Note: α is acceleration)
It is calculated as 1.8g・cm/s 2 , which is about four times the force of gravity. In this case, for the centrifugal force to be twice the gravity, the rotational speed is 42 revolutions/min and the circumferential speed is 266 m/min.
It takes about a minute. According to the experiments conducted by the present inventors,
In the general centrifugal molding method, in order to prevent the supplied molding material from falling from the mold, a centrifugal force of more than twice the force of gravity, preferably four times or more, is required. If the amount is less, it becomes difficult to press the molding material against the wall. From the above, the mold body of the present invention varies depending on the inner mold, so it is not necessarily accurate, but the speed is 1 to 30 revolutions/minute,
Preferably 1 to 18 revolutions/min, more preferably 1 to 18 revolutions/min.
Rotation speed of about 15 revolutions/minute or circumferential speed of 0.5~
Rotates at 300m/min. Examples of the fiber reinforcing material used in the fiber-reinforced thermosetting resin include known fiber reinforcing materials such as glass fiber, carbon fiber, and aramid fiber (manufactured by DuPont, Kevlar fiber), with glass fiber being particularly preferred.
Such a reinforcing material may be in the form of a pine, a roving, or a chop formed by cutting the roving into an appropriate length, and a combination thereof may also be used. In addition, the amount of such reinforcing material used is usually 10 to 80% by weight, preferably 15 to 60% by weight, in the molded product.
More preferably, the amount is 20 to 50% by weight. In addition, examples of the liquid thermosetting resin used in the fiber-reinforced thermosetting resin include known liquid thermosetting resins such as unsaturated polyester resin, epoxy resin, phenol resin, and vinyl ester resin, and in particular, unsaturated polyester resin. is preferred. When using this unsaturated polyester resin, a method of curing using a combination of peroxide or the like as a catalyst and a metal salt, amine, or the like as a curing accelerator is preferred. Such catalysts and curing accelerators may be supplied onto the fiber reinforcing material on the inner surface of the mold separately from the resin or mixed in advance. This liquid thermosetting resin has the ability to impregnate fiber reinforced materials,
Viscosity is important because of the sag phenomenon. In other words, if the resin viscosity is too low, the molded product tends to whiten or sag, while if it is too high, impregnating properties are poor, so even when the molding material is pressed with a roller, it does not stick to the mold surface. It will fall and will not be able to be molded. From this point of view, the viscosity of such resin is usually
The viscosity is appropriately selected from 0.5 to 20 poise/25°C (Bruck-Field viscosity), preferably 1.0 to 15 poise/25°C, and more preferably 2 to 10 poise. In the molding method of the present invention, the fiber-reinforced thermosetting resin is molded by pressing the surface of the uncured resin with the weight of a freely rotating press roll to impregnate the fiber-reinforced material with the liquid thermosetting resin. , followed by curing. This molding method, as shown in JP-A No. 54-111577, uses a chain wheel or the like to force the mold body and the pressure roll, which have significantly different diameters, to rotate at the same speed to perform impregnation and defoaming. The method is completely different. That is, in the present invention, the mechanism is such that the pressure roll freely rotates as shown in FIG. At this time, the pressure roll may be adjusted by at least one crank, a shaft that can move in an appropriate width, or a combination thereof so that it can freely move forward and backward with an appropriate width. desirable. When such a roll presses the molding material, the rotation of the pressure roll is not artificially manipulated, and is capable of responding to variations in rotational speed due to resistance of the molding material, etc., while being synchronized with the rotation of the mold. . When molding the fiber-reinforced thermosetting resin, the weight of the press roll is used to sufficiently impregnate the fiber-reinforced material with the liquid thermosetting resin. Of course, it is okay to apply some load as long as it does not interfere with the free rotation of the press roll, but if the load is too large or the roll itself is heavy, the rotation speed of the mold body will be slow and the roll will This is not preferable because it sinks into the molding material and the resin is squeezed out, resulting in a molded product with a low resin content. On the other hand, if the weight of the press roll is too small, resin impregnation will be insufficient, air bubbles will remain in the molding material, and the material will fall from the mold surface, making molding impossible. Therefore, the pressure roll used in the present invention usually has a length of 10 to 100 cm, preferably 30 to 100 cm.
70 cm, and its own weight is 20 to 600 g, preferably 50 to 400 g, more preferably 80 to 300 g, that is, a pressing force is applied to the surface of the molding material. In order to efficiently achieve resin impregnation and air bubble defoaming using such rolls, it is preferable to use three or more of the above rolls at appropriate intervals in the present invention. As for the shape of the press roll, its length is as described above, but it can be changed as appropriate depending on the length of the molded product, and its diameter is smaller than the inner diameter of the mold body, so that it can be freely moved within the mold body. Any size that can be rotated is sufficient, and a diameter of 5 to 40 cm is usually appropriate. In addition, it is better to have grooves on the outer circumferential surface of the roll that comes into contact with the molding material during pressing, and the shape of the grooves can be freely selected from linear, spiral, or grid pattern in the roll axis direction, and the depth can also be freely selected. You can choose. Furthermore, the pressure roll may have a mesh-like net coated on its outer peripheral surface. The material of the roll used in the present invention may be any material as long as it can generate the above-mentioned pressing force, and examples thereof include known materials such as iron, aluminum, stainless steel, copper, wood, and plastic, and combinations thereof. I can't help it. The inside of the roll may or may not be empty. In the method of the present invention, foam molding is performed by supplying a foamable resin before or after molding the fiber-reinforced thermosetting resin layer. As the foaming resin used in this case, any generally known resin can be freely selected as long as it is a resin that is supplied as a liquid resin and then reacts and foams. For example, there are hard urethane resins, urea resins, phenolic resins, etc. Even if the supplied material is in the form of powder or granules like thermoplastic resins, by installing a heat melting mechanism, even resins that become molten and foam can be molded. is possible. For example, generally known thermoplastic resins for foaming, such as acrylic resin, polyethylene resin, polystyrene resin, and copolymer foam products of the above-mentioned resins, can also be used. These foaming resins may be used alone, or may be used in combination with various inorganic fillers, microscopic hollow spheres, reinforcing fibers, etc. In addition, the expansion ratio of the foam to be used can be freely selected depending on the purpose of use, but generally it is 2.
~60 times is preferable. In addition, when the thickness of the foam layer is not uniform, it is preferable to cut it with a cutter or the like to make it uniform. The foamed resin supply method in the present invention is appropriately selected depending on the type of foamed resin. Regardless of which foaming resin is used, the resin is generally a two-component mixture type, so the raw material tank for supply is usually installed outside the cylindrical mold, and a transfer pump or the like is used. A method is adopted in which unfoamed resin is supplied from a gun body containing a mixing system, which is attached to the tip of a dye for fixing a supply device set inside a cylindrical body through a hose. In addition to the above-mentioned spray method, the method for supplying the foaming liquid resin may be a dropping method that simply utilizes gravity, a method in which a space is provided so as to form a foamed resin layer, and the resin is injected and foamed. The combination of the fiber-reinforced thermosetting resin layer and the foamed resin layer formed by the above-mentioned molding can be freely selected. For example, it is possible to have a fiber-reinforced thermosetting resin layer as an inner layer and a foamed resin layer as an outer layer, or vice versa, or it is also possible to have three or more layers laminated on top of those outer layers. . Preferably, it has a three-layer structure with a foam layer between fiber-reinforced thermosetting resin layers. still,
When the foamed resin layer is the outermost layer, it can be coated with metal, plastic, paper, etc. after the cylindrical molding is formed, or it can be pasted on the inner surface of the mold beforehand and coated at the same time as the molding. Also good. In the latter case, the other covering material has the advantage of acting as a release base between the mold and the foamed resin layer. Next, a molding example of the fiber-reinforced thermosetting resin layer in the present invention will be explained with reference to the drawings. As shown in FIG. 1, a molding body A is rotated by a roller 5 that transmits the rotation of a motor 4, and a reciprocating sliding body C having a press roll, a molding material supplying part, etc. therein is moved to a cantilever type dyeing body. A device is used that can move back and forth along the body B. Alternatively, as shown in FIG. 3, the molding material supply part and the press roll mounting part I are fixed without moving along the cantilever dyeing body B, and the molding die A is rotated and forming is performed at the same time. A device is used that can be moved back and forth by a mold movement motor 11 controlled by a self-propelled motor control panel 15 as the process progresses. In the mold body A, the reinforcing material entered from the fiber reinforcing material receiving port 7 is cut by the reinforcing material cutter 8 and dropped onto the inner surface of the mold, and then resin, catalyst, etc. are supplied from the liquid thermosetting resin supply device E. Supplied on the reinforcement. After that, the press roll F presses the molding material. At this time, the pressure roll F is designed to have some play due to the pressure roll bearing 30 and crank 29 as shown in FIG. The mold body A or the reciprocating sliding body C moves as molding progresses to form a molded product, and a cylindrical product is produced after the liquid thermosetting resin is cured. Unlike conventional methods, the fiber-reinforced resin cylindrical product with a foamed resin layer formed in this way is produced continuously, and since there is no seam in the foamed layer, it has excellent heat insulation performance and also has excellent adhesive performance. It has excellent strength because the fiber reinforcement is uniformly dispersed, and can be used as cylindrical containers such as tanks, purification layers, and silos. Example 1 A cylindrical body with an inner diameter of 2.8 m and a length of 6 m was used to
First, a fiber-reinforced thermosetting resin layer was molded using manufacturing equipment as shown in Figures 2, 4, and 5. Glass roving SP-3 (manufactured by Asahi Fiberglass Co., Ltd.) was cut into 50 mm length on the surface of an iron mold rotating at a speed of 6 revolutions/min (peripheral speed 53 m/min).
Kg/min, and then an unsaturated polyester resin liquid with a viscosity of 6 poise/25°C containing 0.4% by weight of 6% by weight cobalt naphthenate solution (manufactured by Dainippon Ink Chemical Co., Ltd.) as a curing accelerator ( Polylite FG-104, manufactured by Dainippon Ink Chemical Co., Ltd.) and 55% by weight MEKPO solution as a catalyst (manufactured by NOF Corporation)
An unsaturated polyester resin solution (same as above) with a viscosity of 5 poise and 25°C mixed with 1.5% by weight of supplied. Thereafter, it was pressed with a stainless steel press roll having a length of 50 cm, a diameter of 15 cm, and a weight of 11.5 kg and having grooves in the circumferential direction. At that time, the pressure roll is approximately
Three press rolls were used with a roll interval of 10 cm, and the pressing force due to the weight of each press roll was approximately 230 g/cm. Incidentally, the reciprocating sliding body to which the supply section for glass fibers, resin, etc. and the pressure roll were attached was moved at a speed of 30 cm/min along the mold rotation axis. The obtained cylindrical molded article having a fiber-reinforced thermosetting resin layer had a length of 6 m, a diameter of 2.8 m, and a wall thickness of 8 mm. After the resin layer is cured, while rotating the mold in the same manner as described above, Hyprox SP-290 (manufactured by Dainippon Ink Chemical Co., Ltd.) is added as a polyisocyanate component and Hyprox RR-986C (manufactured by Dainippon Ink Chemical Co., Ltd.) as a polyol component on the resin layer. (manufactured by Ink Kagaku Co., Ltd.) was mixed and sprayed using a spray foaming device Mini Probler (manufactured by Nihon Ransburg Co., Ltd.). The gun body of this device was attached downward to the reciprocating sliding body C shown in FIG. Both components were heated to 49° C. by a heater hose and sprayed at a pressure of 6 kg/cm 2 by a compressor at 700/min. The thickness of the hard urethane foam layer obtained was approximately 40 mm, but the surface was uneven with a thickness of 3 to 8 mm, so the surface was cut using a carbide blade wheel cutter installed inside the dust collection cover. A hard urethane foam layer with a uniform thickness (30 mm) was formed by cutting 10 mm. still,
The finished density of this foamed layer was 0.067 Kg/cm 3 . Immediately after forming the foam layer, a fiber-reinforced thermosetting resin layer is formed on the foam layer in the same manner as described above,
A cylindrical molded product with a three-layer structure including a urethane foam layer between fiber-reinforced thermosetting resin layers was obtained. Example 2 Using a hollow cylindrical mold with a length of 6 m, an inner diameter of 2.8 m, and a string length of 1 m as shown in Fig. 6, Example 1 was prepared.
After forming a fiber-reinforced thermosetting resin layer in the same manner as above, a hard urethane foam layer was formed thereon to obtain a two-layered cylindrical molded product. This molded product had a fiber-reinforced thermosetting resin layer with a thickness of 8 mm and a urethane foam layer with a length of 30 mm. Application example (fabrication of septic tank) As shown in Figure 8, the cylindrical molded product formed in Example 1 was made with a diamond cutter to make three holes with a diameter of 60 cm, and after smoothing the holes with a file, it was hand-molded in advance. Manhole made of FRP with an outer diameter of 60 cm (Resin used: Polylite FH- containing 1% by weight of 55% by weight methyl ethyl ketone peroxide solution)
123 - Manufactured by Dainippon Ink &Chemicals; Glass chopped mat used: 450g/m 2 , 8 ply) was applied to each opening with unsaturated polyester resin putty for reinforcement.
Bonded using 4 plies of 450 g/m 2 glass chopped mat and liquid unsaturated polyester resin. In addition, pre-formed FRP mirrors were joined to the front and rear openings of the cylindrical molding in the same manner as the manhole described above. The FRP mirror used in this case was made using 8 plies of 450g/ m2 glass chopped mat, molded using the same resin used to mold the manholes mentioned above, and was 8mm thick with a curved surface. It is an arc with a radius of 4m. The physical properties of the obtained septic tank were investigated. (1) Mechanical strength of cylindrical molded product

【表】 尚、試験片は実施例1で別に作製した筒状成形
物から切り出したものを使用した。 (2) 浄化槽の歪測定 第7図および第8図に示すX1〜X9の各点(但
し、X7〜X9は浄化槽の内側)に於ける水を注入
した際の歪を測定した。尚、X1は鏡部の中央で
あり、X2は鏡部の中央であり、X2は鏡部のX1
ら1/3水平に離れた地点、X3はX2からさらに1/3
離れた地点である。X4〜X9は胴部の右端中央か
ら水平左側に65cm離れた地点を基点とし、そこか
ら下半周の1/5づつ離れた各地点である。又各歪
値は作製後、水が注入されていない浄化槽の歪値
の相対値で示す。
[Table] Note that the test piece used was one cut out from a cylindrical molded product prepared separately in Example 1. (2) Measurement of strain in the septic tank We measured the strain when water was injected at each point from X 1 to X 9 (X 7 to X 9 is inside the septic tank) shown in Figures 7 and 8. . In addition, X 1 is the center of the mirror, X 2 is the center of the mirror, X 2 is a point 1/3 horizontally away from X 1 of the mirror, and X 3 is 1/3 further away from X 2 .
It is a remote location. X 4 to X 9 are points 65 cm horizontally to the left from the center of the right end of the torso, and each point is 1/5 of the lower half of the circumference from there. Moreover, each strain value is expressed as a relative value of the strain value of a septic tank into which water has not been injected after fabrication.

【表】【table】

【表】 歪測定は静歪測定器(Shinkoh社製PS10/AT
型)、スイツチボツクス(Shinkoh社製PS−7502
型)、歪ゲージ(東測器社製PC−10−11)を用い
て行なつた。 (3) 浄化槽の撓み測定 第7図に示すY点(胴体部左端から1.6m離れ
ている)及びX1点(鏡部中央)について、注水
量を増加した際の撓み量(変位量)を測定した。
注水量(水深)0.5m、1m、1.5m、2m、2.3mに
於けるデータを第9図に示す。尚、撓み測定はダ
イヤルゲージ(ピーコツク社製)を用いて行なつ
た。
[Table] Strain was measured using a static strain meter (Shinkoh PS10/AT).
type), Switchbox (PS-7502 manufactured by Shinkoh)
This was done using a strain gauge (PC-10-11 manufactured by Tosokki Co., Ltd.). (3) Measuring the deflection of the septic tank At point Y (1.6m away from the left end of the body) and point X (center of the mirror) shown in Figure 7 , measure the amount of deflection (displacement) when the amount of water injected is increased. It was measured.
Figure 9 shows the data for water injection amount (water depth) of 0.5m, 1m, 1.5m, 2m, and 2.3m. Incidentally, the deflection was measured using a dial gauge (manufactured by Pico Stock Co., Ltd.).

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明にかかる成形物の製造法を実施す
るのに当り使用する装置の一例を示し、第1図は
成形材料供給部、押圧ロール等が装備された往復
摺動体が片持式梁体に沿つて移動し得る成形装置
の縦断面正面図であり、第2図は第1図の装置の
側面図、第3図は成形材料供給部、押圧ロール等
が移動せず、型体が可動し得る成形装置の縦断面
正面図であり、第4図は押圧ロールが取り付けら
れた部分の正面図であり、第5図は第4図の部分
側面図であり、第6図は欠円となつた成形用型体
の断面図である。又、第7図は応用例で作製した
浄化槽の側面図であり、第8図はその平面図であ
り、第9図は浄化槽に注入した時の撓み(変位
量)を示すグラフである。 記、A…成形用型体、B…片持式梁体、C…往
復摺動体、D…繊維強化材供給装置、E…液状熱
硬化性樹脂供給装置、F…押圧ロール、G…型体
架台部、H…成形材料供給部および押圧ロールの
取付け部、I…レール、1…蝶着部、2…締付け
ボルト、3…締付けボルト、4…モーター、5…
ローラー、6…支持体、7…繊維強化材受入れ
口、8…強化材カツター、9…繊維強化材落下
口、10…型内面、11…型回転モーター、12
…型回転用減速機、13…型移動用モーター、1
4…型移動用減速機、15…自走モーター制御
盤、16…軸受ベアリング、17…トラバース用
ウオームギア、18…強化材カツター駆動モータ
ー、19…樹脂供給ノズル、20…エアーシリン
ダー、21…アーム、22…強化材切断樹脂製押
えローラー、23…繊維強化材、24…強化材抜
け防止用鉄製押えローラー、25…強化材切断用
エアシリンダー、26…強化材切断用回転プーリ
ー、27……モーター、28…樹脂供給ノズル、
29…クランク、30…押圧ロール軸受、31…
押圧ロール軸棒、32…欠円状内部型材、33…
マンホール、34…鏡部、X1…歪測定及び撓み
測定箇所、X1〜X9…歪測定箇所、Y…撓み測定
箇所。
The drawings show an example of an apparatus used to carry out the method for manufacturing a molded article according to the present invention, and FIG. 2 is a side view of the device shown in FIG. 1, and FIG. 3 is a vertical cross-sectional front view of a molding device that can move along FIG. 4 is a front view of a portion where a pressure roll is attached, FIG. 5 is a partial side view of FIG. 4, and FIG. FIG. 2 is a sectional view of a mold for molding. Further, FIG. 7 is a side view of a septic tank prepared in an applied example, FIG. 8 is a plan view thereof, and FIG. 9 is a graph showing the deflection (displacement amount) when poured into the septic tank. A...Mold body, B...Cantilever beam body, C...Reciprocating sliding body, D...Fibre reinforcement supply device, E...Liquid thermosetting resin supply device, F...Press roll, G...Mold body Frame part, H... Molding material supply part and press roll mounting part, I... Rail, 1... Hinge part, 2... Tightening bolt, 3... Tightening bolt, 4... Motor, 5...
Roller, 6... Support, 7... Fiber reinforced material receiving port, 8... Reinforced material cutter, 9... Fiber reinforced material falling port, 10... Mold inner surface, 11... Mold rotation motor, 12
...Reducer for mold rotation, 13...Motor for mold movement, 1
4... Model movement reducer, 15... Self-propelled motor control panel, 16... Bearing, 17... Traverse worm gear, 18... Reinforcement cutter drive motor, 19... Resin supply nozzle, 20... Air cylinder, 21... Arm, 22...Reinforcing material cutting resin presser roller, 23...Fiber reinforced material, 24...Iron presser roller for preventing reinforcement from coming off, 25...Air cylinder for reinforcing material cutting, 26...Rotary pulley for reinforcing material cutting, 27...Motor, 28...Resin supply nozzle,
29... Crank, 30... Press roll bearing, 31...
Press roll shaft rod, 32...Cut-circular internal shape material, 33...
Manhole, 34...Mirror part, X1 ...Distortion measurement and deflection measurement location, X1 to X9 ...Distortion measurement location, Y...Deflection measurement location.

Claims (1)

【特許請求の範囲】[Claims] 1 重力の2倍より小さい遠心力が生じる速度で
回転する筒状型の内壁面に於いて、(A)繊維強化熱
硬化性樹脂を供給し、その上を自在に回転する少
くとも1個の押圧ロールの自重で押圧し、成形す
る工程及び(B)発泡性樹脂を供給して発泡成形する
工程、必要により上記(A)及び(B)工程の繰り返し工
程を特徴とする発泡樹脂層を有する繊維強化樹脂
筒状成形物の製造法。
1. On the inner wall surface of a cylindrical mold that rotates at a speed that generates a centrifugal force smaller than twice the force of gravity, (A) a fiber-reinforced thermosetting resin is supplied, and at least one piece of fiber-reinforced thermosetting resin is supplied, and at least one It has a foamed resin layer characterized by a step of pressing and molding with the weight of a pressure roll, (B) a step of supplying a foamable resin and foaming, and repeating the above steps (A) and (B) as necessary. A method for manufacturing fiber-reinforced resin cylindrical molded products.
JP57184083A 1982-08-20 1982-10-20 Manufacture of cylindrical formed product made of fiber reinforced resin with foamed resin layer Granted JPS5973919A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57184083A JPS5973919A (en) 1982-10-20 1982-10-20 Manufacture of cylindrical formed product made of fiber reinforced resin with foamed resin layer
GB08322444A GB2129764B (en) 1982-08-20 1983-08-19 Apparatus and method for the manufacture of fibre-reinforced cylindrical products
DE19833330065 DE3330065A1 (en) 1982-08-20 1983-08-19 DEVICE AND METHOD FOR PRODUCING CYLINDRICAL PARTS FROM FIBER-REINFORCED HEAT-RESISTABLE RESIN
US06/525,405 US4611980A (en) 1982-08-20 1983-08-22 Fiber reinforced thermosetting resin cylindrical shape product manufacturing apparatus
FR8313555A FR2531905B1 (en) 1982-08-20 1983-08-22 APPARATUS FOR MANUFACTURING CYLINDRICAL PRODUCTS IN FIBER REINFORCED THERMOSETTING RESIN AND METHOD FOR MANUFACTURING SAID PRODUCTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184083A JPS5973919A (en) 1982-10-20 1982-10-20 Manufacture of cylindrical formed product made of fiber reinforced resin with foamed resin layer

Publications (2)

Publication Number Publication Date
JPS5973919A JPS5973919A (en) 1984-04-26
JPH039858B2 true JPH039858B2 (en) 1991-02-12

Family

ID=16147094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184083A Granted JPS5973919A (en) 1982-08-20 1982-10-20 Manufacture of cylindrical formed product made of fiber reinforced resin with foamed resin layer

Country Status (1)

Country Link
JP (1) JPS5973919A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117067451B (en) * 2023-10-16 2024-04-09 歌尔股份有限公司 Die, thermoplastic composite material, processing method of thermoplastic composite material and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111564A (en) * 1978-02-21 1979-08-31 Yamamoto Kougiyou Kk Apparatus for making pipe made of frp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111564A (en) * 1978-02-21 1979-08-31 Yamamoto Kougiyou Kk Apparatus for making pipe made of frp

Also Published As

Publication number Publication date
JPS5973919A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US3052927A (en) A method of centrifugally molding cellular plastics
US3726951A (en) Method for preparing walled structures from foamable thermosetting synthetic resinous material
US3915783A (en) Making a thermosetting resin impregnating laminate
US7678317B2 (en) Concrete mixing drum manufacturing method
US3025202A (en) Method of manufacturing a fibrous product
US4028477A (en) Method of producing an article of thermosetting resin
CN105682905A (en) Continuous production of profiles in a sandwich type of construction with foam cores and rigid-foam-filled profile
JPH039858B2 (en)
US3226273A (en) Method and apparatus for making reinforced plastic tubing
GB2129764A (en) Apparatus and method for the manufacture of fibre-reinforced cylindrical products
FI58526B (en) FRAMEWORK FOR THE FRAMEWORK OF THE BELT
JPH039859B2 (en)
JPH0351581B2 (en)
EP4185453B1 (en) Device and process for producing composite components comprising at least one wound fiber reinforced polymer layer
JPH0317664B2 (en)
JPH0243616B2 (en)
JP2956472B2 (en) Apparatus and method for molding fiber-reinforced plastic pipe
JPS5976224A (en) Formation of fiber-reinforced plastic tube and forming apparatus therefor
JPH058310A (en) Manufacture of composite shaft
JPS59204516A (en) Preparation of high strength cylindrical molded article
JPS5929121A (en) Manufacture of reinforced resin composite tube
NO782923L (en) E LAMINATE MATERIAL AND METHOD OF PREPARING SAMM
JPH0132770B2 (en)
RU2317468C1 (en) Method and device for manufacturing pipes
JPH0148139B2 (en)