JPS5932999A - Disposal of organic liquid waste - Google Patents
Disposal of organic liquid wasteInfo
- Publication number
- JPS5932999A JPS5932999A JP57139825A JP13982582A JPS5932999A JP S5932999 A JPS5932999 A JP S5932999A JP 57139825 A JP57139825 A JP 57139825A JP 13982582 A JP13982582 A JP 13982582A JP S5932999 A JPS5932999 A JP S5932999A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- sludge
- liquid
- nitrification
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010808 liquid waste Substances 0.000 title abstract 3
- 239000010802 sludge Substances 0.000 claims abstract description 112
- 239000007788 liquid Substances 0.000 claims abstract description 69
- 238000005273 aeration Methods 0.000 claims abstract description 31
- 241000894006 Bacteria Species 0.000 claims abstract description 20
- 230000001546 nitrifying effect Effects 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 43
- 238000011282 treatment Methods 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 2
- 239000010815 organic waste Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 239000002360 explosive Substances 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 44
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 44
- 239000011574 phosphorus Substances 0.000 abstract description 44
- 229910017464 nitrogen compound Inorganic materials 0.000 abstract description 3
- 150000002830 nitrogen compounds Chemical class 0.000 abstract description 3
- 238000001556 precipitation Methods 0.000 abstract description 2
- -1 NH4<+> Chemical class 0.000 abstract 1
- 230000001376 precipitating effect Effects 0.000 abstract 1
- 230000000813 microbial effect Effects 0.000 description 25
- 238000004062 sedimentation Methods 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 244000005700 microbiome Species 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000003915 air pollution Methods 0.000 description 6
- 238000010828 elution Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 206010042135 Stomatitis necrotising Diseases 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 201000008585 noma Diseases 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 235000011511 Diospyros Nutrition 0.000 description 1
- 244000055850 Diospyros virginiana Species 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は生だ1廃水、産業l介水などの41機物(Bt
)l)’)とともに窒素、リンを含有−J−ン)有機性
態ζ水を処理する方法、とりわけ、リン含有率の18’
:、iい活+s+汚泥を生成すること1・′こ、1.っ
“てBOD l&>丈と硝化、噂、(−7〈はB O1
1)除去と硝化脱窒と部?j’ L、 −(−1+)、
3 yQカン(Q゛)リー′1)↑去をはかろうとする
嫌気−I(伝法の+’Q良11(二(’u、l−J“イ
)ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to 41 organic wastes (Bt
) l)') Containing nitrogen, phosphorus together with -J-n) A method for treating ζ water in organic form, in particular with a phosphorus content of 18'
:、Ii+s+Generating sludge 1・'ko、1. "Te BOD l &> length and nitrification, rumors, (-7〈is B O1
1) Removal and nitrification and denitrification? j' L, -(-1+),
3 yQ Kan (Q゛) Lee'1) ↑ Reluctance to try to leave - I (Denpo +'Q Ryo11 (2 ('u, l-J"i) thing).
嫌気−好気1ノ、 !(、H975イL fiiJ
イj2 vこ 1+] ラ′ ノ リ /
J−Jl、*ll +司で開発さiした生物学的リー′
除去拶由−C′あ−)−C−前前の活性汚泥法や循環式
硝化脱窒法の被部PI液iMi:入端に、■)0もNo
又も実゛P■的υζ存イ′1−L−,グg゛い嫌気槽を
イ」設するだりの技術でちる。iM 案:M C、J、
L、 Harnard :A Review of
Biological PhoSphorus Rem
oval in thtlAct、1vated Sb
+dge Process 1Water SA Vo
l、 2.IFr 3. 、July1976)によれ
ば、この上うな二[程構成ケとるととによりリン蓄積性
の高い活性汚泥が生成され、イA−機性廃液からBOI
) 、窒素ばかりでな(+1 ;/をも高い効率で除去
できるとしている。この技術は米国でも研究され、そこ
では、このような工程構成によってバルキングが抑制し
得ると主張されている( M、5pector US
Patent 4.056.465 )。Anaerobic-aerobic 1 no, ! (,H975IL fiiJ
Ij2 vko 1+] La' Nori /
Biological Lee developed by J-Jl, *ll + Tsukasa
PI liquid iMi: At the input end, ■) 0 is also No.
In addition, it is also possible to use techniques such as installing a large anaerobic tank. iM draft: MC, J,
L. Harnard: A Review of
Biological PhoSphorus Rem
oval in thtlAct, 1vated Sb
+dgeProcess 1Water SA Vo
l, 2. IFr3. According to A., July 1976), activated sludge with high phosphorus accumulation is produced by this process, and
), it is said that not only nitrogen (+1;/) can be removed with high efficiency. This technology is also being researched in the United States, where it is claimed that bulking can be suppressed by such a process configuration (M, 5pector US
Patent 4.056.465).
本発明者らもこの技術に興味をもし、合成丁水建よる室
内実験−や実際下水を対象としたパイロットプラント規
模実験によって、その技術効果を調査した。その結果、
幾つかの問題点を理解し、この技術の適用性を広げるた
めにはなお多くの改良を要することを認めた。とりわけ
、リン除去や汚泥の沈降性改善にとって好ましい運転条
件と、低水温期においても十分な硝化を確保することが
合致しないことは、本発明を想到する基礎となった確認
事項である。The present inventors were also interested in this technology, and investigated its technical effects through indoor experiments using synthetic water and pilot plant-scale experiments using actual sewage. the result,
He acknowledged that several problems were understood and that much improvement was needed to broaden the applicability of this technology. In particular, the fact that favorable operating conditions for phosphorus removal and improvement of sludge sedimentation do not match with ensuring sufficient nitrification even during low water temperature periods was the basis for conceiving the present invention.
嫌気−好気法においては、系内で除去されるリンtは系
内で生成される活性汚泥に含まれるリン量に等しい。従
って定常状態では、次のような関係が得られる
ΔP=φ・ΔX
ζこで ΔP:系内で1日に除去されたリン量〔K9/
日〕φ:M■、VSS中のリン含率[kg−P/k17
−VS S lΔX°系内で1llK発生ずルMLVS
S M (L9/’ l−1)嫌気−好気法でリン除
去が通常の活性汚泥法より良好に行なわれる最大の要因
は、リン含率(φ)が通常法のそれ圧死して15倍−3
倍高いことにある。この値は被処理液の水質によっても
異なるが、運転操作の而からみると[気曝汚泥伶−1に
よって異なる。この気曝汚泥令tま次のように定義され
る数値である。In the anaerobic-aerobic method, the phosphorus t removed within the system is equal to the amount of phosphorus contained in activated sludge produced within the system. Therefore, in steady state, the following relationship is obtained: ΔP = φ・ΔX ζ where ΔP: amount of phosphorus removed in the system per day [K9/
day]φ:M■, phosphorus content in VSS [kg-P/k17
-VS S 1llK generated within the lΔX° system MLVS
S M (L9/'l-1) The biggest reason why the anaerobic-aerobic method removes phosphorus better than the normal activated sludge method is that the phosphorus content (φ) is 15 times higher than that of the normal method. -3
It's twice as expensive. This value varies depending on the water quality of the liquid to be treated, but from the viewpoint of operation, it varies depending on the aerated sludge. This aerated sludge ratio is a numerical value defined as follows.
、。=VX−
ΔX
ここで θ °気曝汚泥令(日)
VX 気曝槽内混合液中のME、VSS有t:(Kp
)ΔX:系内で1日に発生するM LVS S 181
′(K9/ El )第1図に示(〜だリン含率(φ)
と気曝汚泥令(θ)の関係は、本発明者らがペプトン/
グルコース/酵母エキスを主成分とする合成下水を被処
理液とした室内実験より得だものであるが、仁の関係図
から理解されるように、リン含率(φ)は気曝汚泥令が
短いほど大となシ、とりわけ、気曝汚泥令7日以下でそ
の傾向が著1〜い。系内で発生するMLVSS量(ΔX
)も気曝汚泥令が短いほど大きくなる傾向にあり、リン
除去の観点からみると気曝汚泥令は短いtよと優れてい
る。,. =VX- ΔX where θ °Aerated sludge age (days) VX ME and VSS present in the mixed liquid in the aeration tank: (Kp
) ΔX: M LVS S 181 that occurs in the system in one day
'(K9/El) shown in Figure 1 (~darin content (φ)
The relationship between the aerated sludge age and the aerated sludge age (θ) was determined by the present inventors
This is a result of a laboratory experiment using synthetic sewage containing glucose/yeast extract as the main component, but as understood from the relationship diagram, the phosphorus content (φ) is The shorter the time, the bigger the problem, especially when the aerated sludge period is 7 days or less. The amount of MLVSS generated in the system (ΔX
) also tends to increase as the aerated sludge age becomes shorter, and from the viewpoint of phosphorus removal, the aerated sludge age is better than the shorter t.
一方、活性汚泥の沈降性も気曝汚泥令が短いほど優れて
いる。第1図には前記実験でイ1すられた活性汚泥のS
VIと気曝汚泥令の関係が併記されているが、この図で
理解されるように気曝汚泥令が51]以トになると極端
に沈降性が良くなる。この図では省略さノ1.ているが
気曝汚泥令が5日収−トになると、活性汚泥Vま沈降性
ばかりでfz<、i7!’、縮性にも富むようになり、
容易に(6時間で) 30 (100〜、// 以上
に濃縮される。従って、仁のようなフロセス構成をと(
〕しかも気曝汚泥令i) 5 ト]以下にするならば、
擢・終沈殿池ばかりでなく濃縮槽などの汚泥処理#i設
も耐相され得る。On the other hand, the settling property of activated sludge is also better as the aerated sludge period is shorter. Figure 1 shows the S of the activated sludge prepared in the above experiment.
The relationship between VI and aerated sludge age is also shown, and as can be understood from this figure, when the aerated sludge age is 51] or higher, the sedimentation properties become extremely good. No. 1 is omitted in this figure. However, when the aerated sludge period reaches 5 days, the activated sludge becomes sedimentary and fz <, i7! ', it also became highly compressible,
It is easily concentrated (in 6 hours) to more than 30 (100~, //).
] Moreover, if the aerated sludge order i) 5 g] or less,
Not only filtration and final sedimentation tanks but also sludge treatment facilities such as thickening tanks can be made phase-resistant.
以−にのように、リン除去と活性汚泥の沈降性からみる
ならば気曝汚泥令は短いほどよい。1.、かじ、この上
うな灼い気曝汚泥令の運転操作が全てのr?llで優ノ
1ているわけて゛はない。最大の弊害は硝化の不安定性
ないし停止である。As mentioned above, from the viewpoint of phosphorus removal and sedimentation of activated sludge, the shorter the aeration period, the better. 1. , Is it all about the driving operation of the scorching aeration sludge order? There's no way I'm superior in ll. The biggest drawback is instability or cessation of nitrification.
硝化の不安定性ないし停止は、循環式硝化脱窒法に嫌気
−好気法の原理を適用1〜た1i+’i埠式荀1化脱9
変法にとっては窒素除去機作の夫貝的イ・9・(1を、
(、匁味し致命的なことは勿論であるが、BOI)とり
/除ノそ金目的とした活性汚泥状形式の嫌気−At”y
、L法にとっCも好ましいことではない。(柿気−灯気
11、Cは最終沈殿池で沈殿しy’c活汁汚汁汚泥気化
するとリンが放出され、そのだめ気曝槽Cは良好なり/
除去が行なわれても処理水リンa度が高くlる(−とが
ある。この現象の解決は嫌’、−2.t−好気法の人さ
な課題とされているが、−−一−りの’Iri決策は、
最P沈殿iToにvfr、入する混合液にNOx OJ
Oに/N021)k存(i’−させること、すなわち該
混合l夜を硝11.“t、、71)ことである。このよ
うにイ1肖化をして」、・けば、N O−xがリン放出
の抑制剤になり処理水す、/濃ルtを薗める現象は防止
できる。しかしながら、rrYi来の嫌気−好気法で安
定した硝化を生じuしめ/)/こめには、F記のように
処理液温に対応し/こある一尾以上の気曝汚泥令が必要
である。Instability or stoppage of nitrification can be achieved by applying the principles of the anaerobic-aerobic method to the circulating nitrification-denitrification method.
For the modified method, the nitrogen removal mechanism I.9.(1) is
(Of course, it is dangerous and fatal, but BOI) Anaerobic form of activated sludge for the purpose of collecting/removing sludge
, C is also not preferable for the L method. (Persimmon air - light air 11, C settles in the final settling tank, and when the live juice sewage sludge vaporizes, phosphorus is released, so the aeration tank C is in good condition./
Even if removal is carried out, the phosphorus content of the treated water remains high. The first 'Iri decision is
Vfr is added to the maximum P precipitation iTo, and NOx OJ is added to the mixed solution.
To /N021) k exist (i'-, i.e., to make the mixture l night ni 11. "t,, 71). In this way, to make i1 portrait", ・keba, N The phenomenon in which O-x acts as a phosphorus release inhibitor and dampens the treated water/concentrate can be prevented. However, in order to achieve stable nitrification using the anaerobic-aerobic method introduced in rrYi, more than one aerated sludge is required, which corresponds to the temperature of the treated solution as described in F. be.
25℃°5.0日以上 15℃“ 88[1以上
20℃+7.0日以上 1[’)℃:1688以
上このように、従来の嫌気−好気法で硝化のために長い
気曝汚泥令を必要とするのけ、硝化をになう硝化菌の増
殖速度が非常に遅いのでプ曝汚泥令を知くして活性汚泥
の入替えを速くすると、硝化菌がl′lT:件汚泥中に
看在できなくなるためと解される。い−f’ hにせよ
、とりわけ低処理液温では硝化に必弗な気曝汚泥令V」
、リン除去や活性汚泥の沈降性からみ−r好ましい気曝
汚泥令の範囲を越7を−でいる。25℃° 5.0 days or more 15℃" 88[1 or more 20℃ + 7.0 days or more 1[')℃: 1688 or more] In this way, the conventional anaerobic-aerobic method is used for long aeration of sludge for nitrification. However, the growth rate of nitrifying bacteria that performs nitrification is very slow, so if you know the sludge aging rate and replace the activated sludge quickly, the nitrifying bacteria will increase in the sludge. This is understood to be due to the fact that it becomes impossible to control the sludge.Especially at low processing liquid temperatures, the aeration of sludge is essential for nitrification.
In view of phosphorus removal and sedimentation properties of activated sludge, the preferable range of aerated sludge is 7.
本発明の目的は、このような従来の嫌気−好気状技術に
内在するリン除去及び汚泥沈降性を効果的に行なうj5
F転操作況、安定し/こ硝化を確保する運作況4/lの
相反性を解消することにある。The purpose of the present invention is to effectively perform the phosphorus removal and sludge settling properties inherent in such conventional anaerobic-aerobic technology.
The objective is to resolve the conflict between F conversion operation status, stable operation status, and operation status 4/l that ensures nitrification.
すなわち、(1) 低処理液温でも安定した硝化を確
保−Uる、
(2) 高いリン含率の活性汚泥を生成する、
(3) 沈降性のよい活性汚泥を生成する、(4)沈
殿汚泥から処理水へのリン溶出を最少にする、
ことが可能な嫌気−θf気気法改f=a法を臂イ1(す
−るε−とにある1、
し7かして、本発明の特徴は、従来ρ嫌気=−好伝法が
リン蓄積性の微生物と硝化菌を活f1汚泥)目ツクに共
棲させてリン除去と硝化を同時シし「・C成(上んとし
、でいたところを改め、硝化&J、十と[7で気11Y
槽内もl、 <は気曝槽の後段に設けられた微生物床に
例着した硝化菌を用いて行ない、硝化の観点がらみた気
曝汚泥令の制約を解除することにょっ−こリン除去と汚
泥沈降性とからみてfjf−fI〜い気曝lり泥令操作
金できるようにした点にある。In other words, (1) ensure stable nitrification even at low processing liquid temperatures, (2) produce activated sludge with a high phosphorus content, (3) produce activated sludge with good settling properties, and (4) prevent sedimentation. The revised anaerobic-θf pneumatic method f=a method, which can minimize phosphorus elution from sludge into treated water, has been introduced in this book. The feature of the invention is that the conventional ρ-anaerobic method allows phosphorus-accumulating microorganisms and nitrifying bacteria to coexist in an active F1 sludge, thereby simultaneously removing phosphorus and nitrification. Changed where I was, nitrification & J, 10 and [7 and 11Y
Inside the tank, nitrifying bacteria are used in the microbial bed installed at the rear of the aeration tank to remove some phosphorus from the aeration sludge ordinance from the perspective of nitrification. From the viewpoint of the sludge settling property and the sludge settling property, it is possible to operate the sludge at a low aeration rate.
−よなわち、基本的施設構成−従来の婉うレー好気−法
と変らないが、気曝槽内もしく ki気lψ槽の後段に
ハニカノ・などの固定床1回転円板などの回転床あるい
(」砂1粒状活性炭などの流動床等々のいずれかの微件
物床を配し嫌気処理、脱窒処理などの前段処理工程から
流出する混合液を気1塚処ア■1と並行してもし7〈に
t気曝処理の後に硝化処鯉−しるととを特徴とし−でい
る3、
とのように気曝槽に微生物床を配置゛る手法は従来の活
性汚泥法でも採用さt圭できたが、このような技術にあ
−〕てけ気曝槽に被処理液のB ODが流入−(7でく
ム/ζ−めに、位r生物床には硝化菌よりもBOI)酸
化菌がより多く付着し、イーの結沫として微生物床(・
ておけるX″クイム増大速度ひいては剥N11速度が大
きくなっ−(−1増殖法度の小さな硝化菌を優先的に付
着さ−けイ)点では、必ずしも41′効ではなかっfU
ot、か1.2木倉明の14合に11、被処理液130
Dの大部分tit嫌気槽で11ン蓄積性の活性汚泥に嫌
気的に吸着さJするので、気曝槽に流入する混合液にk
まBOI)酸化菌が利用し得ろ130I)tよきわめて
少なく、倣牛′吻床に行用−よ−るBOI)酸化菌−M
“は硝化菌h1に比1−.で相対的に/、p ノi:
(なる。そハゆ5ぐ−に、嫌気槽7.−flへh1/−
1従来の活性汚泥法にF・い−て微牛物床金配する技術
((、くらべ、本発明では、より安定17た硝化力ii
l R’+) K: :l 7> 。- In other words, the basic facility configuration is the same as the conventional aerobic method, but inside the aeration tank or at the rear of the aeration tank there is a fixed bed such as Hanikano, a rotating disk, etc. The mixed liquid flowing out from the previous treatment process such as anaerobic treatment and denitrification treatment is treated as a 1. In parallel, the method of arranging a microbial bed in the aeration tank is different from the conventional activated sludge method, as in 7. However, with this technology, the BOD of the liquid to be treated flows into the aeration tank. BOI) more oxidizing bacteria adhere, forming a microbial bed (BOI) as E droplets.
At the point where the rate of increase of
ot, or 1.2 Akira Kikura's 14 go, 11, liquid to be treated 130
Most of D is anaerobically adsorbed to the activated sludge that accumulates in the tit anaerobic tank, so K is absorbed into the mixed liquid flowing into the aeration tank.
BOI) Oxidizing bacteria can be utilized.
"is relative to the nitrifying bacteria h1 at a ratio of 1-./, p noi:
(It turns out. Then, in 5 minutes, h1/- to the anaerobic tank 7.-fl.
1. In comparison with the conventional activated sludge method, the present invention has a more stable nitrification power II.
l R'+) K: :l 7>.
J?、+、1t7)、t:うな機作のために、従来の嫌
気−好り、t、l、(lこ微lI物床を11.4u L
、〆こ本発明では気嘩汚泥令がt”j (Tも′〃定シ
フ′lr、蛸化が可能になり、リン除去や活性汚泥の沈
降性からみて好ましい気曝汚O(,令に操作し、なおか
つ硝化全遂行することが−(八る、以下、図示例にfl
っで4・発明の各実施t?J b’Y ’a: ’A”
?明する。J? , +, 1t7), t: For the eel mechanism, conventional anaerobic-preferring, t, l, (l small lI material bed of 11.4 u L
, In the present invention, the aerated sludge period is t"j (T is also '〃sif'lr, and the aeration is possible. operation and complete nitrification.
4. Each implementation of the invention? J b'Y 'a: 'A'
? I will clarify.
寸ず第2し1例はB C)i)除去、リン除去および?
il’を化を主目的とI7た場合である。BOD 、
l)ノお5jびN84などの還元状窒素化合物をaも「
被部■1((沿1目」1)OもNoマも丈T1的にイI
在し7乙−い嫌((槽1にみちびかh−、こξで返送話
+1汚σ1.15と411台H7拌さiL姥気気処理受
シリ/:)。この禍程で活+4f5θi゛、(−リわけ
イコに槍1h ル’) /蓄積性ノ伸41物it、
そt7> 4111]f・I内すンを溶解性リンとなし
−(“治沼1111にh(出Jイ、。このリン放出と共
役し″′C,被処理f・lIK菖ま〕するBOI)の犬
iiB分Oコ1活性汚泥1(非酸化的し=1〃収さJ1
刷11胆、内41機ψ1として蓄積さiする1、このよ
うにI7て11成さi−t ′A−嫌気処理済混合液1
2 ’JTF 気曝(’Fl 2 (C、’、I’F
カ#1、ζこて′気lゾ処」111全受はイ、。この気
曝処丁11過程−τ「、活性汚泥ζ、lぞの卸)川内に
髭稍した有機物の−1)1りを酸化しながら溶液側に存
在するリンを吸収L JllI6・1内に蓄オ′ll[
寸Z、:l o この蓄積効率分給I A’、)るkめ
に&j、前記のように定義された気曝汚泥令を比較的短
く、好まし、<1よ7日以内にして何1作することが好
ましい。このように短い気曝汚泥令操作は、とりわけ低
温において硝化菌の活性汚泥フロック内における存在を
許容1〜なくなるが、本発明では気曝槽2内に設置され
た微生物床3に着床した硝化菌がとれを補償する。The second example is B C) i) Removal, phosphorus removal and?
This is a case where the main purpose is to convert il' into I7. BOD,
l) Reduced nitrogen compounds such as No. 5j and N84 are also
Cover ■ 1 ((1st line) 1) Both O and Noma are good in terms of length T1
I don't like the existence of 7. , (-Re-Ware Iko ni Spear 1h Le') / Accumulative growth 41 things,
Sot7> 4111] The f・I inner sun is converted into soluble phosphorus. BOI) dog iiB part Oko 1 activated sludge 1 (non-oxidizing = 1)
11 times, 41 times ψ1 is accumulated as 1, thus I7 is 11 formed it'A- Anaerobically treated mixed liquid 1
2 'JTF aeration ('Fl 2 (C, ', I'F
#1, ζ Trowel 'Ki lzodokoro' 111 all received. This aeration process absorbs phosphorus present on the solution side while oxidizing the organic matter present in the activated sludge 6.1. Storage o'll [
In order to achieve this accumulation efficiency distribution, the aerated sludge period defined above should be relatively short, preferably <1 to 7 days. It is preferable to make one. Such a short aeration sludge period operation does not permit the presence of nitrifying bacteria in the activated sludge flocs, especially at low temperatures, but in the present invention, the presence of nitrifying bacteria on the microbial bed 3 installed in the aeration tank 2 is eliminated. Compensates for bacteria removal.
第2図例では微生物床3に固定床を用いた例が示されて
いるが、このような固定微生物床の構成Hとl−では、
チコーブ状プラスデフ・り、ハニカノ、状プラスチック
なと、表面積が大きく目っまりの少ないものが好斗しい
。これら全設置する際には混合液中の活性汚泥が沈着し
ないようにする工夫が必要である。固定微生物床のイ(
わKBi1転円板などの回転微生物床を用いることは、
このような施工上の制限を少なくする。別の手法は混合
液に混合液とほぼ等比重のプラスチックホールなどに浮
遊Δげることである。ただし、この場合にけ気曝槽2の
流出端にスクリーンなどを設けてこの浮遊微生物床を回
収し、これを気曝槽2の流入端もしく(5F中央部にも
どすなどの工夫が必要である3、これら微生物床技術の
いずれを用いる(lζt!−よl〕0副++r等の適切
な条件が維持されるならば、この微〈イー物床表面には
硝化菌を優古微生物J−するス′ンイl、が形成され、
嫌気処理済混合f1.I2に含−すれるNN4 &、J
Nへ−へと酸化される。The example in FIG. 2 shows an example in which a fixed bed is used as the microbial bed 3, but in such fixed microbial bed configurations H and l-,
Chicob-like plastics with a large surface area and less clutter are preferred. When installing all of these, it is necessary to take measures to prevent the activated sludge in the mixed solution from settling. A fixed microbial bed (
Using a rotating microbial bed, such as a KBi1 disc,
To reduce such construction restrictions. Another method is to suspend the mixed liquid in a plastic hole, etc., which has approximately the same specific gravity as the mixed liquid. However, in this case, it is necessary to take measures such as installing a screen or the like at the outflow end of the aeration tank 2 to collect this suspended microbial bed and returning it to the inflow end of the aeration tank 2 or (to the central part of the 5th floor). 3. Using any of these microbial bed techniques, if appropriate conditions such as A system is formed,
Anaerobically treated mixture f1. NN4 &, J included in I2
Oxidized to N.
このようにして生成された気曝硝化処j!lj済混合i
t3は、最終沈殿池4に導かノL1 ここで処理液1
4と沈殿活性汚泥に分けられる。本発明の場合、バルキ
ング問題はほとんど起らないので最終沈殿池4の水面積
負荷はかなり大きくと1Lる。とりわけ、気曝汚泥令を
5日以下にするならば4on?/(m″・[1)程度の
水面積負荷も可能である。嫌気−好気法の原理全石川1
〜だ従来の活性汚泥変法においてこのように短い気曝汚
泥令をとると、20℃以ト−では必ず硝化が停+l L
、その結果とじてif3.終沈殿池4にj−>いて沈殿
汚泥がリンを溶出する現象がみられた。The aerated nitrification process produced in this way! lj mixed i
t3 is led to the final settling tank 4. Here, the treated liquid 1
4 and precipitated activated sludge. In the case of the present invention, the bulking problem hardly occurs, so the water area load of the final settling tank 4 is quite large, 1 L. In particular, if the aeration sludge order is to be 5 days or less, is it 4 on? /(m″・[1) water area load is also possible.Principles of anaerobic-aerobic method Complete Ishikawa 1
~ If such a short aeration period is used in the conventional modified activated sludge method, nitrification will always stop at temperatures below 20°C.
, as a result if3. A phenomenon was observed in which the settled sludge in the final settling tank 4 eluted phosphorus.
このため、(l′L来の嫌気−好気式活性汚泥変法でt
」2最終沈殿池4における沈殿汚泥保持h;゛にて9い
て厳密な制御を必要とした。しかし、硝化を常に確保で
きる本発明の場合、NOxの存在によってリン放出は防
止できるので、最終沈殿池に対する管理はかなり緩和で
きる。For this reason, in the modified anaerobic-aerobic activated sludge method (l'L), t
2. Retention of settled sludge in the final settling tank 4; 9 required strict control. However, in the case of the present invention, in which nitrification can always be ensured, phosphorus release can be prevented by the presence of NOx, so the control over the final settling tank can be considerably relaxed.
最終沈殿池4で沈殿した活性汚泥の大部分は、返送ポン
プ10によね返送活性汚泥15として処理系111■端
の嫌気槽1に送られる。この場合、最終沈殿池4より引
抜かれる沈殿汚泥にNoマが嫌気槽1の嫌気状態を破壊
するほどに残留ス゛る惧れがあるときににl、返送汚泥
経路の中途に脱窒槽5を設けここで脱窒Jることが望ま
しい。勿論、脱窒槽5にメタノール、酢酸、あるいは汚
泥消化の脱離液。Most of the activated sludge settled in the final settling tank 4 is sent to the anaerobic tank 1 at the end of the treatment system 111 as returned activated sludge 15 by the return pump 10. In this case, if there is a risk that Noma may remain in the settled sludge pulled out from the final settling tank 4 to the extent that it destroys the anaerobic state of the anaerobic tank 1, a denitrification tank 5 is installed in the middle of the return sludge route. It is desirable to carry out denitrification here. Of course, the denitrification tank 5 contains methanol, acetic acid, or a desorbed liquid from sludge digestion.
もしくは被処理液11の一部を添加すれば脱窒は促進さ
れるが、多くの場合には−・定時間、あまり酸素が溶は
込1ない状態で攪拌するだけで目的を達し得る。、最終
沈殿池4の沈殿汚泥管理を十分になして沈殿汚泥におけ
る残留NOマ招を所9仙以下に抑iti!Iできるなら
ば、脱窒槽5は不要である。なお、第2図例では沈殿汚
泥の一部が余剰活性汚泥16として引抜かれているが、
余剰活性汚泥1(3の排出法はこttltこ限定される
必要はなく、破線で示されるように抜出しポンプ9によ
り気曝槽2から混合液16′として引抜いても3しい。Alternatively, denitrification can be promoted by adding a portion of the liquid to be treated 11, but in many cases, the purpose can be achieved simply by stirring for a certain period of time in a state in which not much oxygen is introduced into the solution. The final settling tank 4 has sufficient control of the settled sludge to keep the residual NOx in the settled sludge to less than 9 cents! If possible, the denitrification tank 5 is not necessary. In addition, in the example in FIG. 2, a part of the settled sludge is pulled out as surplus activated sludge 16,
The method for discharging the surplus activated sludge 1 (3) is not limited to this, and it may also be withdrawn as a mixed liquid 16' from the aeration tank 2 by a withdrawal pump 9, as shown by the broken line.
次に、第3図例は本発明を脱窒r包む41?’+環式4
1’+化脱窒変法に適用した場合である。j(OD 、
PO2゛−およびNH’+などの還元性窒素化合物を
aLr被処坤液11は嫌気槽IK導かれ、ここで活性で
5泥と混合されて嫌気処理を受ける。嫌気処理済混合液
12i、i脱窒槽17に導かれ、ここで後続の気曝槽2
の端末↓り送られるNoぐを含む循環混合量、18とイ
11゛合さit脱窒処理を受ける。この脱窒処H(過程
において混合液に含−止れる活性汚i7i′it %
嫌気処理過程で/l成した細胞内有機物および溶液側に
残留−するB OI3を水素供与体とする脱窒反応によ
って、そtt t−)q)イ1(幾物を酸化しながら循
環混合液18f’こ含神)1.るNOxをN2+ N:
l!Oなどに転換するとともに、溶液側に存在−する■
)04の少なくとも一部全細胞、内に摂取し細胞。Next, the example in FIG. 3 covers the present invention with 41? '+cyclic 4
This is the case when applied to a modified 1'+ denitrification method. j(OD,
The liquid 11 to be treated with aLr containing reducing nitrogen compounds such as PO2'- and NH'+ is led to an anaerobic tank IK, where it is mixed with active slurry and subjected to anaerobic treatment. The anaerobically treated mixed liquid 12i, i is guided to the denitrification tank 17, where it is fed to the subsequent aeration tank 2.
The circulating mixture containing No. 18 and 11 are combined and subjected to denitrification treatment. This denitrification treatment H (activated pollution remaining in the mixed liquid during the process)
Through the denitrification reaction using the intracellular organic matter formed during the anaerobic treatment process and the B OI3 remaining in the solution as hydrogen donors, the circulating mixed liquid is oxidized. 18f' (contains God) 1. N2+N:
l! It is converted to O etc. and also exists on the solution side■
) At least a portion of 04 is ingested into the whole cell.
内リンとして蓄積する。このようにして溶液側BODと
■〕04が減少するが、N1−f、:が未酸化のま井残
留している脱窒処理済混@液13′は後続の気曝槽2に
送られる。Accumulates as endophosphorus. In this way, BOD on the solution side and ■〕04 are reduced, but the denitrified mixed @ liquid 13' in which N1-f, : remains unoxidized is sent to the subsequent aeration tank 2. .
気障槽2の機能は第2図例の場合と同様であるが、第3
図例では気障槽2内に設置灯された微生物床3として回
転微生物床を用いている。回転微生物床としては回転円
板のほかに、ネットなどを巻いた回転体も使用できる。The function of the distraction tank 2 is the same as in the example in Figure 2, but the third
In the illustrated example, a rotating microbial bed is used as the microbial bed 3 installed in the nuisance tank 2. In addition to a rotating disk, a rotating body wrapped in a net or the like can also be used as the rotating microbial bed.
脱窒処理済混合液13′に含まれるNIT−:CJ、主
としてこの微生物床3表面のスフイノ・に生息する硝化
菌の作用によってN Oxへと酸化される。他方、この
硝化作用と並行して混合液中の活性汚泥し1脱窒処理過
程で酸化しきれなかった細胞内治機物を酸化し、それと
共役し7て未摂取の溶液側PO4を細胞内に摂取17、
細胞内リンとして蓄積する。The NIT-:CJ contained in the denitrified mixed liquid 13' is oxidized to NOx mainly by the action of nitrifying bacteria living in the sulfur on the surface of the microbial bed 3. On the other hand, in parallel with this nitrification action, the activated sludge in the mixed solution oxidizes the intracellular substances that could not be oxidized during the denitrification process, conjugates with it, and releases uningested PO4 from the solution into the cells. Ingested 17,
Accumulates as intracellular phosphorus.
このようにして生成された気障硝化処理済混合前の−・
1ff(v;1g循環ポンプ8により循環混合液18と
しで前段の脱窒槽17に送られ、残部は沈殿池供給混合
液19として、IiQ終沈殿池4Vl送られる。この沈
殿池(If、給温合液19には、被処理液IJに含寸れ
る窒素量に比べればV;1−るかに少ないが、かなりの
州のNO′X−Nが残留しでおり、より高率の窒素除去
を望むならば、最終沈殿池4に導かれる前に脱窒槽17
とは別の脱窒槽を設け、脱窒部llT11を施すCとも
当然の技術として考えられるが、第3図例にネ、・いて
はそれを省略している。最終沈殿池4に導かtまた沈殿
池供給混合液19は、ことで固液分離処phi所−に送
られ残部Vま余剰活性汚泥1Gと(−で系外に初出され
る。The thus generated nitrified and pre-mixed −・
1ff (v; 1g) The circulation pump 8 sends the circulating mixed liquid 18 to the denitrification tank 17 in the previous stage, and the remainder is sent as the settling tank supply mixed liquid 19 to the IiQ final settling tank 4Vl. Although the amount of nitrogen contained in the combined liquid 19 is much smaller than the amount of nitrogen contained in the liquid to be treated IJ, a considerable amount of NO'X-N still remains, and a higher rate of nitrogen removal is possible. If desired, the denitrification tank 17 is added before being led to the final settling tank 4.
C, in which a separate denitrification tank is provided and the denitrification section llT11 is performed, can also be considered as a natural technique, but it is omitted in the example of FIG. The sedimentation tank supply mixed liquid 19 led to the final settling tank 4 is sent to a solid-liquid separation plant, and the remainder is discharged from the system as surplus activated sludge 1G.
第4図例も脱9を含む循環式硝化脱窒変法に適用された
本発明の一実施態様である。主力施設の構成は第3図例
とほぼ同一であるが、プラスデックなどの化学合成品か
らできている浮遊型の微生物床3を用いている点が特徴
である。この微生物床3は気障槽2内の混合液中に〆y
遊E〜、その表面にイ」着1〜だ硝化菌が硝化を行なう
。気障槽2から最終沈殿池4Vl流出する沈殿池供給混
合液19の流出口にはスクリーン6が設けられ、微生物
床3が最終沈殿池4へ流出することを防いでいる。また
、循環混合液18の循環経路には微生物床回収循環用の
スクリーン7が設けられ、循環混合液18が脱9槽1’
7に導かれる前にここに含1れる微生物床3は回収され
、気障槽2の流入端にもどされる。なお、この場合循環
混合液18を循−する循環ポンプ8としてe」、微生物
床3を破砕したり、徽牛物床表面に111着(〜た硝化
菌スライムを剥離させないな、めに大1−1径、倶揚稈
のポンプを用いることが好まL2い。The example shown in FIG. 4 is also an embodiment of the present invention applied to a modified circulating nitrification-denitrification method including denitrification. The configuration of the main facility is almost the same as the example shown in Figure 3, but it is characterized by the use of a floating microbial bed 3 made of a chemically synthesized product such as Plus Deck. This microorganism bed 3 is contained in the mixed liquid in the air pollution tank 2.
Nitrifying bacteria on the surface perform nitrification. A screen 6 is provided at the outlet of the sedimentation tank supply mixed liquid 19 flowing out from the baffle tank 2 to the final sedimentation tank 4Vl to prevent the microorganism bed 3 from flowing out to the final sedimentation tank 4. In addition, a screen 7 for collecting and circulating the microorganism bed is provided in the circulation path of the circulating mixed liquid 18, and the circulating mixed liquid 18 is transferred to the de-9ization tank 1'.
The microbial bed 3 contained therein is recovered before being led to the air filter 7 and returned to the inlet end of the turbidity tank 2. In this case, the circulation pump 8 that circulates the circulating mixed liquid 18 is used to avoid crushing the microorganism bed 3 or peeling off the nitrifying bacteria slime on the surface of the food floor. It is preferable to use a pump with a -1 diameter and a lifting culm.
なお、本実施態様では九1′終沈1#油、4で分離沈降
し/こ沈殿活性汚泥の大部分け、返送活性汚泥15とし
て嫌気槽1でなく脱窒槽17に送らえ1ている。イの代
償と(7で嫌父槽1には、脱窒槽17の端末より脱窒処
理済混合液13′の一部が嫌気槽植種活性汚泥20とし
−C循環さ〕]−でいる。このような流体のフロー形式
し」返送活性汚泥15にN0丈が残留することを許容し
、それメζ二は沈殿活性汚泥から処理液14へのリン溶
出防止が容易になり、しかも嫌気槽1におし)るUl[
・う(状態(DOとNOx−の不在性)を破壊し、ない
で1む4、
第5図例も循環式硝化脱窒変法に適用された本発明の別
の−実施態様である。この例の特徴は、気障処理と硝化
処理とが別の反応槽で行なわf]、ている点である。−
すなわち、気障処理は十とし−で一気障槽2で行なわれ
、そこで牛成さiシた気(1ψ処111j済混合液の一
部blI沈殿池供給混合液]9とし−(1jJH終t(
−殿池4に供され、残部を、↓硝化槽供給(1?、合液
21としで、硝化槽22・\送ら!1.る。In this embodiment, most of the precipitated activated sludge is separated and precipitated with 91' final sedimentation oil, 4, and sent to the denitrification tank 17 instead of the anaerobic tank 1 as return activated sludge 15. (In 7, a part of the denitrified mixed liquid 13' is circulated into the anaerobic tank 1 from the terminal of the denitrifying tank 17 as the anaerobic tank seeded activated sludge 20.) This type of fluid flow allows the N0 length to remain in the returned activated sludge 15, which makes it easier to prevent phosphorus elution from the settled activated sludge to the treatment liquid 14, and furthermore, the anaerobic tank 1 U1[
- Destroy the state (absence of DO and NOx) and do not do so. 4. The example in Figure 5 is another embodiment of the present invention applied to a modified cyclic nitrification-denitrification process. The feature of this example is that the gastrointestinal tract treatment and the nitrification treatment are performed in separate reaction vessels.
That is, the sedimentation treatment is carried out in the treatment tank 2 for 10 minutes, and there the treatment is carried out in the treatment tank 2. (
- The remaining part is supplied to the nitrification tank 4, and the remaining part is sent to the nitrification tank 22.
この実施態様では、硝化槽22v、を流動反応槽となっ
ている。すなわち、硝化槽22内t・こり、jl別砂、
、1!、2ライト、粒状活性炭などの流動1丁能な粒
子状のU・文生物床3が納めらi]、てお・す、この粒
状の微生物床3の表面に硝化菌が付着している。空気と
硝化槽供給混合液21はト部から供給され、流、;助し
−Cい/3微牛物床3と接触する。この接触過↓”lで
硝化槽(11、給温合液21に含−まれているN H,
:はNO’x’ =\と酸化される。このようにして生
成された硝化処理済混合液は一七部から流出するが、微
生物床3は−その自r(Cのために槽内に抑留される。In this embodiment, the nitrification tank 22v is a fluidized reaction tank. That is, the nitrification tank 22 internal t・stiffness, jl sand,
, 1! , 2 Light, granular activated carbon or other fluid granular microorganism bed 3 is stored, and nitrifying bacteria are attached to the surface of this granular microorganism bed 3. Air and the nitrification tank supply mixed liquid 21 are supplied from the bottom part and come into contact with the stream 3; At this contact point, the nitrification tank (11, NH contained in the heated mixture 21,
: is oxidized as NO'x' =\. The nitrified mixed liquid thus produced flows out from the tank 17, but the microorganism bed 3 is retained in the tank due to its own carbon content.
流出−する硝化処理済混合液は循環混合液18として脱
窒槽17−\送られる。The nitrified mixed liquid flowing out is sent to the denitrification tank 17-\ as a circulating mixed liquid 18.
この実施態様では気障処理と硝化処理とが分離しており
、沈殿池供給混合液19は気障処理」稈から流出してい
るので、そこに3斗yするNOx Jt &J仙の実施
態様に比べて少ない。もし、このためVl最終沈殿池、
4で沈降分離された沈殿活性汚泥から第7 ンが溶出し
処理液14のリン濃度を高めることがあれば、硝化処理
済混合液の一部を沈殿池供給補助混合液23として最終
沈殿池4へ供給すればよい。In this embodiment, the nitrification treatment and the nitrification treatment are separated, and the sedimentation tank supply mixture 19 flows out from the culm of the nitrification treatment, so NOx is added thereto. It's less compared to that. If, for this reason, the Vl final settling tank,
If the 7th phosphorus concentration in the treated liquid 14 is increased by elution from the precipitated activated sludge separated in step 4, a part of the nitrified mixed liquid is used as the auxiliary mixed liquid 23 to supply the settling tank to the final settling tank 4. All you have to do is supply it to
第6図例は第4図例の変形で、ここでは粒状の微生物床
3を気障槽2ばかりでなく脱窒槽17にもtY遊させて
いる。ゼオライl−、粒状活性炭もしくtま粉末活性炭
などの微生物床3は、沈殿池供給混合液19から微/−
V物床回収器7′によって回収される。The example in FIG. 6 is a modification of the example in FIG. 4, in which the granular microorganism bed 3 is allowed to migrate not only in the air pollution tank 2 but also in the denitrification tank 17. The microbial bed 3, such as zeolite, granular activated carbon or powdered activated carbon, is prepared by adding microorganisms from the sedimentation tank feed mixture 19.
It is recovered by the V-bed recovery device 7'.
この回収器としては、液体−リイクロンもしくは+H流
速の大きな沈殿池が充当さJしる。この図例では、気障
硝化処理済混合液13の脱窒槽17への循環が微生物床
3の返送を兼ねている。すなわち、微生物床回収器7′
で回収された微生物床3 iJ、循環混合液18′とと
もに脱窒槽171(返送さ第1、これを経由し−C気障
槽2に戻される。このような操作は、嫌気槽Jでの活性
汚泥によるBOD摂取がほぼ完全であれば、微生物床着
床に関する硝化菌の優占件を損うものではなく、p /
BOD比の比較的高い排水を彼処Bp液と【7た場合
には、第4図例の↓“)な微生物床3を直接に気障槽2
に返りしする枝4tkこ較べ何ら子−の効果が劣るもの
−Ckiない。As this recovery vessel, a liquid-Reikron or a sedimentation tank with a high flow rate is appropriate. In this example, the circulation of the nitrified mixed liquid 13 to the denitrification tank 17 also serves as the return of the microorganism bed 3. That is, the microorganism bed collector 7'
The microbial bed 3 iJ collected in If BOD uptake by sludge is almost complete, it will not undermine the dominance of nitrifying bacteria in microbial bed settlement, and p /
If wastewater with a relatively high BOD ratio is mixed with Bp liquid [7, the microbial bed 3 shown in the example in Fig. 4] is directly transferred to the air pollution tank 2.
There is nothing inferior in the effect of the branch 4tk that returns to this.
以−1−述べた。Lうに本発明は、flff−来の嫌気
−如伝法において気障槽内もしくは気障槽の後段にイ)
′月%tした反応槽VC硝化菌のイt*zし/仁做生物
床を設置し1、その微生物床と混合液を接触さ−ける(
−とに5L−・−4、低水温であっても安定した硝化が
僅保され、イーの結果として、適切な気障汚泥令全選定
することによって冒効率のリン除去と沈降濃縮廿の良幻
1?占性汚泥の生成が司能となるなどの効果を有するも
のである1、
次に、本発明の実施例として室内実験の結果を従来法と
比較して紹介し、本発明σ)効果を明らかにする。I mentioned above-1. L sea urchin of the present invention is placed in the anaerobic tank or after the anaerobic tank in the flff-old anaerobic method.
1.Installing the nitrifying bacteria in the reaction tank VC/Installing a biological bed 1, and bringing the mixed solution into contact with the microbial bed (1)
-5L-・-4, stable nitrification is maintained even at low water temperatures, and as a result, by selecting an appropriate air pollution sludge ratio, the efficiency of phosphorus removal and sedimentation concentration is improved. Illusion 1? 1.Next, as an example of the present invention, the results of a laboratory experiment will be compared with the conventional method to clarify the effects of the present invention. Make it.
(比較例−1)
グルコース、肉エキス、無機塩から成る合成−[水を用
いて、従来の循環式硝化脱窒変法の追試験を行なった。(Comparative Example-1) Synthesis consisting of glucose, meat extract, and inorganic salt - [Using water, a supplementary test was conducted using a modified conventional circulating nitrification and denitrification method.
実験施設のフローは第4図例1て相当17、各施設の規
模は次の通りである。The flow of the experimental facility is equivalent to Figure 4, Example 1, and the scale of each facility is as follows.
嫌気槽 2.20t、 気 曝 槽 500を脱窒槽
6.60/、、 最終沈殿池 167を最終沈殿f
111.を除く各施設は、液温13℃σ)恒温水槽に設
置しである。Anaerobic tank 2.20t, aeration tank 500, denitrification tank 6.60/, final sedimentation tank 167, final sedimentation f
111. All facilities except for 13 were installed in a constant temperature water tank (liquid temperature: 13°C σ).
被処理液列は28.51.、/ Elで返送汚泥量、循
環混合液量および嫌気槽植種活性汚泥量は、それぞね−
被処理液量の08倍、25倍および1.1倍とした。郊
曝汚泥令は、気障槽から混合液を1.5t/8引抜いて
およそ32日に制御した。その結果、気暉槽混合液のM
LVSS濃度は5300〜/l、処理液に流出するSS
も含めた排泥量は被処理液f′あたり290〜−■8S
/l″C1汚泥中のリン含率は0.0651−P/7−
VSSであった。The treated liquid column is 28.51. , / El is the amount of returned sludge, amount of circulating mixed liquid, and amount of activated sludge inoculated in the anaerobic tank, respectively.
The amount of liquid to be treated was 08 times, 25 times, and 1.1 times. Suburban sludge was controlled by drawing out 1.5 t/8 of the mixed liquid from the turbidity tank on about 32 days. As a result, the M of the aeration tank mixture was
LVSS concentration is 5300~/l, SS flowing into the processing solution
The amount of sludge including
/l″The phosphorus content in C1 sludge is 0.0651-P/7-
It was VSS.
−・方、30分SVT値Vよ35〜48 ml’/f/
第7)範囲ニ、f)す、24時間靜置# #によって
得られた汚泥濃度にt 30500mq/lであった。-・30 minute SVT value V is 35 to 48 ml'/f/
7) The sludge concentration obtained by standing for 24 hours was 30,500 mq/l.
第1表にみる通り、0−Pは気障槽では第5ぼ完全に除
去されていたが、処理液の0−Pは、気障槽上澄液の0
哩よりやや高かった。これは、最終沈殿池で沈殿汚泥よ
り0−Pの溶出が生じていたたM)と思わり、る。他ブ
バ硝化は全く生ぜず、♀素除去−率は42チにとどまっ
た。As shown in Table 1, 0-P was completely removed in the nuisance tank, but 0-P in the treatment solution was removed from the 0-P in the nuisance tank supernatant.
It was slightly taller than the turret. This is thought to be due to the elution of 0-P from the settled sludge in the final settling tank. Other Buba nitrification did not occur at all, and the feral element removal rate remained at 42.
第1表 比較例−1実験の処理成ぜイ
(旧」)父イlリ −−2)
比較例−1の実験で硝化が全く牛しなか−)たので、気
障汚泥令を長く−する/こめに一波処理液ト:を1)5
t/+3にし−1その他の流量もそノ上にぐJ応して低
FA」忙そ。気障漕から引抜く混合油」1は0.4 z
、/ rlと(7、その結果気障汚泥令は10.3tE
となった3、気障槽内のMIIVSSm度は560 (
l m9/ /−で、処理水に流出するSSも含めた1
)1泥量は24OrJP−VSS//: とな−) f
c。Table 1 Comparative Example-1 The treatment of the experiment was completed (old) because there was no nitrification at all in the experiment of Comparative Example-1. Do/Add one wave of treatment liquid: 1)5
t/+3 and -1 Other flow rates are also low FA. Mixed oil to be drawn from the air tank" 1 is 0.4 z
, / rl and (7, so that the air pollution sludge order is 10.3 tE
3, and the MIIVSSm degree in the anomaly tank was 560 (
l m9//-, including SS flowing into the treated water.
) 1 mud volume is 24OrJP-VSS//: Tona-) f
c.
第2表1でみるよう(で、硝化ケ、1は1・1完全に?
工なわれ、窒素除去の点からみれは′処理成績は満足(
7)ゆくものであった、−6しかし、汚泥中のリン含率
eま0.041 f−P/r−VSSにすぎず、そのた
めにリン除去率け53チたらずであった。凍た活性汚泥
の沈降性も次第に悪化し、30分SVI値は22(1−
270ml/ yとなった。この時の24時間静置濃縮
汚泥濃度は2]500〜/lであった。As shown in Table 2, 1 (so, nitrification, 1 is 1.1 completely?
However, from the point of view of nitrogen removal, the treatment results were satisfactory (
7) However, the phosphorus content e in the sludge was only 0.041 f-P/r-VSS, and therefore the phosphorus removal rate was less than 53 points. The sedimentation properties of frozen activated sludge also gradually worsened, and the 30-minute SVI value reached 22 (1-1).
It became 270ml/y. At this time, the concentration of concentrated sludge left standing for 24 hours was 2]500 to 1/l.
以1−のように、知い気障汚泥令で運転した比較例−1
の実験では高いリン除去率と優れた汚泥の沈降濃縮性が
得られたものの、硝化fま全く生ぜず、窒素除去は不完
全にしか行なわれなかった。これに対して、硝化を生ぜ
せしめ得るほどに長くした場合VC)まりン除去率、汚
泥の沈降濃縮性とも悪化した。Comparative example 1 operated under the sludge ordinance as shown in 1-1 below.
Although a high phosphorus removal rate and excellent sludge sedimentation and concentration properties were obtained in the experiment, nitrification did not occur at all, and nitrogen removal was only incomplete. On the other hand, when the length of time was increased to the extent that nitrification could occur, both the marin removal rate (VC) and the sedimentation and concentration properties of the sludge deteriorated.
第2表 比較例−2実験の処理成品
(実施例)
以上のような従来の循環式硝化脱窒変法に関する知見を
得たあとに、本発明の実験を行7t、た1、微生物床と
1−/Cは内径12+yyy+の塩ビ1゛−、、−−−
−yを7tc−ばねたものを用い、これを気障槽にTo
、−ブ内の流れが止まらないように設置した一0神処理
液flなど液相は全て比較例−1のそれに歯元しまた、
運転変更後硝化は直ちに停+l−L rr−が、3週間
後から徐々に回復j7.4週間後には比較例−1と同等
の処理成績を得るよう(でな)だ1、それ以後の処理成
績平均値全第3表に示−t。、この時の気障汚泥令は3
3日で、気障槽混合液のMLVSS濃度は5050〜/
lであった。処理液に流出するSSを含め/こ排泥h1
第3表 実施例 実験の処理成績
は285 m9−VSS/lで、その時のリン含率は0
069 y−PI3−VSSであった。最終沈殿池での
リン放出がほとんどないため妬、リン除去率は比較例−
1の場合よりもやや高かった。Table 2 Comparative Example - Treated products of 2 experiments (Example) After obtaining the knowledge regarding the conventional modified cyclic nitrification and denitrification method as described above, the experiment of the present invention was carried out using 7t, 1, and microbial bed. 1-/C is PVC 1゛-,,--- with inner diameter 12+yyy+
-y with 7tc- spring, and put this in the turbulence tank.
, - All the liquid phases, such as the Ichigami processing liquid fl, which was installed so that the flow inside the tube would not stop, were the same as those in Comparative Example-1.
After the change in operation, nitrification stopped immediately, but gradually recovered after 3 weeks. 7. After 4 weeks, the same treatment results as Comparative Example 1 were obtained. 1, subsequent treatments All grade point averages are shown in Table 3. , at this time the sludge order was 3
In 3 days, the MLVSS concentration of the air pollution tank mixture was 5050~/
It was l. Sludge including SS flowing into the treatment liquid h1
Table 3 Example: The treatment result of the experiment was 285 m9-VSS/l, and the phosphorus content was 0.
069y-PI3-VSS. There is almost no phosphorus released in the final sedimentation tank, so the phosphorus removal rate is comparative.
It was slightly higher than in case 1.
汚泥の沈降濃縮性の改善は硝化率の向」二よりも速く、
運転変更後3週間でSVI値は50 m(’//y以下
にな1)、最終的には37〜45m1/lに安定した、
なお、この時の24時間静@濃縮汚泥濃度は32000
m9Aであ)だ1、また、微生物床の硝化に対する富
力率を調べるために実験終了時に微生物床を静かにとり
141 L硝化の悪化f、観察した。翌日には処理水に
22〜/’LのNH3−Nが残留したので、このことか
ら少なくとも硝化菌の78Lりid、微生物床に付着し
ていたものと推定された。The improvement in sludge sedimentation and concentration is faster than the nitrification rate.
Three weeks after the change in operation, the SVI value was 50 m (below 1), and finally stabilized at 37 to 45 m1/l.
In addition, the 24-hour static @ thickened sludge concentration at this time was 32,000.
In order to investigate the enrichment factor of the microbial bed for nitrification, the microbial bed was gently removed at the end of the experiment and the deterioration of nitrification was observed. On the next day, 22~/'L of NH3-N remained in the treated water, and from this it was estimated that at least 78 L of nitrifying bacteria was attached to the microorganism bed.
以−にの結果をまとめると第4表のとおりであ1フ、こ
れから本発明に上itげ、
(1) 硝化反応が円滑に進むこと、(2)活性汚泥
中のリン含率が高いこと、(3) 活性汚泥の沈降性
が良いこと、(4) 沈殿汚泥から処理水へのリン溶
出量が殆どないとと、
(5) BOD 、 1’ N 、 0−Pの除去率
が、1)、いこと、など多くの利点がイ)Iらhる(二
とがわかる。The above results are summarized as shown in Table 4. From now on, we will proceed to the present invention. (1) The nitrification reaction proceeds smoothly, (2) The phosphorus content in the activated sludge is high. , (3) the activated sludge has good settling properties, (4) there is almost no phosphorus elution from the settled sludge into the treated water, and (5) the removal rate of BOD, 1'N, 0-P is 1. ), and many advantages such as i) Ira hru (ii).
第4衣4th garment
第1図は、本発明の基礎実験の結果を示−tグラフ、第
2図乃至第6図は、本発明のそれぞれ異なる実施態様を
示すノl」−シートCある。
1−・嫌気槽、2・・・気障槽、3 ・i夕牛物床、4
・・最終沈殿池1.5,17・・脱窒槽、6,7 ス
クリーン、7′・微生物床回収器、8・・・循環ポンプ
、9・抜出し、ポンプ、】〇−返送ポンプ、】1・−被
処理液、12・嫌気部1M)情況ls、 M、13・気
1暴イ1肖化処理済混合i’?L 13’・・脱窒処理
済混合液、】4・・処(11液、15・返送活性汚泥、
16・・余剰活性汚泥、16′−・混合液、18 、1
8’−・循環混合液、]9・U、に′油供給混合液、2
〇−嫌気槽植種活性汚泥、21・・硝化槽供給混合液、
22−4t’i化槽、23・・沈殿池供給i″lIi助
混合液。
特r「出願人 荏原インフィルコ株式会ネ1代理人−f
「叩十 姑 山 Jモ −回 弁理ト 千
l−+E 捻0(日)−−−FIG. 1 is a t-graph showing the results of basic experiments of the present invention, and FIGS. 2 to 6 are sheet C showing different embodiments of the present invention. 1- Anaerobic tank, 2... Anaerobic tank, 3 - i Yugyumonodoko, 4
・・Final sedimentation tank 1.5, 17・・Denitrification tank, 6, 7 Screen, 7′・Microbial bed collector, 8・Circulation pump, 9・Extraction, pump,】〇−Return pump,】1・-Liquid to be treated, 12・Anaerobic part 1M) Situation ls, M, 13・Ki 1 A 1 Portion treated mixture i'? L 13'... Denitrification treated mixed liquid, ] 4... Place (Liquid 11, 15. Returned activated sludge,
16. Surplus activated sludge, 16'-. Mixed liquid, 18, 1
8'--Circulating mixed liquid, ]9-U, 'Oil supply mixed liquid, 2
〇-Anaerobic tank seeding activated sludge, 21...Nitrification tank supply mixed liquid,
22-4 t'i conversion tank, 23... Sedimentation tank supply i''lIi auxiliary mixed liquid.
``Taku ten mother-in-law mountain J mo - times patent attorney 1000
l-+E Twist 0 (Sun) ---
Claims (1)
L?い条件下で混合攪拌して嫌気処理(−7、イ(1ら
れた嫌気処理液を伝爆処理する方法において、該急曝処
理と並行して又番−ま急曝処理の後に前記嫌気処理液を
硝化菌が着床した微イ1−物床と接触さ辻て硝什処j]
1を行なうことを特徴とする有機性廃液の処理fly、
、2 前記嫌気処理液を前記硝化処理下t?による硝化
処理液と混合L7て脱窒処理を行ない、得られる脱窒処
理液を前記気曝処理T稈により処理する特許請求の範囲
第1項記載の処理法。 ろ、 前記気曝処理二り稈内の混合液のMLVSS都と
前記−jljの処理工稈において発生するM I 、V
S S 1j’+との比(気1’fA fj泥令)
カフ F3以下、好!tL < k:L 5 トl以F
となるように前記一連の処理1稈を行なう特許請求の範
Lltl第1項■、t」第2項配材の処理法。[Claims] 1. Do activated sludge and liquid to be treated substantially exist in both DO and NO? In a method in which the anaerobic treatment solution is subjected to explosive treatment by mixing and stirring under conditions of When the liquid comes into contact with the nitrifying bacteria, it is brought into contact with the material floor.
A treatment fly for organic waste liquid characterized by carrying out 1.
, 2. The anaerobic treatment liquid is subjected to the nitrification treatment. The treatment method according to claim 1, wherein the denitrification treatment is carried out by mixing L7 with the nitrification treatment solution obtained by the method, and the resulting denitrification treatment solution is treated by the aeration treatment T culm. MLVSS of the mixed liquid in the two aerated culms and M I , V generated in the -jlj treated culm.
Ratio to S S 1j'+ (Ki 1'fA fj mudrei)
Cuff F3 or below, good! tL < k: L 5 tL or less F
Claim 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 or 3 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57139825A JPS5932999A (en) | 1982-08-13 | 1982-08-13 | Disposal of organic liquid waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57139825A JPS5932999A (en) | 1982-08-13 | 1982-08-13 | Disposal of organic liquid waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5932999A true JPS5932999A (en) | 1984-02-22 |
JPH0125634B2 JPH0125634B2 (en) | 1989-05-18 |
Family
ID=15254346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57139825A Granted JPS5932999A (en) | 1982-08-13 | 1982-08-13 | Disposal of organic liquid waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5932999A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59145098A (en) * | 1983-02-08 | 1984-08-20 | Hitachi Plant Eng & Constr Co Ltd | Plant for biological denitrification-dephosphorization of waste water |
JPS60110397A (en) * | 1983-11-21 | 1985-06-15 | Kurita Water Ind Ltd | Biological treatment apparatus of sewage |
JPS61202196U (en) * | 1985-06-07 | 1986-12-18 | ||
WO1994011313A1 (en) * | 1992-11-06 | 1994-05-26 | THE MINISTER FOR PUBLIC WORKS for and on behalf ofTHE STATE OF NEW SOUTH WALES | Biological phosphorus removal from waste water |
JPH07328690A (en) * | 1994-06-01 | 1995-12-19 | Kurita Water Ind Ltd | Treatment of organic waste water |
WO1999041205A1 (en) * | 1998-02-16 | 1999-08-19 | Otv Omnium De Traitements Et De Valorisation | Method for biologically treating effluents producing little or no excess sludge including a treating step by fixed film biomass |
EP1008560A1 (en) * | 1998-12-09 | 2000-06-14 | AW Creative Technologies Limited | Biological removal of phosphorus from waste water |
KR100443410B1 (en) * | 2001-08-11 | 2004-08-09 | 주식회사 카보텍 | Apparatus for Wastewater treatment with Simultaneous Nitrification/Denitrification and A Treatment method thereof |
KR100459950B1 (en) * | 2002-11-21 | 2004-12-03 | 황규대 | Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater |
KR100563449B1 (en) | 2005-12-30 | 2006-03-22 | (주)경북환경 | Apparatus for treatmenting of sewage using semi-batch and method thereof |
JP2011507682A (en) * | 2007-12-19 | 2011-03-10 | サウジ アラビアン オイル カンパニー | Suspended solvent granular activated carbon membrane bioreactor system and process |
US8894855B2 (en) | 2008-03-28 | 2014-11-25 | Evoqua Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US9359239B2 (en) | 2008-03-28 | 2016-06-07 | Evoqua Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US9359236B2 (en) | 2010-08-18 | 2016-06-07 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
US10131550B2 (en) | 2013-05-06 | 2018-11-20 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681195A (en) * | 1979-12-04 | 1981-07-02 | Nippon Kokan Kk <Nkk> | Denitrification process of sewage |
-
1982
- 1982-08-13 JP JP57139825A patent/JPS5932999A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681195A (en) * | 1979-12-04 | 1981-07-02 | Nippon Kokan Kk <Nkk> | Denitrification process of sewage |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59145098A (en) * | 1983-02-08 | 1984-08-20 | Hitachi Plant Eng & Constr Co Ltd | Plant for biological denitrification-dephosphorization of waste water |
JPS60110397A (en) * | 1983-11-21 | 1985-06-15 | Kurita Water Ind Ltd | Biological treatment apparatus of sewage |
JPH0422639B2 (en) * | 1983-11-21 | 1992-04-20 | Kurita Water Ind Ltd | |
JPS61202196U (en) * | 1985-06-07 | 1986-12-18 | ||
WO1994011313A1 (en) * | 1992-11-06 | 1994-05-26 | THE MINISTER FOR PUBLIC WORKS for and on behalf ofTHE STATE OF NEW SOUTH WALES | Biological phosphorus removal from waste water |
US5543051A (en) * | 1992-11-06 | 1996-08-06 | The Minister For Public Works And Services For And On Behalf Of The State Of New South Wales | Biological phosphorus removal from waste water |
JPH07328690A (en) * | 1994-06-01 | 1995-12-19 | Kurita Water Ind Ltd | Treatment of organic waste water |
WO1999041205A1 (en) * | 1998-02-16 | 1999-08-19 | Otv Omnium De Traitements Et De Valorisation | Method for biologically treating effluents producing little or no excess sludge including a treating step by fixed film biomass |
FR2781785A1 (en) * | 1998-02-16 | 2000-02-04 | Omnium Traitement Valorisa | METHOD FOR THE BIOLOGICAL TREATMENT OF NON-OR LITTLE OR EXCESSIVE SLUDGE EFFLUENTS INCLUDING A FIXED BIOMASS TREATMENT STAGE |
EP1008560A1 (en) * | 1998-12-09 | 2000-06-14 | AW Creative Technologies Limited | Biological removal of phosphorus from waste water |
GB2351284A (en) * | 1998-12-09 | 2000-12-27 | Aw Creative Technologies Ltd | Biological removal of phosphorus from waste water |
GB2351284B (en) * | 1998-12-09 | 2001-08-15 | Aw Creative Technologies Ltd | Biological removal of phosphorus from waste water |
KR100443410B1 (en) * | 2001-08-11 | 2004-08-09 | 주식회사 카보텍 | Apparatus for Wastewater treatment with Simultaneous Nitrification/Denitrification and A Treatment method thereof |
KR100459950B1 (en) * | 2002-11-21 | 2004-12-03 | 황규대 | Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater |
KR100563449B1 (en) | 2005-12-30 | 2006-03-22 | (주)경북환경 | Apparatus for treatmenting of sewage using semi-batch and method thereof |
WO2007078047A1 (en) * | 2005-12-30 | 2007-07-12 | Essa Co., Ltd. | Apparatus for treatmenting of sewage using semi-batch and method thereof |
US7674380B2 (en) | 2005-12-30 | 2010-03-09 | Essa Co., Ltd. | Apparatus for treating sewage using a semi-batch process and associated method |
JP2011507682A (en) * | 2007-12-19 | 2011-03-10 | サウジ アラビアン オイル カンパニー | Suspended solvent granular activated carbon membrane bioreactor system and process |
US8894855B2 (en) | 2008-03-28 | 2014-11-25 | Evoqua Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US9359239B2 (en) | 2008-03-28 | 2016-06-07 | Evoqua Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US9359238B2 (en) | 2008-03-28 | 2016-06-07 | Evoqua Water Technologies Llc | Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods |
US9359236B2 (en) | 2010-08-18 | 2016-06-07 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
US9783440B2 (en) | 2010-08-18 | 2017-10-10 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
US10131550B2 (en) | 2013-05-06 | 2018-11-20 | Evoqua Water Technologies Llc | Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle |
Also Published As
Publication number | Publication date |
---|---|
JPH0125634B2 (en) | 1989-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5514277A (en) | Treatment of wastewater and sludges | |
JPS5932999A (en) | Disposal of organic liquid waste | |
CN106745743B (en) | Sewage nitrogen and phosphorus removal system | |
US11390546B2 (en) | Continuous flow wastewater treatment system | |
US7285215B2 (en) | Process for improving phosphorus removal in waste water treatment without chemical addition | |
JPS5840198A (en) | Method and device for biologically purifying waste water | |
US6830689B2 (en) | Process for removing phosphorus from wastewater utilizing a triple basin wastewater treatment system | |
CN103068748A (en) | Contact-stabilization/prime-float hybrid | |
JP3460745B2 (en) | Biological nitrification denitrification method and apparatus | |
CN104986854B (en) | Sludge reflux control system, method and sewage disposal system | |
WO2006019256A1 (en) | Biological wastewater treating apparatus and method for biologically treating wastewater using the apparatus | |
JPH02237698A (en) | Biological removing method of nitrogen and phosphorus and its apparatus | |
KR19990074576A (en) | Biological treatment of wastewater by continuous circulation / regeneration in biological treatment tank of powdered zeolite | |
CS275878B6 (en) | Process and plant for waste-water treatment | |
JP2000107797A (en) | Purification method and apparatus | |
JPH0125633B2 (en) | ||
DE19542146A1 (en) | Waste water process and assembly for activated sludge | |
JP2004105872A (en) | Method of treating waste water | |
KR100520034B1 (en) | Organic matters, nutrients removal method in sequencing batch reactor by continuously equalized influent of original water and the apparatus therein | |
KR100318367B1 (en) | Waste water treatment apparatus | |
JPH0459959B2 (en) | ||
JPH02139094A (en) | Method and equipment for removing nitrogen from sewage | |
JPH08168796A (en) | Aerobic nitrating denitrification process | |
JPH0135718B2 (en) | ||
JPS63315198A (en) | Biological denitrification device for inorganic waste water containing ammonia nitrogen |