JPS59328Y2 - Intermediate fulcrum raising device for prestressed concrete embedded formwork - Google Patents

Intermediate fulcrum raising device for prestressed concrete embedded formwork

Info

Publication number
JPS59328Y2
JPS59328Y2 JP12976482U JP12976482U JPS59328Y2 JP S59328 Y2 JPS59328 Y2 JP S59328Y2 JP 12976482 U JP12976482 U JP 12976482U JP 12976482 U JP12976482 U JP 12976482U JP S59328 Y2 JPS59328 Y2 JP S59328Y2
Authority
JP
Japan
Prior art keywords
formwork
intermediate fulcrum
reaction force
stress
prestressed concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12976482U
Other languages
Japanese (ja)
Other versions
JPS58111209U (en
Inventor
義彦 村上
Original Assignee
富士ピ−.エス.コンクリ−ト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ピ−.エス.コンクリ−ト株式会社 filed Critical 富士ピ−.エス.コンクリ−ト株式会社
Priority to JP12976482U priority Critical patent/JPS59328Y2/en
Publication of JPS58111209U publication Critical patent/JPS58111209U/en
Application granted granted Critical
Publication of JPS59328Y2 publication Critical patent/JPS59328Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【考案の詳細な説明】 この考案はコンクリート構造物のプレストレスト・コン
クリート(以下PCと称す)製埋込型粋の中間支点高め
装置に関し、場所打コンクリート打設時、埋込型枠の中
間支点を高めて計算された上反りを与え、その状態を保
ってコンクリートを硬化させた後、上反り手段をはずし
て型枠下面の残留圧縮応力を増大し、ひび割れに強いけ
た、梁、床等を得るものである。
[Detailed description of the invention] This invention relates to a device for raising the intermediate fulcrum of a buried formwork made of prestressed concrete (hereinafter referred to as PC) for concrete structures, when pouring concrete in place. After increasing the calculated warping and curing the concrete while maintaining that state, the warping means is removed to increase the residual compressive stress on the bottom surface of the formwork, creating girders, beams, floors, etc. that are resistant to cracking. It is something.

以下、図面について、この考案の実施態様を説明する。Hereinafter, embodiments of this invention will be described with reference to the drawings.

第1図は支間5mの床板に、この考案を適用した例であ
る。
Figure 1 shows an example of applying this idea to a floorboard with a span of 5m.

PC埋込型枠1は量産した平板材で、長さは支間5mに
余剰長さを加え、横幅は定寸法、通常l〜2mの幅のも
のを並べて(第1図工参照)所要幅にしたものである。
The PC-embedded formwork 1 is a mass-produced flat plate material, with a length of 5m plus extra length and a fixed width, usually 1 to 2m widths lined up (see drawing 1) to obtain the required width. It is something.

その厚みは4cmで、その上に場所打コンクリ−1−2
を厚み8cmに打設し、全体で12crnとする。
The thickness is 4cm, and on top of that is cast-in-place concrete 1-2.
The concrete is cast to a thickness of 8 cm, making the total cost 12 crn.

地面上に支柱3を二本立て、両端のA、Bと、中間のり
、Eの四点で支持している。
Two pillars 3 are set up on the ground and supported at four points: A and B at both ends, the middle glue, and E.

第1図工の1aはPC鋼棒、1bは溶接金網である。In the first drawing, 1a is a PC steel bar, and 1b is a welded wire mesh.

こうして所要位置に梁又は原状に埋込型枠1をかけ渡し
、その中間部を適当間隔で、−ないし数点(この場合は
二点)支持したら、その各中間支点り、Eを高めて、第
1図つにやや誇張して示すように型枠1になだらかな上
反りを与える。
In this way, after extending the embedded formwork 1 over the beam or original shape at the required position and supporting the intermediate part at - or several points (in this case, two points) at appropriate intervals, raise E at each intermediate fulcrum, As shown in Figure 1, which is slightly exaggerated, the formwork 1 is given a gentle upward curvature.

支柱3下端のスクリュージヤツキを回し、その上端を高
めるのであるが、そのスクリュージヤツキは、後述の反
力調節、計測装置4(第9図)付きのものである。
The screw jack at the lower end of the column 3 is turned to raise its upper end, and the screw jack is equipped with a reaction force adjustment and measuring device 4 (FIG. 9), which will be described later.

型枠1に適当な上反りを与えたら場所打コンクノートを
従来どおり打設する。
After giving the formwork 1 an appropriate warp, cast-in-place concrete notebook is poured as usual.

これにより床版全体の重量が増大し、各支柱3の反力も
その分だけ増大する。
This increases the weight of the entire floor slab, and the reaction force of each support column 3 also increases accordingly.

そこで、その反力を計測する装置4の指示値が、予めそ
の支柱について設計計算により得た予定値に達するよう
支点を昇降調節する。
Therefore, the fulcrum is adjusted up and down so that the indicated value of the device 4 that measures the reaction force reaches the expected value obtained in advance through design calculations for that support.

そのままコンクリートの硬化を待ち、埋込型枠1と場所
打コンクリート2が合成一体化した後中間支点り、Eの
支持をはずすのである。
Wait for the concrete to harden, and after the embedded formwork 1 and cast-in-place concrete 2 are integrated, the support at the intermediate support E is removed.

第1図の実施例の設計計算の概略を示すと、床版寸法は
前述のとおりで、AD間1.8m、DC,CE間0.7
mとする。
To outline the design calculations for the embodiment shown in Figure 1, the dimensions of the floor slab are as described above, with an AD distance of 1.8m and a DC and CE distance of 0.7m.
Let it be m.

床版底面を形成するPC埋込型枠1は量産品で、その最
大曲げモーメントは184kg−mであるので、D、E
両支点の曲げモーメン)MdMe=−184kg−mと
なるようにする。
The PC embedded formwork 1 that forms the bottom of the floor slab is a mass-produced product, and its maximum bending moment is 184 kg-m, so D, E
The bending moment at both supporting points) MdMe should be -184 kg-m.

すると計算により、型枠1と場所打コンクリート2の重
量によりA点の反力= 168 kg、 D点の反力=
582kg、C(中央)点の曲げモーメントMC=−1
10kg−m、Mx= +47 kg、mが算出できる
(x=0.s6mが最大モーメントのおこる点)。
Then, by calculation, due to the weight of formwork 1 and cast-in-place concrete 2, reaction force at point A = 168 kg, reaction force at point D =
582 kg, bending moment MC at point C (center) = -1
10 kg-m, Mx = +47 kg, m can be calculated (x = 0.s6m is the point where the maximum moment occurs).

従って、場所打コンクリート2打設後、直ちにD点、E
点の支持反力が582 kgになるよう支柱反力を調整
すると、埋込型枠1は最大曲げモーメント−ばいの上反
りを与えられたことになる。
Therefore, after pouring concrete 2, immediately move to point D and E.
When the column reaction force is adjusted so that the support reaction force at the point becomes 582 kg, the embedded formwork 1 is given the maximum bending moment - camber.

第1図イはその状態のモーメント図である。Figure 1A is a moment diagram of this state.

また第2図7゜工、キは、第1図X (X =0.56
m)点、D点、C点における型枠1の使用前の応力図
、図イ、オ、りは場所打コンクリート打設し全床版重量
が加わった状態で上反りを与えた時の応力図である。
Also, Fig. 2 7゜work, Ki is Fig. 1 X (X = 0.56
Stress diagrams of formwork 1 before use at point m), point D, and point C. Figures A, E, and R show the stress when cast-in-place concrete is cast and warped when the entire slab weight is applied. It is a diagram.

使用前の型枠1は全断面にプレストレストの圧縮応力6
9kg/cm2が均等分布している。
Before use, the formwork 1 has a prestressed compressive stress of 6 on the entire cross section.
9 kg/cm2 is evenly distributed.

それが、上反りを与えながら場所打コンクリート2を施
した際に上記計算された支え反力に調整して硬化させる
と、X点(イ図)では上面87、下面51.D点(オ図
)では上面0、下面138、C点(第7図)では上面2
8、下面110kg/Cm”と変っている。
When cast-in-place concrete 2 is applied while giving an upward warp and is hardened by adjusting to the support reaction force calculated above, at point X (Figure A), the upper surface is 87, the lower surface is 51. At point D (Figure O), the upper surface is 0, the lower surface is 138, and at point C (Figure 7), the upper surface is 2.
8. The lower surface has changed to 110kg/cm".

この上反り型枠1上に場所打コンクリート2を打設して
床版を完成し、支柱3を取除いた後、その上に、この床
版に許される最大限の積載荷重を載せるとする。
Cast-in-place concrete 2 is placed on top of this curved formwork 1 to complete the floor slab, and after the supports 3 are removed, the maximum load allowed for this floor slab is placed on top of it. .

この場合、最大限載荷は床板上面、つまり場所打コンク
リート2上面の中央部における許容圧縮応力−80kg
/Cm”から求められ、最大積載荷重= 347 kg
/mとなる(幅1mで計算)。
In this case, the maximum load is the allowable compressive stress at the center of the top surface of the floor plate, that is, the top surface of the cast-in-place concrete 2 - 80 kg.
/Cm”, maximum load = 347 kg
/m (calculated based on a width of 1m).

この最大荷重が加わった時の第1図のX点、D点、C点
の応力図は第2図つ、力、ケのようになる。
When this maximum load is applied, the stress diagram at points X, D, and C in Figure 1 becomes as shown in Figure 2.

即ちX点では場所打コンクリート2上面の応力42kg
/cm2、同下面は−8、型枠1上面は79、同下面は
18 kg/Cm”となる。
In other words, at point X, the stress on the top surface of cast-in-place concrete 2 is 42 kg.
/cm2, the lower surface is -8, the upper surface of the formwork 1 is 79, and the lower surface is 18 kg/Cm''.

D点では場所打コンクリート2上面の応 力113(換算応力113X0.675=76 kg/
cm2)、同下面は−22、型枠1上面も−22、下面
は48である。
At point D, stress 113 on the top surface of cast-in-place concrete 2 (converted stress 113 x 0.675 = 76 kg/
cm2), the lower surface is -22, the upper surface of the formwork 1 is also -22, and the lower surface is 48.

C点では場所打コンクリート2上面の応力118(換算
応力80 kg/cm2) 、同下面は−23、型枠1
上面は5、下面は16kg/cm2と、いずれも床版下
面に圧縮応力を残している。
At point C, the stress on the top surface of cast-in-place concrete 2 is 118 (converted stress 80 kg/cm2), the stress on the bottom surface is -23, and the stress on the bottom surface of formwork 1 is 118 (converted stress 80 kg/cm2).
5 kg/cm2 on the upper surface and 16 kg/cm2 on the lower surface, both of which leave compressive stress on the lower surface of the slab.

この考案によらなかった場合の床版下面の応力は鎖線で
示すが、X点で−33、D点で−90,C点で−94と
夫々、引張応力が発生し、ひび割れを生ずる。
The stress on the lower surface of the floor slab without this idea is shown by the chain line, and the tensile stress would be -33 at point X, -90 at point D, and -94 at point C, resulting in cracks.

この違いは、この考案の耐亀裂性向上効果を示すもので
ある。
This difference shows the effectiveness of this invention in improving crack resistance.

ここで、中間支点を高める手段として用いた反力調節、
計測装置4を第9図によって説明する。
Here, the reaction force adjustment used as a means of increasing the intermediate fulcrum,
The measuring device 4 will be explained with reference to FIG.

この場合、市販のスクリュージヤツキによる支柱高低装
置の支柱押上部にコイルバネを介入させ、そのバネの縮
み量により反力の大きさを測るものである。
In this case, a coil spring is inserted into the upper part of the prop elevation device using a commercially available screw jack, and the magnitude of the reaction force is measured by the amount of contraction of the spring.

台板10に固定したネジ軸11は鋼管支柱3の下端に嵌
合している。
A screw shaft 11 fixed to the base plate 10 is fitted into the lower end of the steel pipe support 3.

ネジ軸11に螺合したメネジ12のバンドル13を回す
と、メネジ12が上下動する。
When the bundle 13 of the female screw 12 screwed onto the screw shaft 11 is turned, the female screw 12 moves up and down.

このメネジ12と支柱3下端との間に、メネジ12上を
摺動し得る上下鍔14.15と、それらの間に介入した
コイルバネ16がある。
Between this female screw 12 and the lower end of the column 3, there are upper and lower flanges 14, 15 that can slide on the female screw 12, and a coil spring 16 interposed between them.

バンドル13によりメネジ12を上下させると、下鍔1
4、コイルバネ16、上鍔15が上下し、上鍔15に載
った支柱3を上下する。
When the female screw 12 is moved up and down by the bundle 13, the lower tsuba 1
4. The coil spring 16 and the upper flange 15 move up and down, and the column 3 mounted on the upper flange 15 moves up and down.

そして支柱3に荷重がかかると、その分だけコイルバネ
16が縮むから、その縮み量を下鍔14に固定した臼盤
尺17により計測し、バネ常数から算出するか、予じめ
荷重−縮み線図を作っておいて荷重値を知るのである。
When a load is applied to the support column 3, the coil spring 16 contracts by that amount, so the amount of contraction can be measured using the mortar scale 17 fixed to the lower flange 14 and calculated from the spring constant, or it can be calculated from the load-shrinkage line in advance. Make a diagram and know the load value.

尺17に荷重値を臼盤にして入れてもよい。The load value may be placed in the scale 17 as a mortar.

実験に用いたlt用バネは縮み量1mm当り25 kg
で比例した。
The LT spring used in the experiment has a compression rate of 25 kg per 1 mm.
It was proportional.

第3図の実施例は中間支点り、E、F、Gをビデイ式支
柱3aで支えたもので、埋込型枠1は第1図工ノもの、
支間5m、AD間1.4m、DE間1.2m、全厚15
cm、積載荷重180 kg/m C幅1mとして)、
各中間支点の反力を等しくシ、中央C点での上反りモー
メントは一60kg−mとなるよう反力を調整する。
In the embodiment shown in Fig. 3, the intermediate supports E, F, and G are supported by bidet type supports 3a, and the embedded formwork 1 is of the first design.
Span 5m, AD 1.4m, DE 1.2m, Total thickness 15
cm, load capacity 180 kg/m C width 1 m),
The reaction force is adjusted so that the reaction force at each intermediate fulcrum is equal and the upward bending moment at the center point C is -60 kg-m.

上の条件から計算により各中間支点の所要反力は437
kgとなる。
Calculated from the above conditions, the required reaction force at each intermediate support is 437
kg.

その時、型枠1のモーメント分布は第3図イとなり、場
所打コンクリート打設、上記積載荷重付加により第4図
の応力図となる。
At that time, the moment distribution of the formwork 1 becomes as shown in Fig. 3A, and as a result of pour-in-place concrete placement and the addition of the above-mentioned live load, the stress diagram becomes as shown in Fig. 4.

第5図は第1図と同じ床版で、中間支点り、Eも同位置
であるが、型枠1に上反りを与える左右支柱3の押上反
力を小さくした場合である。
FIG. 5 shows the same floor slab as in FIG. 1, and the intermediate fulcrum E is at the same position, but the upward reaction force of the left and right supports 3 that cause the formwork 1 to warp upward is reduced.

図のX。D、C点の応力図は第6図イ、工、力のように
なる。
X in the diagram. The stress diagram at points D and C is as shown in Figure 6.

第7図は埋込型枠1′を、第10図のような補強骨をも
つ、さらに曲げに強いPC板にした実施例を示す。
FIG. 7 shows an embodiment in which the embedding form 1' is made of a PC board having reinforcing ribs as shown in FIG. 10, which is more resistant to bending.

第8図上段のア、イ、つ、工は第7図X点、下段のオ、
力、キ、りは同図C点の応力変化を示す。
The A, I, and TS in the upper row of Figure 8 are the X points in Figure 7, and the O in the lower row.
Force, Ki, and Ri indicate stress changes at point C in the figure.

以上、小数の実施例によって説明したが、この考案は、
PC製理込型枠で現場で、設計計算にもとづき適当な反
力と上反りを与えて下面応力を増大した状態で場所打コ
ンクリートを打設、硬化させることを特徴とするもので
、その実施態様は設計条件、現場状況により当然、多様
に変化する。
Although the above has been explained using decimal examples, this invention is
This method is characterized by pouring and hardening cast-in-place concrete using PC-fabricated formwork on-site with appropriate reaction force and upward warping based on design calculations to increase bottom surface stress. Naturally, the aspects will vary widely depending on design conditions and site conditions.

この考案は、工場製作された良質、強靭なPC製埋込型
粋の広い弾性範囲を活用し、完成床版の下面となる型枠
下側に、現場作業でもって、プレストレストの圧縮応力
を、さらに増大する最も簡便な手段を提供する。
This idea takes advantage of the wide elasticity range of the factory-manufactured high-quality, tough PC embedded type, and applies the compressive stress of prestressing to the underside of the formwork, which forms the bottom surface of the completed floor slab, during on-site work. Provides the simplest means for further growth.

即ちこの考案の中間支点高め装置は、ネジ軸を鋼管支柱
に挿入して支柱の昇降案内兼昇降駆動調節機構とし、さ
らに反力計測用コイルバネの芯材をも兼ねさせるので最
も簡素安価で、取扱い容易な高さ、反力調節装置となっ
た。
In other words, the device for raising the intermediate fulcrum of this invention is the simplest, cheapest, and easiest to handle because the threaded shaft is inserted into the steel pipe support to serve as a lifting guide and lifting drive adjustment mechanism for the support, and it also serves as the core material of the coil spring for measuring reaction force. Easy height and reaction force adjustment device.

しかも、そのコイルバネには変形量計測尺が付いている
ので支点反力が直ちに分るように目盛りを付けられる。
Furthermore, since the coil spring is equipped with a deformation measurement scale, it can be calibrated to immediately determine the fulcrum reaction force.

他の反力調節装置、応力計測装置を使って支点の高さを
調節し、その反力を測ることを考えれば、この高め装置
の簡便さは画期的である。
Considering that other reaction force adjustment devices and stress measurement devices are used to adjust the height of the fulcrum and measure the reaction force, the simplicity of this heightening device is revolutionary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ア、イ、つ、工は夫々、この考案実施例の概略説
明図、その上反り時のモーメント図、立面図、床版の横
断面図で、第2図ア→ケはその各部、各条件の応力図、
第3図7.イは他の実施例の説明図とモーメント図、第
4図ア→工はその応力図、第5図ア、イはさらに他の実
施例の説明図とモーメント図、第6図ア→力はその応力
図、第7図7.イは別の実施例の説明図とモーメント図
、第8図ア→りはその応力図、第9図は支柱下端につけ
た反力調節測定装置の実施例説明図、第10図は第1図
工とは別の埋込型枠を用いた床版の横断面図である。 1・・・・・・PCコンクリート製埋込型枠、2・・・
・・・場所打コンクリート。
Figure 1 A, B, TS and TE are a schematic explanatory diagram of the embodiment of this invention, a moment diagram at the time of warping, an elevation view, and a cross-sectional view of the floor slab, respectively, and Figure 2 A → KE are the same. Stress diagrams for each part and each condition,
Figure 37. A is an explanatory diagram and a moment diagram of another embodiment, FIG. 4 A→F is its stress diagram, FIG. Its stress diagram, Figure 77. A is an explanatory diagram and moment diagram of another embodiment, FIG. FIG. 3 is a cross-sectional view of a floor slab using a different embedded formwork. 1...PC concrete embedded formwork, 2...
...cast-in-place concrete.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] かけ渡したプレストレスト・コンクリ;ト製埋込型枠の
中間支点を型枠の両端よりも高めて型枠に上反りを与え
、その状態を保って場所打コンクノートを型枠上に打設
し硬化させる設備において、上記中間支点の鋼管支柱端
に一部を嵌合させ端部に合板をつけたネジ軸、このネジ
軸に螺合した回転駆動部つきメネジ、上記ネジ軸外周に
はまり上記メネジと上記支柱端との間に介入した上下鍔
つきコイルバネ、及び上記上下鍔のいずれかに付けたバ
ネ変形量計測尺を備え、上記メネジを回転駆動して中間
支点を高めご上記計測尺により支持反力を算出するよう
にした事を特徴とするプレストレスト・コンクリート製
埋込型枠の中間支点高め装置。
The middle supporting point of the prestressed concrete embedded formwork is raised higher than both ends of the formwork to give the formwork an upward curvature, and while maintaining this state, cast-in-place concrete concrete is poured onto the formwork. In the hardening equipment, a screw shaft with a part fitted onto the end of the steel pipe support of the intermediate fulcrum and a plywood attached to the end, a female thread with a rotating drive part screwed onto this screw shaft, and a female screw mentioned above that fits on the outer periphery of the screw shaft. A coil spring with upper and lower flanges interposed between the upper and lower flanges and a spring deformation measuring scale attached to either of the upper and lower flanges is provided, and the female screw is rotationally driven to raise the intermediate fulcrum and is supported by the measuring scale. A device for raising the intermediate fulcrum of a prestressed concrete embedded formwork, which is characterized by calculating the reaction force.
JP12976482U 1982-08-30 1982-08-30 Intermediate fulcrum raising device for prestressed concrete embedded formwork Expired JPS59328Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12976482U JPS59328Y2 (en) 1982-08-30 1982-08-30 Intermediate fulcrum raising device for prestressed concrete embedded formwork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12976482U JPS59328Y2 (en) 1982-08-30 1982-08-30 Intermediate fulcrum raising device for prestressed concrete embedded formwork

Publications (2)

Publication Number Publication Date
JPS58111209U JPS58111209U (en) 1983-07-29
JPS59328Y2 true JPS59328Y2 (en) 1984-01-07

Family

ID=30101424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12976482U Expired JPS59328Y2 (en) 1982-08-30 1982-08-30 Intermediate fulcrum raising device for prestressed concrete embedded formwork

Country Status (1)

Country Link
JP (1) JPS59328Y2 (en)

Also Published As

Publication number Publication date
JPS58111209U (en) 1983-07-29

Similar Documents

Publication Publication Date Title
US2510958A (en) Composite floor of metal and concrete
US4627198A (en) Hoisting anchor assembly for use in cast concrete panels and method
US4974381A (en) Tie anchor and method for manufacturing insulated concrete sandwich panels
US4982538A (en) Concrete panels, concrete decks, parts thereof, and apparatus and methods for their fabrication and use
US3577504A (en) Method of manufacturing a girder with a web of reinforced and/or prestressed concrete
US4349491A (en) Method for forming a concrete deck
CA2405877A1 (en) Apparatus and method for improving quality of elevated concrete floors
US4342440A (en) Concrete deck forming apparatus
US4348002A (en) Hanger for concrete deck forming apparatus
US4505087A (en) Method of construction of concrete decks with haunched supporting beams
US3559361A (en) Method for construction
US5074095A (en) Pre-cast concrete panel and joist assembly and method of construction
JPS59328Y2 (en) Intermediate fulcrum raising device for prestressed concrete embedded formwork
US4348004A (en) Ledger for concrete deck forming apparatus
Baqi et al. Experimental study of prestressed masonry flexural elements
JP3425353B2 (en) Formwork material for sliding formwork device
JP2533344B2 (en) Method for manufacturing half PCa board
US3770360A (en) Apparatus for stripping slab casting forms
Fleet Effective Confinement and Bond Strength of Grade 100 Reinforcement
JP2754523B2 (en) Slope stabilization method
KR100631031B1 (en) Precasted concrete plate and bridge slab construction method using that
CN217128748U (en) Support arrangement for control is thick and steel bar protective layer thickness of concrete slab
KR200409957Y1 (en) Precasted Concrete Plate
Frosch et al. Development and Splice Lengths for High-Strength Reinforcement, Volume I: General Bar Development
JP2533345B2 (en) Form for half PCa board