JPS593255A - Method and apparatus for ultrasonic flaw detection - Google Patents

Method and apparatus for ultrasonic flaw detection

Info

Publication number
JPS593255A
JPS593255A JP57111597A JP11159782A JPS593255A JP S593255 A JPS593255 A JP S593255A JP 57111597 A JP57111597 A JP 57111597A JP 11159782 A JP11159782 A JP 11159782A JP S593255 A JPS593255 A JP S593255A
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic flaw
liquid layer
transparent
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57111597A
Other languages
Japanese (ja)
Inventor
Hide Matsuyama
松山 秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP57111597A priority Critical patent/JPS593255A/en
Publication of JPS593255A publication Critical patent/JPS593255A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To carry out inspection works simply and rapidly, by a method wherein a transparent radiation shielding liquid layer is formed at the outside of the inspection part of an object to be inspected and an ultrasonic flaw detecting probe is immersed in said liquid layer to be scanned along the outside of the above mentioned inspection part for flaw detection. CONSTITUTION:A transparent container 3 is provided to an ultrasonic flaw detection apparatus so as to include a welding part 2 and to surround an arranged pipe 1 while a transparent radiation shielding liquid (l) is poured in the container 3 from the upper opening thereof to fill the same and a transparent radiation shielding liquid layer 8 covering the outside of the arranged pipe 1 is formed. In this state, two ultrasonic flaw detecting probes 15 are immersed in said liquid layer 8. By this constitution, the shielding liquid layer can be easily formed and surface finishing of an object to be inspected becomes unnecessary and flaw detecting work can be carried out simply and rapidly.

Description

【発明の詳細な説明】 本発明は、原子カプラントの配管など放射性を有する被
検査体の超音波探傷方法およびその装置に係り、特に、
探傷検査中の被曝を大幅に低減することができると共に
、検査作業の簡易化が図れる超音波探傷方法およびその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method and apparatus for radioactive test objects such as atomic couplant piping, and particularly,
The present invention relates to an ultrasonic flaw detection method and apparatus that can significantly reduce radiation exposure during flaw detection and simplify inspection work.

原子力発電プラントの配管等においては、その安全性を
確保する観点から、供用期間中には、配管の溶接部のき
す、割れ、空隙などの欠陥を検査する厳格な超音波探傷
検査が義務づけられているが、従来のこの種配管の超音
波探傷は直接接触法によって実施されていた。即ち、ま
ず、検査対象となる配管の溶接部の両側を約10〜20
cIn平滑化、清掃などの表面仕上げを行って超音波探
傷プローブと配管との接触をよくシ、次いでグリセリン
等の接触媒質を塗布して後、この接触媒質が塗布された
接触面上を溶接部に沿って超音波探傷グローブをスライ
ドさせて溶接部の探傷を行なっていた。
To ensure the safety of nuclear power plant piping, etc., strict ultrasonic testing is required during the service period to check for defects such as scratches, cracks, and voids in the welded parts of the piping. However, conventional ultrasonic flaw detection for this type of piping has been carried out using the direct contact method. That is, first, approximately 10 to 20
Perform surface finishing such as smoothing and cleaning to ensure good contact between the ultrasonic flaw detection probe and the piping, then apply a couplant such as glycerin, and then apply the couplant to the welding area on the contact surface coated with this couplant. The weld was detected by sliding an ultrasonic flaw detection glove along the weld.

このだめ、検査対象箇所たる溶接部の周囲約10〜20
罐のところは鉛材等で放射線遮蔽することができず、表
面仕上げ作業中や超音波探傷検査中に作業員が受ける被
曝線量が多かった。また表面研摩等の表面仕上げ作業に
多くの労力を要し、探傷検査の長期化を招いていた。
Approximately 10 to 20 meters around the welded area, which is the area to be inspected.
It was not possible to shield the can from radiation with lead materials, and workers were exposed to a large amount of radiation during surface finishing work and ultrasonic flaw detection. Furthermore, surface finishing operations such as surface polishing require a lot of effort, leading to a prolonged flaw detection inspection.

本発明は、以上の従来の問題点を有効に解決すべく創案
されたものであり、本発明の目的は、原子カプラントの
配管など放射性を有する被検査体を超音波探傷する際に
受ける被曝線量を大幅に低減することができると共に、
検査作業の簡易且つ迅速化が図れる超音波探傷方法及び
その装置を提供することにある。
The present invention has been devised to effectively solve the above-mentioned conventional problems, and an object of the present invention is to reduce the exposure dose received during ultrasonic flaw detection of radioactive test objects such as atomic couplant piping. can be significantly reduced, and
It is an object of the present invention to provide an ultrasonic flaw detection method and an apparatus therefor, which can simplify and speed up inspection work.

以下に本発明の好適実施例を添付図面に従って詳述する
。本実施例は配管の溶接部に対する超音波探傷を示すも
のである。
Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. This example shows ultrasonic flaw detection for a welded part of a pipe.

第1図乃至第2図において、1は原子力発電プラントの
放射線物質を含む流体を通す配管であり、配管1は鉛直
方向に配設され高濃度に放射能汚染きれている。また、
2は配管1を連結溶接した際の環状の溶接部であり、超
音波探傷の検査部でお一つ− る。この溶接部2を含む配管1を囲繞するように、透明
容器3が設けられている。透明容器3は、第3図に示す
ように、有底筒体をその軸方向に半裁した二つの分割片
4からなっており、分割片4を互いに突き合せることに
より配管1外側を液密に包囲できるように、分割片4の
底板4aには半円状の切欠4bが設けられると共に、接
合面にはゴムバッキング5が施されている。透明容器4
は、透光性に優れたアクリル樹脂等の材料で成型され、
容器3内部が目視できるようになっている。
In FIGS. 1 and 2, reference numeral 1 denotes a pipe through which fluid containing radioactive materials of a nuclear power plant passes, and the pipe 1 is arranged vertically and is highly contaminated with radioactivity. Also,
2 is an annular welded part when the pipes 1 are connected and welded, and one is in the ultrasonic flaw detection inspection section. A transparent container 3 is provided so as to surround the pipe 1 including the welded portion 2. As shown in Fig. 3, the transparent container 3 consists of two divided pieces 4 obtained by cutting a bottomed cylinder in half in the axial direction, and by butting the divided pieces 4 against each other, the outside of the pipe 1 is made liquid-tight. A semicircular notch 4b is provided in the bottom plate 4a of the divided piece 4 so that it can be enclosed, and a rubber backing 5 is provided on the joint surface. Transparent container 4
is molded from materials such as acrylic resin with excellent translucency,
The inside of the container 3 can be visually observed.

まだ、透明容器3は、その上部および下部に巻かれた固
定バンド6をボルト7で締め付けることにより配管1に
取り付は固定される。容器3内には、その上部開口より
透明放射線遮蔽液1が注入充填され配管1外側を覆う透
明放射線遮蔽液層8が形成されている。透明放射線遮蔽
液2としては、透明で放射線遮蔽効果が高く、且つ超音
波の減衰の小さい液体、例えば水、グリセリン、鉛等の
重金属化合物の水溶液(酢酸鉛、硝酸鉛など)が用いら
れる。透明容器3の内径は、透明放射線遮蔽液層8によ
り所定の放射線減衰が得られる寸法を有している。
The transparent container 3 is still fixedly attached to the pipe 1 by tightening the fixing bands 6 wound around the upper and lower parts thereof with bolts 7. A transparent radiation shielding liquid 1 is injected into the container 3 through its upper opening to form a transparent radiation shielding liquid layer 8 covering the outside of the pipe 1 . As the transparent radiation shielding liquid 2, a liquid that is transparent, has a high radiation shielding effect, and has low attenuation of ultrasonic waves, such as water, glycerin, or an aqueous solution of a heavy metal compound such as lead (lead acetate, lead nitrate, etc.) is used. The inner diameter of the transparent container 3 has a dimension that allows a predetermined radiation attenuation to be obtained by the transparent radiation shielding liquid layer 8.

透明容器3上には、円環状の回転台9が載置されている
。回転台9は配管1を囲繞できるように、二分割に形成
され、第2図のように、連結金具10で連結されている
。円環状の回転台9の内周部には、同様に二分割のかさ
歯車11が取り付けられ、かさ歯車110回転により回
転台9は水平に回転できるようになっている。かさ歯車
11には、これに噛合するかさ歯車12が設けられ、か
さ歯車12は透明容器3に取り付けられた支持台13に
回転自在に支持されている。まだ、かさ歯車12には、
これを回転駆動するだめのサーボモータ14がシャフト
を介して連結されている。サーボモータ14も支持台1
3に支持されており、サーボモータ14の作動により、
かさ歯車12゜11を介して回転台9が水平に滑らかに
回転駆動されるように構成されている。
An annular rotating table 9 is placed on the transparent container 3. The rotary table 9 is formed into two parts so as to surround the pipe 1, and as shown in FIG. 2, they are connected by a connecting fitting 10. Similarly, a two-split bevel gear 11 is attached to the inner peripheral portion of the annular rotary table 9, so that the rotary table 9 can be rotated horizontally by the rotation of the bevel gear 110. The bevel gear 11 is provided with a bevel gear 12 that meshes with the bevel gear 11, and the bevel gear 12 is rotatably supported by a support base 13 attached to the transparent container 3. Still on bevel gear 12,
A servo motor 14 for rotationally driving this is connected via a shaft. The servo motor 14 also supports the support base 1
3, and by the operation of the servo motor 14,
The rotary table 9 is configured to be rotated horizontally and smoothly via bevel gears 12 and 11.

一方、透明容器3の遮蔽液pには溶接部2の探傷を行な
うだめの超音波探傷プローブ15が2個4一 般けられているが、これらプローブ15を」二下方向に
案内移動させるために、各プローブ15に対して2本の
ロッド16が容器3の軸方向にそれぞれ配設されている
。各プローブ15に対する1対のロッド16,16は容
器3の半径方向に所定の間隙を隔てて設けられている。
On the other hand, two ultrasonic flaw detection probes 15 for detecting flaws in the welded part 2 are generally cut into the shielding liquid p of the transparent container 3, but in order to guide and move these probes 15 in the downward direction, , two rods 16 are disposed for each probe 15 in the axial direction of the container 3. A pair of rods 16, 16 for each probe 15 are provided with a predetermined gap in the radial direction of the container 3.

ロッド16は、第4図に拡大示するように、回転台9を
貫通させて回転台9上のサーボモータ17に連結され、
サーボモータ17の作動によりロッド16は回転駆動さ
れるよう構成されている。またロッド16外周面には、
ねじが施され、第4図乃至第5図に示すように、ロッド
16にはこれに螺合するねじ穴18aを有しロッド16
の正逆回転により上下移動可能に水平板18が設けられ
ている。
As shown in an enlarged view in FIG. 4, the rod 16 passes through the rotary table 9 and is connected to a servo motor 17 on the rotary table 9.
The rod 16 is configured to be rotationally driven by the operation of the servo motor 17. In addition, on the outer peripheral surface of the rod 16,
As shown in FIGS. 4 and 5, the rod 16 has a threaded hole 18a into which the rod 16 is threaded.
A horizontal plate 18 is provided which can be moved up and down by forward and reverse rotation.

この水平板18と超音波探傷プローブ15がその先端部
に取り付けられだ細長のフレーム19とはピン20によ
り回動自在に連結されている。フレーム19側面には、
ピン20を挿通する挿通孔が設けられているが、容器3
内側の挿通孔21はフレーム19の長手方向に沿う長孔
状に形成されている。従って例えば、容器3内側のロッ
ド16のみを回転することにより、フレーム19は容器
3側のピン20を中心として上下に回動され、フレーム
19の傾斜角を、即ち、プローブ15から溶接部2への
入射角を自由に変えることができるように構成されてい
る。なお、サーボモータ14やサーボモータ17はコン
トローラ22により回転制御されると共に、プローブ1
5からの超音波発信もコントローラ22により制御され
、グローブ15が受信したエコー信号はコントローラ2
2に送られるようになっている。
This horizontal plate 18 and an elongated frame 19 to which the ultrasonic flaw detection probe 15 is attached at its tip are rotatably connected by a pin 20. On the side of frame 19,
Although an insertion hole is provided through which the pin 20 is inserted, the container 3
The inner insertion hole 21 is formed in a long hole shape along the longitudinal direction of the frame 19. Therefore, for example, by rotating only the rod 16 inside the container 3, the frame 19 is rotated up and down about the pin 20 on the container 3 side, and the inclination angle of the frame 19 is changed from the probe 15 to the welding part 2. The structure is such that the angle of incidence can be changed freely. Note that the servo motor 14 and the servo motor 17 are rotationally controlled by the controller 22, and the probe 1
Ultrasonic transmission from the glove 15 is also controlled by the controller 22, and the echo signal received by the glove 15 is transmitted to the controller 2.
It is now sent to 2.

次に、本実施例装置による超音波探傷検査方法について
述べる。
Next, an ultrasonic flaw detection method using the apparatus of this embodiment will be described.

まず、検査対象である溶接部2とその上下両側の配管1
部分を、透明容器3の両分割片4,4を重ね合わせるこ
とにより包囲し、その上部および下部を固定バンド6で
締め付は固定する。次に透明容器3の上部開口から水、
グリセリン、あるいは酢酸鉛等の高密度水溶液などの透
明放射線遮蔽液2を必要量注入し、容器3内に溶接部2
を含む配管1外側を覆う透明放射線遮蔽液層8を形成す
る。また、透明容器3を配管1に取り付ける前に、必要
に応じ容器3上下両側の配管1部分を鉛製の遮蔽リング
23などで遮蔽しておく。
First, the welded part 2 to be inspected and the piping 1 on both its upper and lower sides
The portion is surrounded by overlapping the two divided pieces 4, 4 of the transparent container 3, and the upper and lower parts thereof are fastened and fixed with fixing bands 6. Next, water is poured from the upper opening of the transparent container 3.
Inject the necessary amount of transparent radiation shielding liquid 2 such as glycerin or a high-density aqueous solution such as lead acetate, and place the welded part 2 in the container 3.
A transparent radiation-shielding liquid layer 8 is formed to cover the outside of the piping 1 including. Furthermore, before attaching the transparent container 3 to the piping 1, the piping 1 portions on both the upper and lower sides of the container 3 are shielded with shielding rings 23 made of lead or the like, if necessary.

次いで、透明容器3上に二つ割りの回転台9およびかさ
歯車11を被せ、連結金具10で回転台9を連結固定し
、更にかさ歯車12をかさ歯車11に噛合させて容器3
に取り付けられた支持台13に回転自在に取り付ける。
Next, the transparent container 3 is covered with the two-split rotary table 9 and the bevel gear 11, the rotary table 9 is connected and fixed with the connecting fittings 10, and the bevel gear 12 is meshed with the bevel gear 11 to complete the container 3.
It is rotatably attached to a support stand 13 attached to.

そして、コントローラ22によりサーボモータ17を作
動させてプローブ15の溶接部2に対する上下位置およ
び入射角をセットする。
Then, the controller 22 operates the servo motor 17 to set the vertical position and incidence angle of the probe 15 with respect to the welding part 2.

容器3内側および容器3側の両サーボモータ17を同一
回転方向に同一回転数で回転させれば水平板18.18
とともにフレーム19は上下に平行移動される。また容
器3内側か容器3側のサーボモータ17の一方を回転さ
せれば、フレーム19の傾斜角を変えることができる。
If both the servo motors 17 on the inside of the container 3 and on the side of the container 3 are rotated in the same rotation direction and at the same rotation speed, the horizontal plate 18.18
At the same time, the frame 19 is translated vertically. Further, by rotating either the servo motor 17 inside the container 3 or on the side of the container 3, the angle of inclination of the frame 19 can be changed.

サーボモータ17の回転回数とビン20等の位置との関
係は、コントローラ22に予め入力されており、コンi
・ローラ22には、グローブ15の上下位置および入射
角が第6図のごとく上下位置表示24および入射角表示
25に表示されるようになっている。
The relationship between the number of rotations of the servo motor 17 and the position of the bin 20, etc. is input to the controller 22 in advance, and
- On the roller 22, the vertical position and incidence angle of the globe 15 are displayed on a vertical position display 24 and an incidence angle display 25, as shown in FIG.

こうして、プローブ15の溶接部2に対する上下位置と
入射角がセットされたならば、次にコントローラ22に
よシサーボモータ14を作動し、かさ歯車12.11介
して回転台9を回転させる。
Once the vertical position and angle of incidence of the probe 15 relative to the welding part 2 are set in this manner, the controller 22 operates the servo motor 14 to rotate the rotary table 9 via the bevel gears 12 and 11.

この回転台9の回転とともに探傷プローブ15は配管1
0周方向に溶接部2に沿って回転走査される。プローブ
15からはコントローラ22の制御により、この回転走
査中に超音波が発振され溶接部2からの反射波は電気信
号としてコントローラ22に入力され、コントローラ2
2に組み込まれたコンピューターにより欠陥の有無、大
きさ、位置などが解析され超音波探傷がなされる。
As the rotary table 9 rotates, the flaw detection probe 15
Rotation scanning is performed along the welding part 2 in the 0 circumferential direction. Under the control of the controller 22, the probe 15 emits ultrasonic waves during this rotational scanning, and the reflected waves from the welding part 2 are input to the controller 22 as electrical signals.
A computer built into 2 analyzes the presence, size, and location of defects and performs ultrasonic flaw detection.

このように、本発明では、溶接部2を含む配、管1を透
明放射線遮蔽液層8で被って透明容器3外側から遠隔操
作により超音波探傷を行っているので、超音波探傷検査
中の被曝線量を大幅に低減することができ、作業員の安
全性を向上させること−q −−りnC ができる。また、放射線遮蔽も透明容器3で配管1を被
い容器3内に遮蔽液1を充填するだけでよく、更にプロ
ーブ15からの超音波は遮蔽液形を介して溶接部2及び
その近傍の配管1に入るので従来の直接接触法における
表面仕上げも不要となり作業の簡易迅速化が図れる。
As described above, in the present invention, the pipe 1 including the welded part 2 is covered with the transparent radiation shielding liquid layer 8, and ultrasonic flaw detection is performed by remote control from outside the transparent container 3. Exposure doses can be significantly reduced and worker safety can be improved. Furthermore, for radiation shielding, it is only necessary to cover the pipe 1 with a transparent container 3 and fill the container 3 with the shielding liquid 1. Furthermore, the ultrasonic waves from the probe 15 are transmitted through the shielding liquid to the welded part 2 and the piping in its vicinity. 1, there is no need for surface finishing in the conventional direct contact method, simplifying and speeding up the work.

更に、探傷プローブ15が放射線遮蔽液1中に設けられ
ているので、探傷検査部に対する超音波の入射角を自由
に変えることができ、探傷性能を向上できると共に配管
1に限らず複雑な形状の検査対象にも適用できる。まだ
、透明容器3と透明放射線遮蔽液層により検査部を被っ
ているので検査対象部分が容器3外側より目視でき検査
の確認が容易で、その迅速化も図れる。更に、本実施例
のように、コントローラ22によりプローブ15の位置
(上下位置と配管1丑わりの回転角)および入射角とを
検知できるようにするならば、検査部の欠陥を自動的に
記録・分析するコンピューターシステムを確立すること
ができる。
Furthermore, since the flaw detection probe 15 is provided in the radiation shielding liquid 1, the incident angle of the ultrasonic waves to the flaw detection inspection section can be freely changed, improving flaw detection performance and also being able to be used not only for the piping 1 but also for complex shapes. It can also be applied to inspection objects. Since the inspection part is still covered by the transparent container 3 and the transparent radiation shielding liquid layer, the inspection target part can be visually seen from the outside of the container 3, making it easy to confirm the inspection and speeding up the inspection. Furthermore, as in this embodiment, if the position of the probe 15 (vertical position and rotation angle of one pipe) and angle of incidence are detected by the controller 22, defects in the inspection section can be automatically recorded.・Be able to establish a computer system for analysis.

ところで、原子カプラントで特に問題となる核%−−1
0− 種としてはコバルト60が挙げられるが、コバルト60
からは約IMeVのγ線が放射される。放射線の遮蔽効
果は、一般にその強度が半減される厚さ、即ち半価層で
表わされるが、上記γ線に対する半価層は、水では約1
2cm、グリセリンでは約9.2Cn′L1鉛化合物の
水溶液では約8Cn′Lである。従って、放射線遮蔽液
層80層厚は、部分な遮蔽効果のある厚さく例えば水で
10〜20cTrL)が必要である。
By the way, nuclear %--1 is a particular problem with atomic couplants.
0- Species include cobalt-60, but cobalt-60
γ-rays of about IMeV are emitted from the The radiation shielding effect is generally expressed by the thickness at which the intensity is halved, that is, the half-value layer, but the half-value layer for gamma rays is approximately 1
2 cm, approximately 9.2 Cn'L for glycerin, and approximately 8 Cn'L for an aqueous solution of a lead compound. Therefore, the thickness of the radiation shielding liquid layer 80 needs to be thick enough to have a partial shielding effect (eg, 10 to 20 cTrL of water).

なお、上記実施例では、鉛直方向に配設された配管1の
溶接部2に対する探傷を示したが、水平方向に配設され
た配管1の溶接部2に対する探傷の場合には、第7図に
示すように、密閉された円筒体をその軸方向に半裁した
透明容器3で配管1を液密に被い、サーボモータ14を
容器3上面部に設けると共に、プローブ15.15は移
動手段26によりロッド27に沿って左右に移動できる
ようになっている。まだ、上記実施例においては、プロ
ーブ15の配管1まわりの回転にがさ歯車11.12等
を用いだが、透明容器3上端周縁部に沿って走行可能な
移動手段を設け、該移動手段にロッド16を連結するよ
うにしてもよい。
In addition, in the above embodiment, flaw detection was shown for the welded part 2 of the pipe 1 disposed in the vertical direction, but in the case of flaw detection for the welded part 2 of the pipe 1 disposed in the horizontal direction, FIG. As shown in FIG. 2, the pipe 1 is liquid-tightly covered with a transparent container 3 which is a sealed cylindrical body cut in half in the axial direction, and a servo motor 14 is provided on the upper surface of the container 3. This allows it to move left and right along the rod 27. In the above embodiment, the bevel gears 11, 12, etc. are used to rotate the probe 15 around the pipe 1, but a moving means that can run along the upper edge of the transparent container 3 is provided, and the moving means is equipped with a rod. 16 may be connected.

以上の説明より明らかなように本発明によれば、次のよ
うな優れた効果を発揮することができる。
As is clear from the above description, according to the present invention, the following excellent effects can be exhibited.

(1)原子カプラントの配管等の放射性を有する被検査
体を透明放射線遮蔽液層を形成して放射線を遮蔽してい
るだめ、超音波探傷検査中の被曝線量を大幅に低減でき
、作業者の安全性を向上できる。
(1) By forming a transparent radiation-shielding liquid layer to shield radioactive objects such as atomic couplant piping from radiation, the radiation dose during ultrasonic flaw detection can be significantly reduced, and the radiation dose for workers can be significantly reduced. Safety can be improved.

(2)また、検査部を含む被検査体を透明容器で包囲し
、透明容器内に透明放射線遮蔽液を注入充填することに
より容易に遮蔽液層が形成でき、また検査体の表面仕上
げも不要となり、探傷作業が簡易かつ迅速となる。まだ
探傷検査期間が短縮化でき、原子カプラント等の稼働効
率を向上できる。
(2) In addition, a shielding liquid layer can be easily formed by enclosing the object to be inspected, including the inspection part, in a transparent container and injecting and filling the transparent container with a transparent radiation shielding liquid, and there is no need to finish the surface of the object to be inspected. This makes flaw detection work simple and quick. It is still possible to shorten the flaw detection inspection period and improve the operating efficiency of atomic couplants, etc.

(3)超音波探傷プローブは遮蔽液層に設けられるので
、被検査体に対するプローブからの超音波の入射角を自
由に変えることができ、探傷性能を向上でき、まだ複雑
な形状の被検査体にも探傷検査が容易に行なえる。
(3) Since the ultrasonic flaw detection probe is installed in the shielding liquid layer, the angle of incidence of the ultrasonic waves from the probe on the object to be inspected can be changed freely, improving the flaw detection performance, and the object to be inspected has a complex shape. Flaw detection can also be easily performed.

(4)検査部が透明容器外側より目視できるので、検査
内容の確認が容易で、また検査の迅速化が図れる。
(4) Since the inspection part is visible from the outside of the transparent container, it is easy to confirm the inspection contents and the inspection can be carried out quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一実施例を示す斜視図、第
2図は同平面図、第3図は同装置の透明容器の分割片を
示す斜視図、第4図は第1図の部分拡大断面図、第5図
は第4図の超音波探傷グローブを有するフレームの平面
図、第6図はコントローラの操作部の正面図、第7図は
本発明の他の実施例を示す斜視図である。 図中、1は配管(被検査体)、2は溶接部(検査部)、
3は透明容器、4は透明容器の分割片、6は固定バンド
、8は透明放射線遮蔽液層、9は回転台、11.12は
かさ歯車、14.17はサーボモータ、15は超音波探
傷プローブ、16はロッド、22はコントローラである
。 特許 出願人 石川島播磨重工業株式会社代理人弁理士
 絹 谷 信 雄 第1図 第6図 4 25 第7図 311
FIG. 1 is a perspective view showing one embodiment of the device according to the present invention, FIG. 2 is a plan view of the same, FIG. 3 is a perspective view showing divided pieces of a transparent container of the device, and FIG. 4 is the same as the one shown in FIG. FIG. 5 is a plan view of the frame having the ultrasonic flaw detection glove shown in FIG. 4, FIG. 6 is a front view of the operating section of the controller, and FIG. 7 shows another embodiment of the present invention. FIG. In the figure, 1 is piping (tested object), 2 is welded part (inspection part),
3 is a transparent container, 4 is a divided piece of the transparent container, 6 is a fixing band, 8 is a transparent radiation shielding liquid layer, 9 is a rotary table, 11.12 is a bevel gear, 14.17 is a servo motor, 15 is an ultrasonic flaw detection 16 is a rod, and 22 is a controller. Patent Applicant Ishikawajima Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 1 Figure 6 4 25 Figure 7 311

Claims (1)

【特許請求の範囲】 1 原子カプラントの配管等の放射性を有する被検査体
を超音波探傷する方法において、上記被検査体の検査部
の外側に透明放射線遮蔽液層を形成し、該遮蔽液層内に
超音波探傷プローブを浸漬させて該グローブを上記検査
部の外側を探傷走査させることを特徴とする超音波探傷
方法。 2 原子カプラントの配管等の放射性を有する被検査体
を超音波探傷する装置において、上記被検査体の検査部
を包囲する透明容器と、該透明容器内に、上記検査部を
含む被検査体を放射線遮蔽すべく充填形成された透明放
射線遮蔽液層と、該遮蔽液層内に設けられた超音波探傷
グローブと、該プローブを走査させる走査手段とを備え
たことを特徴とする超音波探傷装置。
[Claims] 1. In a method for ultrasonic flaw detection of a radioactive inspection object such as atomic couplant piping, a transparent radiation-shielding liquid layer is formed outside the inspection section of the inspection object, and the shielding liquid layer An ultrasonic flaw detection method characterized by immersing an ultrasonic flaw detection probe inside the glove and scanning the outside of the inspection part with the glove. 2. In an apparatus for ultrasonic flaw detection of radioactive test objects such as atomic couplant piping, there is a transparent container surrounding the test section of the test object, and the test object including the test section is placed inside the transparent container. An ultrasonic flaw detection device comprising a transparent radiation shielding liquid layer filled and formed to shield radiation, an ultrasonic flaw detection glove provided in the shielding liquid layer, and a scanning means for scanning the probe. .
JP57111597A 1982-06-30 1982-06-30 Method and apparatus for ultrasonic flaw detection Pending JPS593255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111597A JPS593255A (en) 1982-06-30 1982-06-30 Method and apparatus for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111597A JPS593255A (en) 1982-06-30 1982-06-30 Method and apparatus for ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPS593255A true JPS593255A (en) 1984-01-09

Family

ID=14565384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111597A Pending JPS593255A (en) 1982-06-30 1982-06-30 Method and apparatus for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS593255A (en)

Similar Documents

Publication Publication Date Title
RU2533760C2 (en) X-ray testing device for testing of circumferential welds of pipelines
US7656997B1 (en) Method and apparatus for automated, digital, radiographic inspection of piping
GB1474741A (en) Wall inspection device
RU2717382C2 (en) Device for monitoring and measuring defects of welded seam of cylindrical wall and method of using such device
US4680470A (en) Method and apparatus for crack detection and characterization
EP0453166B1 (en) Ultrasonic inspection of pump shafts
JPS593255A (en) Method and apparatus for ultrasonic flaw detection
US4505874A (en) Vessel inspection boom
KR20180039843A (en) Radiographic Testing Apparatus using Radiation Inspection
CN111562311A (en) Ultrasonic flaw detection method, device and system
JPH1082896A (en) Canister lid welding device
CN100387984C (en) Pipe node welding sean ultrasonic detecting machine scanning device
KR101674667B1 (en) Apparatus for restricting radiation exposure from radioisotope during nondestructive inspection provided with esay mobility structure
CN114199909A (en) Pipeline outer wall flaw detection device and application method thereof
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
KR101674666B1 (en) Apparatus for restricting radiation exposure from radioisotope during nondestructive inspection provided with esay mobility structure
KR20180076973A (en) Welding inspection apparatus for pipe
RU87021U1 (en) DEVICE OF NON-DESTRUCTIVE X-RAY CONTROL OF WELDED RING SEAMS OF TUBULAR ELEMENTS
KR102017945B1 (en) Radioactive-rays irradiating device
KR102457912B1 (en) Movable type digital radiography test apparatus
JPH0466896A (en) Ultrasonic inspection device for weld part of nuclear fuel rod
KR101674664B1 (en) Apparatus for restricting radiation exposure from radioisotope during nondestructive inspection provided with esay mobility structure
KR101674665B1 (en) Apparatus for restricting radiation exposure from radioisotope during nondestructive inspection provided with esay mobility structure
KR101674668B1 (en) Apparatus for restricting radiation exposure from radioisotope during nondestructive inspection provided with esay mobility structure
JP3089817B2 (en) Material degradation detector by positron annihilation method