JPS5932327A - Solar battery utilizing power source - Google Patents

Solar battery utilizing power source

Info

Publication number
JPS5932327A
JPS5932327A JP14125782A JP14125782A JPS5932327A JP S5932327 A JPS5932327 A JP S5932327A JP 14125782 A JP14125782 A JP 14125782A JP 14125782 A JP14125782 A JP 14125782A JP S5932327 A JPS5932327 A JP S5932327A
Authority
JP
Japan
Prior art keywords
output
storage battery
voltage
load
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14125782A
Other languages
Japanese (ja)
Inventor
聖明 内橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP14125782A priority Critical patent/JPS5932327A/en
Publication of JPS5932327A publication Critical patent/JPS5932327A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は太陽電池利用電源装置に関するものであり、そ
の目的とするところは、出力調整時における電力0スが
発生せず、太陽電池出力を有効に利用できる太陽電池利
用電源装置を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device using solar cells, and an object of the present invention is to use solar cells to effectively utilize solar cell output without generating zero power during output adjustment. Its purpose is to provide power supplies.

従来、この種の太陽電池利用電源装置は第1図に示すよ
うになっており、太陽電池(1)出力を逆流阻止用タイ
オード(2)を介して蓄電池(4a)(4b)を直列接
続した蓄電池プo’νり(3)に印加し、蓄電池ブロッ
ク(3)の両端電圧を出力調整用の可変型インヒータン
ス素子1101を介して負荷(7)に印加して出力調整
を行なうようになっていた。しかしながら、このような
従来例にあってはインヒータンス素子(lO)を大きく
して負荷(7)に供給される電力を小さくした出力調整
時において、インヒータシス累子(10)による電力0
スが大きくなって、太陽電池f41出力の有効利用がで
きないという問題があった。以−1・、第2図により動
作を詳述する。第2図(a) Id比較的日射量が犬の
とき、同図(b)は日射量が小のときの動作特性を示す
もので、図中、(−0は太陽電池(1)のv−r曲線、
(0は〔蓄電池ブロック(3)十タイオード(2)十負
荷(7)〕の負荷特性曲線、09は負荷(7)を抵抗と
しイシピータンス素子(lO)の抵抗値を0としたとき
の負荷直線、・はイシヒータシス素子(lO)と負荷(
7)の抵抗値を等しくしたときの負荷直線であるいま、
日射量が大のときの太陽電池il)の動作点は第2図(
a)の曲4111(−0と(00交点Pであり、インヒ
ータシス索子(1411の抵抗値を0とした100%出
力時の動作点は同図の1u線09とV=Va(蓄電池″
jOツク(3)の両端電圧)の直41il(心との交点
Qである。また、イン【ニー哨ンス素子(1(1)の抵
抗値を大きくした出力#4整時の動作点は同図の直線・
とV=VBの直線(19との交点Sとなる。ここに、図
中、A部分けに荷(7)に供給される電力、B部分はイ
ンヒータシス索子(101による電力ロス、C部分は蓄
電池ブロック(a)への充電々力である。一方、日射量
が小のときの太陽電池(1)の動作点ii第2図(b)
の曲線(−0と−の交点P′となり、この場合、太陽電
池(1)だけの出力では負荷(7)への供給電力が不足
するので、蓄電池ブロック(3)からの放電によって不
足分をカバーする。図中、D部分は蓄電池″jロック(
3)から供給される電力である。
Conventionally, this type of power supply using solar cells has been constructed as shown in Figure 1, in which the output of a solar cell (1) is connected in series with storage batteries (4a) and (4b) via a backflow blocking diode (2). The output is adjusted by applying the voltage across the storage battery block (3) to the load (7) via the variable inheatance element 1101 for adjusting the output. Ta. However, in such a conventional example, when adjusting the output by increasing the inheatance element (lO) and reducing the power supplied to the load (7), the power by the inheater sisistor (10) is 0.
There was a problem in that the output of the solar cell f41 could not be used effectively due to the increase in space. The operation will be explained in detail below with reference to 1. and FIG. Figure 2 (a) shows the operating characteristics when the solar radiation is relatively low, and Figure 2 (b) shows the operating characteristics when the solar radiation is small. −r curve,
(0 is the load characteristic curve of [storage battery block (3) 10 diodes (2) 10 loads (7)], 09 is the load line line when the load (7) is the resistance and the resistance value of the ishipetance element (lO) is 0. ,・ is the ishi heater sis element (lO) and the load (
Now, which is the load line when the resistance values of 7) are made equal,
The operating point of the solar cell (il) when the amount of solar radiation is large is shown in Figure 2 (
The operating point at 100% output when the resistance value of the in-heater system cable (1411) is 0 is the intersection P of the song 4111 (-0 and (00) in a), and the operating point at 100% output is the 1u line 09 in the same figure and V = Va (storage battery)
It is the intersection point Q with the center of the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage across the voltage at both ends of the voltage at both ends of the voltage at both ends of the voltage at both ends of the voltage at both ends of the voltage at both ends of the voltage at both ends. Straight line in the diagram
and the straight line (19) of V=VB, which is the intersection point S. In the figure, part A is the power supplied to the load (7), part B is the power loss due to the in-heater system cable (101), and part C is the power loss due to the in-heater system cable (101). This is the charging force for the storage battery block (a).On the other hand, the operating point ii of the solar cell (1) when the amount of solar radiation is small is shown in Fig. 2 (b).
curve (-0 and - intersect P'; in this case, the output of the solar cell (1) alone is insufficient to supply power to the load (7), so the shortfall is compensated for by discharging from the storage battery block (3). Cover. In the figure, part D is the storage battery ``j lock (
3).

ところで、このようにインヒータシス索子(lO)の抵
抗値4r変化させて出力調整を行っている場合において
、インヒータシス索子(In)による電力ロスが発生し
、太陽電池f+)出力の有効利用ができない上に、この
電力ロスによる発熱の問題があり、さらに、蓄電池づ0
ツク(8)の放電量がインヒータシス索子(10)によ
る電力ロスだけ増加し、放電量が必要以上に多くなると
いう問題があった。本発明は上記の点に鑑みて為された
ものである。
By the way, when the output is adjusted by changing the resistance value 4r of the in-heater system cable (lO) in this way, power loss occurs due to the in-heater system cable (In), and the output of the solar cell f+ cannot be used effectively. On top of that, there is the problem of heat generation due to this power loss, and furthermore, there is a problem of heat generation due to this power loss.
There was a problem in that the amount of discharge from the plug (8) increased by the power loss due to the in-heater system cable (10), and the amount of discharge became more than necessary. The present invention has been made in view of the above points.

以下、実施例について図を用いて説明する。第8図は本
発明−実施例全示すもので、蓄電池プロ’Vニア(1+
は蓄電池(4aX4b)と、各蓄電池(4aX4b)を
直並列接続自在にする切換スイッチ(6a)(6b)よ
りなる出力調整回路(5)とで構成されておシ、切換ス
イッチ(6a)(6b)をa側に切換えると、蓄電池(
4a)(4b)が直列接続されて100%出力状態とな
シ、b側に切換えると、蓄電池(4a)(4b)が並列
接続されて25俤出力状態となるようになっている。但
し、切換スイッチ(6a)(6b)は連動して切換えら
れる。
Examples will be described below using figures. Figure 8 shows all the embodiments of the present invention.
consists of a storage battery (4a x 4b) and an output adjustment circuit (5) consisting of a changeover switch (6a) (6b) that allows each storage battery (4ax4b) to be freely connected in series and parallel. ) to side a, the storage battery (
4a and 4b are connected in series and are in a 100% output state, and when switched to the b side, storage batteries (4a and 4b) are connected in parallel and are in a 25% output state. However, the changeover switches (6a) and (6b) are switched in conjunction.

以下、実施例の動作について第4図を用いて説明する。The operation of the embodiment will be explained below using FIG. 4.

第4図(a)は比較的日射量が犬のとき、同図(b)は
日射量が小のときの特性を示すもので、図中(−0〜0
〜は第2図と同様の特性曲線であり、(11)’は蓄電
池(4a)(4b)を並列接続したときの〔蓄電池ブロ
ック(3)十タイオート璽2)+負荷(7)〕の負荷曲
線である。
Figure 4 (a) shows the characteristics when the amount of solar radiation is relatively low, and Figure 4 (b) shows the characteristics when the amount of solar radiation is small.
- is the same characteristic curve as in Fig. 2, and (11)' is the characteristic curve of [storage battery block (3) 10-tie autograph 2) + load (7)] when storage batteries (4a) and (4b) are connected in parallel. This is the load curve.

いま、日射1が犬のとき、切換スイッチ(6a) (6
b)をa側に切換えて會m池(4aX4b)を直列接続
して100チ出力とした場合、太陽電池(1)の動作点
は第4図(a)の(イ)と(ハ)の交点P、負荷(7)
の動作点も同図の(Jiと(尋との交点Qであり、従来
例と全く同様の動作となる。次に、切換スイッチ(fl
a)(6b)をb側に切換えて蓄電池(4a)(41)
)を並列接続して25チ出力とした場合、太陽[池(1
)の動作点は同図の(イ)とbγの交点P′となり、負
荷(7)の動作点は同図の09とV=−i−Vnの直線
(暇′との交点Sとなる。このとき、図中A部分は負荷
(7)に供給される電力、B部分は充電々力であり、従
来例のような電力ロスが発生せず、太陽1を池(1)出
力が有効に利用されるようになっている。−力、日射量
が小のとき、太陽電池(1)の動作点は第4図(b)の
げJとdとの交点P’となシ、25%出力時の負荷(7
)の動作点は同図の(バと(19′との交点Sとなる。
Now, when solar radiation 1 is a dog, changeover switch (6a) (6
When switching b) to side a and connecting solar cells (4a x 4b) in series to obtain 100 outputs, the operating point of solar cell (1) will be as shown in (a) and (c) in Figure 4 (a). Intersection P, load (7)
The operating point is also the intersection Q between (Ji and (Ji) in the same figure, and the operation is exactly the same as the conventional example.
a) Switch (6b) to side b and connect storage battery (4a) (41)
) are connected in parallel to make 25 outputs, the sun [pond (1
) is the intersection point P' of (a) and bγ in the same figure, and the operating point of the load (7) is the intersection point S of 09 and the straight line (free time') of V=-i-Vn in the same figure. At this time, part A in the figure is the power supplied to the load (7), and part B is the charging power, so there is no power loss like in the conventional example, and the output from the solar 1 and the pond (1) is effective. - When the power and solar radiation are small, the operating point of the solar cell (1) is at the intersection P' of the edges J and d in Figure 4 (b), 25%. Load at output (7
The operating point of ) is the intersection S of (b) and (19') in the figure.

図中、C部分は蓄電池プ0・νり(3)からの放電量で
ある。この場合、この放を量は従来例(第2図(b))
と比較してインヒータシス索子(101による電力0ス
分だけ減少することになる。
In the figure, part C is the amount of discharge from the storage battery P0·ν (3). In this case, the amount of this release is the conventional example (Fig. 2 (b))
Compared to this, the power is reduced by 0 s due to the in-heater system cable (101).

第5図は他の実施例を示すもので、6個の蓄電池(4a
) ” (4f)と、5連の切換スイッチ(6a) ”
 (6e)よりなる出力調整回路(5)とで蓄電池″j
Oツク(3)を構成したものであり、切換スイッチ(6
a)〜(6e)を魚卵接点側に切換えると、蓄電池(8
a)(8c)(3d)が直列接続されるとともに蓄電池
(4bX4eX4f)も直列接続され、両直列接続され
た蓄電池(4aX4cX4d)、(4bX4eX4f)
が並列接続されるようになっておシ、一方、切換スイ・
ソチ(6a)〜(6e)を白印接点側に切換えると、蓄
電池(4a)(4b)が直列接続され、直列接続された
蓄電池(4a)(4b) 、(4CX4d)、(4eX
4f)がそれぞれ並列接続されるようになっている。し
たがって、出力調整回路(5)によって100チ出力、
2/8出力が切換え自在となっている。なお、蓄電池の
個数および直並列接続の仕方は任意であ如、出力調整を
より細かくすることも容易にできる。
Figure 5 shows another embodiment, in which six storage batteries (4a
) ” (4f) and 5-switch switch (6a) ”
The output adjustment circuit (5) consisting of (6e) and the storage battery "j
It consists of an Otsuk (3) and a selector switch (6).
When switching a) to (6e) to the roe contact side, the storage battery (8
a) (8c) (3d) are connected in series, and the storage battery (4bX4eX4f) is also connected in series, and both the storage batteries (4aX4cX4d) and (4bX4eX4f) are connected in series.
are now connected in parallel, while the switch
When Sochi (6a) to (6e) are switched to the white marked contact side, the storage batteries (4a) (4b) are connected in series, and the storage batteries (4a) (4b), (4CX4d), (4eX) connected in series are connected in series.
4f) are connected in parallel. Therefore, the output adjustment circuit (5) outputs 100,
2/8 output can be switched freely. Note that the number of storage batteries and the method of connecting them in series and parallel are arbitrary, and output adjustment can be easily made more finely.

第6図t」さらに他の実施例を示すもので、第8図実施
例における太陽電池+1+に代えて複数個の太陽電池(
la)(lb)と、太陽電池(la)(lb)の接続を
切換える切換スイッチ(8a)(8b)とよりなる太陽
電池ブロック(9)を設けたものであり、100%出力
時には切換スイッチ(8aX8b)をa側に切換えて太
陽電池(la)(lb)を直列接続し、出力調整時は切
換スイ・ソチ(8a)(8b)をb側に切換えて太陽電
池(xaXlb)を並列接続するようにしである。
Fig. 6 t'' shows yet another embodiment, in which a plurality of solar cells (
It is equipped with a solar cell block (9) consisting of a changeover switch (8a) (8b) for switching the connection of the solar cells (la) (lb) and a changeover switch (8a) (8b) for switching the connection of the solar cells (la) (lb). Switch 8aX8b) to the a side and connect the solar cells (la) (lb) in series, and when adjusting the output, switch the switching switch (8a) (8b) to the b side and connect the solar cells (xaXlb) in parallel. That's how it is.

第7図は第6図実施例の動作特性を示す図であり、太陽
室IMM(la)(lb)およびW電池(4a)(4b
)8共に直列接続した100俤出力時の動作は第aiz
*1!4′、例と全く同様であり、太陽′に池ブロック
(9)の動作点は同図の曲Al11(−1’)とCυの
交点P、負荷(7)の動作点は同図の直線09と(19
の交点Qとなる。一方、太陽電池(la)(lb)およ
び蓄電池(4a)(4b)を共に並列接続した25チ出
力時における太陽電池ブロック(8)のV−I曲線は(
イrであり、〔太陽電池ブロック(9)十タイオード(
2)十負荷(7)〕の負荷曲線Viuであるので、太陽
電池ブロック(υ)の動作点は同図の曲線(立とWの交
点P′、負荷(7)の動作点は同図の直線09と(tl
’の交点Sとなる。ここに、図中A部分は負荷(7)に
供給される電力、8部分は蓄電池ブロック(3)への充
電々力であ如、従来例のようにインヒータシス素子(l
O)による電力0スが発生することがなく、太陽電池ブ
ロック(9)の出力が有効に利用されている。
FIG. 7 is a diagram showing the operating characteristics of the embodiment shown in FIG.
) 8 are connected in series and the operation when outputting 100 yen is as follows.
*1!4', It is exactly the same as the example, and the operating point of the solar pond block (9) is the intersection P of the curve Al11 (-1') and Cυ in the same figure, and the operating point of the load (7) is the same. Lines 09 and (19) in the figure
The intersection point Q is the intersection point Q. On the other hand, the V-I curve of the solar cell block (8) when the solar cells (la) (lb) and storage batteries (4a) (4b) are connected in parallel at 25 channels is (
[Solar cell block (9) ten diodes (
2) Load curve (7)] is the load curve Viu, so the operating point of the solar cell block (υ) is the intersection point P' of the vertical and W curves in the figure, and the operating point of the load (7) is the curve Viu in the figure. Straight line 09 and (tl
' is the intersection point S. Here, part A in the figure is the electric power supplied to the load (7), part 8 is the charging power to the storage battery block (3), and the part A is the power supplied to the storage battery block (3).
There is no generation of zero power due to O), and the output of the solar cell block (9) is effectively utilized.

本発明は上述のように、太陽電池出力を逆流阻止用少イ
オードを介して蓄電池プロ・ツクに印加し、蓄電池ブロ
ックの両端電圧を負荷に印加するようにして成る太陽電
池利用電源装置において、複数個の蓄電池と、各蓄電池
を直並列接続自在にする切換スイッチよシなる出力調整
回路とで蓄電池ブロックを形成したものであり、蓄電池
の接続を変更することによって出力調整を行なうように
しているので、従来例のようにインヒータシス素子によ
る電力Oスが発生せず、太陽電池出力を有効に利用でき
るという利点を有する。
As described above, the present invention provides a power supply device using multiple solar cells, which is configured so that the output of the solar cell is applied to the storage battery block through a small ion for backflow prevention, and the voltage across the storage battery block is applied to the load. A storage battery block is made up of several storage batteries and an output adjustment circuit such as a changeover switch that allows each storage battery to be freely connected in series and parallel, and the output can be adjusted by changing the connection of the storage batteries. , unlike the conventional example, there is no power generation due to the in-heater system element, and there is an advantage that the solar cell output can be used effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の回路図、第2図(a) (b)は同上
の動作特性図、第8図は本発明一実施例の回路図、第4
図(a) (b) Vi同一1ユの動作特性図、第5図
は他の実施例の回路図、第6図t」さらに他の実施例の
回路図、第7図は同」ユの動作特性図である。 f+)は太陽電池、(2)はタイオード、(3)は太陽
電池プ[] ツク、(4a) ” (4f)は1!;1
1t池、f51は出力調整回路、(7)は負荷である。 代理人 弁理士  石 1)長 七 (9) 137
FIG. 1 is a circuit diagram of a conventional example, FIGS. 2(a) and 2(b) are operating characteristic diagrams of the same as above, FIG.
Figures (a) and (b) are operational characteristics diagrams of the same Vi1 unit, Figure 5 is a circuit diagram of another embodiment, Figure 6 is a circuit diagram of another embodiment, and Figure 7 is a circuit diagram of the same unit. FIG. f+) is a solar cell, (2) is a diode, (3) is a solar cell plug, (4a) ” (4f) is 1!; 1
1t, f51 is an output adjustment circuit, and (7) is a load. Agent Patent Attorney Ishi 1) Choshichi (9) 137

Claims (1)

【特許請求の範囲】[Claims] (1)太陽電池出力を逆流阻止用タイオードを介して蓄
電池ブロックに印加し、蓄電池プロ・シフの両端電圧を
負荷に印加するよう圧して成る太陽電池利用電源装置に
おいて、複数個の蓄電池と、各蓄電池を直並列接続自在
にする切換スイッチよりなる出力調整回路とで蓄電池ブ
ロックを形成して成る太陽電池利用電源装置。
(1) In a solar battery power supply device that applies a solar battery output to a storage battery block via a backflow blocking diode, and applies voltage across the storage battery Pro-Shif to a load, a plurality of storage batteries and each A power supply device using solar cells that forms a storage battery block with an output adjustment circuit consisting of a changeover switch that allows storage batteries to be freely connected in series and parallel.
JP14125782A 1982-08-14 1982-08-14 Solar battery utilizing power source Pending JPS5932327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14125782A JPS5932327A (en) 1982-08-14 1982-08-14 Solar battery utilizing power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14125782A JPS5932327A (en) 1982-08-14 1982-08-14 Solar battery utilizing power source

Publications (1)

Publication Number Publication Date
JPS5932327A true JPS5932327A (en) 1984-02-21

Family

ID=15287701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14125782A Pending JPS5932327A (en) 1982-08-14 1982-08-14 Solar battery utilizing power source

Country Status (1)

Country Link
JP (1) JPS5932327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285717A (en) * 1985-10-12 1987-04-20 Nissan Shatai Co Ltd Outer slide roof device
JPH0588148U (en) * 1992-04-21 1993-11-26 塚本 福雄 Battery charge / discharge switching device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285717A (en) * 1985-10-12 1987-04-20 Nissan Shatai Co Ltd Outer slide roof device
JPH0588148U (en) * 1992-04-21 1993-11-26 塚本 福雄 Battery charge / discharge switching device

Similar Documents

Publication Publication Date Title
KR980006769A (en) Multilevel inverter
JPS5932327A (en) Solar battery utilizing power source
JPS5970185A (en) Power converter
ATE514188T1 (en) EDGE STRUCTURE FOR MONOLITHIC PERFORMANCE ARRANGEMENT
JP7042527B2 (en) Solar power generation / storage unit and solar power generation / storage system
JPS6328160A (en) Feeder circuit
KR102555854B1 (en) DC Power Connection Device And Electronic Equipment Including The Same
JPS5815434A (en) Solar battery power source device
KR970004101A (en) Solar cell
DE10041340A1 (en) Device for feeding electrical energy from a photovoltaic device into an electrical energy mains supply, feeds DC electrical energy generated in the photovoltaic device into an AC electrical energy mains supply.
JPS58198126A (en) Charging system by solar battery
JPS6140152B2 (en)
JPS61132045A (en) Hybrid power source unit having several power sources
JPH0440928B2 (en)
DE3316775A1 (en) Interconnected control of photocells for adaptation to electrical loads or accumulators
JPS596730A (en) Solar battery power source device
JPS63202225A (en) Reactive power compensator
JPS6029018A (en) Semiconductor switch
CN116391305A (en) Energy storage system with resistor circuit for bi-directional high power applications
JPH07147740A (en) Power supply apparatus of satellite
JPS59198846A (en) Charger
JPS63181623A (en) Electric source
JPH07273362A (en) Power supply device comprising solar battery cells
JPS61247278A (en) No-break power source
JP2019068688A (en) Photovoltaic power generation system