JPH0440928B2 - - Google Patents

Info

Publication number
JPH0440928B2
JPH0440928B2 JP55134973A JP13497380A JPH0440928B2 JP H0440928 B2 JPH0440928 B2 JP H0440928B2 JP 55134973 A JP55134973 A JP 55134973A JP 13497380 A JP13497380 A JP 13497380A JP H0440928 B2 JPH0440928 B2 JP H0440928B2
Authority
JP
Japan
Prior art keywords
inverter
power
power transmission
load
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55134973A
Other languages
Japanese (ja)
Other versions
JPS5759441A (en
Inventor
Kazuyoshi Tsukamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP55134973A priority Critical patent/JPS5759441A/en
Publication of JPS5759441A publication Critical patent/JPS5759441A/en
Publication of JPH0440928B2 publication Critical patent/JPH0440928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Description

【発明の詳細な説明】 この発明は、充電装置の残存容量、負荷がイン
バータの最大定格以上か否か、停電の有無を判断
し、直送送電、インバータ送電、併送送電のいず
れかを選択するようにし、負荷への電力の供給が
効率よく行なえるようにした太陽光電方法に関す
る。
[Detailed Description of the Invention] This invention determines the remaining capacity of the charging device, whether the load exceeds the maximum rating of the inverter, and whether there is a power outage, and selects direct power transmission, inverter power transmission, or parallel power transmission. The present invention relates to a photovoltaic power generation method that enables efficient supply of power to loads.

近年、石油にかわる代替エネルギとして太陽エ
ネルギが注目され、その有効利用として、一般住
宅を対象とした太陽光発電システムが考案されて
いる。、この太陽光電システムの主構成として、
太陽光エネルギを電気エネルギに変換する太陽電
池、太陽電池で発生した電気エネルギを電力とし
て貯蔵する鉛蓄電池等の蓄電池、および蓄電池の
出力を直交変換する静止型変換装置の3つの部分
があげられ、この種発電システムの一般的な構成
は第1図に示すようになつている。すなわち、同
図において、1は複数個の太陽電池セルを直並列
接続して構成された太陽電池、2は複数個の鉛蓄
電池セルからなる鉛蓄電池、3は太陽電池1と鉛
蓄電池2とのインターフエースとなる充電装置、
4は直交変換装置となるインバータ、5は負荷、
6は商用電源、7は負荷5への電力の供給をイン
バータ4か商用電源6かに同期切換えする同期切
換スイツチであり、この他に、図示しないが、前
述の各装置をコントロールする制御回路および駆
動回路がある。
In recent years, solar energy has attracted attention as an alternative energy to oil, and solar power generation systems for general homes have been devised as an effective use of solar energy. , the main components of this solar power system are:
There are three parts: a solar cell that converts solar energy into electrical energy, a storage battery such as a lead-acid battery that stores the electrical energy generated by the solar cell as electricity, and a static converter that performs orthogonal conversion of the output of the storage battery. The general configuration of this type of power generation system is shown in FIG. That is, in the same figure, 1 is a solar cell configured by connecting a plurality of solar cells in series and parallel, 2 is a lead-acid battery consisting of a plurality of lead-acid battery cells, and 3 is a combination of the solar cell 1 and the lead-acid battery 2. A charging device that serves as an interface,
4 is an inverter serving as an orthogonal transformation device, 5 is a load,
6 is a commercial power supply; 7 is a synchronous changeover switch that synchronously switches the power supply to the load 5 between the inverter 4 and the commercial power supply 6; and, although not shown, there are also control circuits and control circuits that control each of the aforementioned devices. There is a drive circuit.

ところで、前述の発電システムと類似するシス
テムとして無停電電源装置があげられるが、以下
の点で異なる。
By the way, an uninterruptible power supply is mentioned as a system similar to the above-mentioned power generation system, but it differs in the following points.

(i) 無停電電源装置では、負荷の種類および大き
さが一定しているが、太陽光発電システムで
は、負荷5の種類および大きさが不定であり、
しかも、負荷率が0〜100%変動する。
(i) In an uninterruptible power supply, the type and size of the load are constant, but in a solar power generation system, the type and size of the load 5 are undefined;
Moreover, the load factor fluctuates from 0 to 100%.

() 無停電電源装置では、インバータが停電時
のみ動作するため、その蓄電池の残存容量は十
分と考えられるが、太陽光発電システムでは、
鉛蓄電池2の残存容量がある間はインバータ4
が動作するから、鉛蓄電池2の充電が十分でな
いとその残存容量が不足する。
() In an uninterruptible power supply system, the inverter operates only during a power outage, so the remaining capacity of the storage battery is considered to be sufficient, but in a solar power generation system,
Inverter 4 is activated while lead-acid battery 2 has remaining capacity.
operates, so if the lead-acid battery 2 is not sufficiently charged, its remaining capacity will be insufficient.

() 無停電電源装置では、負荷の定格が一定で
あり、インバータの定格がそれに等しく設計さ
れるが、太陽光発電システムでは、インバータ
効率をあげるために、インバータ4の定格を負
荷5の最大定格より低く設定するから、負荷電
力がインバータ4の最大定格を越える場合が頻
繁に生じる。
() In an uninterruptible power supply, the load rating is constant and the inverter rating is designed to be equal to it. However, in a solar power generation system, in order to increase inverter efficiency, the rating of inverter 4 is set to the maximum rating of load 5. Since it is set lower, the load power often exceeds the maximum rating of the inverter 4.

したがつて、太陽光発電システムでは、前記の
諸点を考慮し、負荷5への安定した電力の供給を
行なうための発電方法が要求される。
Therefore, in the solar power generation system, a power generation method is required that takes the above-mentioned points into account and stably supplies power to the load 5.

この発明は、前記の点に留意し、蓄電池の残存
容量、負荷5がインバータ4の最大定格以上か否
か、停電の有無を判断して、商用電源6からの直
送送電、インバータ4からのインバータ送電、直
送送電とインバータ送電との併送送電のいずれか
を選択するシーケンスを備え、負荷5への安定し
た電力の供給を行なうとともに、効率のよい送電
が行なえるようにしたものであり、つぎにこの発
明を、その1実施例を示した第2図以下の図面と
ともに詳細に説明する。
With the above points in mind, the present invention determines the remaining capacity of the storage battery, whether the load 5 is equal to or higher than the maximum rating of the inverter 4, and whether there is a power outage. It is equipped with a sequence for selecting either power transmission, direct power transmission, or parallel power transmission with inverter power transmission, and is designed to supply stable power to the load 5 and to perform efficient power transmission. Now, this invention will be explained in detail with reference to the drawings from FIG. 2 showing one embodiment thereof.

第2図に示すものは、太陽光発電方法のコント
ロールシーケンスを示すフローチヤートであり、
これを用いて説明する。なお、インバータ4の定
格は負荷5の最大定格より低く設定するものとす
る。
What is shown in FIG. 2 is a flowchart showing the control sequence of the solar power generation method.
This will be used in the explanation. Note that the rating of the inverter 4 is set lower than the maximum rating of the load 5.

まず、スタート時は、商用電源6から負荷5に
電力を供給する直送送電とし、この直送送電の間
に、インバータ4が正常であるかどうか、故障し
ていないかどうかを判断し、インバータ4に異常
があれば、インバータ4の駆動を停止し、直送送
電を継続する。そして、インバータ4が正常であ
れば、つぎに、鉛蓄電池3の残存容量が十分であ
るか否かを判断し、十分であれば、第3図aに示
すように、同期切換スイツチ7を作動してインバ
ータ4から負荷5に電力を供給するインバータ送
電に切換える。このインバータ送電では、太陽電
池1、鉛蓄電池2、インバータ4、負荷5のそれ
ぞれのライン間に介設されたスイツチS1,S2,S3
がすべて閉となり、太陽電池1で得られた電力が
鉛蓄電池2に貯蔵されるとともに、インバータ4
を介して負荷5に供給され、鉛蓄電池2をフロー
テイング状態で使用することになる。なお、この
鉛蓄電池2の残存容量のチエツクは、鉛蓄電池2
の寿命を延ばすために極めて重要である。そし
て、前記インバータ送電の際に、負荷5がインバ
ータ4の最大定格以上か否かを判断し、負荷5が
最大定格を超える場合は、第3図bに示すよう
に、インバータ送電と直送送電との併送送電と
し、インバータ4と商用電源6とを結合部8で並
列結合して両出力を負荷5に供給する。たとえ
ば、インバータ4の最大定格を3KVA、負荷5を
4.5KVAとすれば、インバータ4から3KVAを、
商用電源6から1.5KVAをそれぞれ負荷5に供給
する。このとき、インバータ4と商用電源6と
は、周波数、位相、振幅等が一致する必要があ
る。
First, at the start, direct power transmission is used to supply power from the commercial power source 6 to the load 5. During this direct power transmission, it is determined whether the inverter 4 is normal or not, and it is determined whether the inverter 4 is normal or not. If there is an abnormality, the drive of the inverter 4 is stopped and direct power transmission is continued. If the inverter 4 is normal, then it is determined whether the remaining capacity of the lead-acid battery 3 is sufficient, and if it is sufficient, the synchronous changeover switch 7 is activated as shown in FIG. 3a. Then, switching is made to inverter power transmission in which power is supplied from the inverter 4 to the load 5. In this inverter power transmission, switches S 1 , S 2 , S 3 are installed between the respective lines of the solar battery 1 , lead-acid battery 2 , inverter 4 , and load 5 .
are all closed, and the electric power obtained from the solar cell 1 is stored in the lead-acid battery 2, and the inverter 4
The lead-acid battery 2 is used in a floating state. Note that this check of the remaining capacity of the lead-acid battery 2
It is extremely important to extend the lifespan of During the inverter power transmission, it is determined whether the load 5 exceeds the maximum rating of the inverter 4, and if the load 5 exceeds the maximum rating, inverter power transmission and direct power transmission are selected as shown in FIG. 3b. The inverter 4 and the commercial power source 6 are coupled in parallel at the coupling part 8 and both outputs are supplied to the load 5. For example, if the maximum rating of inverter 4 is 3KVA and load 5 is
If it is 4.5KVA, 3KVA from inverter 4,
1.5KVA is supplied from the commercial power supply 6 to each load 5. At this time, the inverter 4 and the commercial power source 6 need to match in frequency, phase, amplitude, etc.

つぎに、鉛蓄電池2の残存容量が十分でない場
合は、第3図cに示すように、直送送電とし、鉛
蓄電池2とインバータ4とを、スイツチS2を開に
して電気的に切り離し、このときの鉛蓄電池2は
充電のみとする。さらに、この直送送電中におい
て、停電か否かを判断し、停電の場合、鉛蓄電池
2に残存容量があればインバータ送電を行なう。
また、鉛蓄電池2の充電が完了すれば、インバー
タ送電を行なう。
Next, if the remaining capacity of the lead-acid battery 2 is insufficient, as shown in Figure 3c, direct power transmission is used, and the lead-acid battery 2 and inverter 4 are electrically disconnected by opening switch S2 . At this time, the lead-acid battery 2 is used only for charging. Furthermore, during this direct power transmission, it is determined whether there is a power outage or not, and in the case of a power outage, if the lead storage battery 2 has remaining capacity, inverter power transmission is performed.
Furthermore, when charging of the lead-acid battery 2 is completed, inverter power transmission is performed.

したがつて、前記実施例によると、鉛蓄電池2
の残存容量が十分か否か、負荷5がインバータ4
の最大定格以上か否か、停電の有無をそれぞれ判
断して、直送送電、インバータ送電、併送送電の
いずれかを選択するから、太陽エネルギを有効に
利用できることはもちろんのこと、負荷5への電
力の供給を安定して行なえ、効率のよい太陽光発
電システムを確立できる。ところで、インバータ
4の定格を負荷5の最大定格を見込んで設計すれ
ば、併送送電の必要はないが、一般に、通常の状
態での負荷5は、その最大定格より小さいもので
あるから、この場合インバータ4の効率が低下す
る欠点がある。しかし、前記実施例では、インバ
ータ4の定格を負荷5の最大定格より低く設定
し、通常の状態での負荷5に近い定格でインバー
タ4を設計するから、インバータ4の効率が良く
なり、したがつて、イニシヤルコストおよびラン
ニングコストが安くなり、インバータ4の設置占
有面積も小さくできる。
Therefore, according to the embodiment, the lead acid battery 2
Check whether the remaining capacity of the inverter 4 is sufficient or not.
It is possible to select direct power transmission, inverter power transmission, or parallel power transmission by determining whether the maximum rating of It is possible to stably supply electricity and establish an efficient solar power generation system. By the way, if the rating of the inverter 4 is designed with the maximum rating of the load 5 in mind, there is no need for parallel power transmission, but since the load 5 under normal conditions is generally smaller than its maximum rating, this In this case, there is a drawback that the efficiency of the inverter 4 decreases. However, in the above embodiment, the rating of the inverter 4 is set lower than the maximum rating of the load 5, and the inverter 4 is designed with a rating close to the load 5 under normal conditions, so the efficiency of the inverter 4 is improved. Therefore, the initial cost and running cost are reduced, and the installation area of the inverter 4 can also be reduced.

なお、前記実施例において、併送送電中に停電
した場合や、停電時のインバータ送電中に鉛蓄電
池2の残存容量が不足した場合等、さらに多くの
状態の組み合わせを考え合わせれば、そのコント
ロールシーケンスは複雑になるが、実用化に際し
有益であり、優れた発電システムを得ることがで
きる。
In addition, in the above embodiment, if more combinations of conditions are considered, such as a power outage during parallel power transmission or a case where the remaining capacity of the lead-acid battery 2 is insufficient during inverter power transmission at the time of a power outage, the control sequence can be changed. Although this method is complicated, it is useful for practical use, and an excellent power generation system can be obtained.

以上のように、この発明の太陽光発電方法は、
太陽電池で得られた電力を蓄電池に充電するとと
もに、インバータを介して負荷に供給する太陽光
発電方法において、前記蓄電池の残存容量が前記
負荷に電力を供給するのに十分か否かを判断し
て、十分な場合に前記インバータから負荷に電力
を供給するインバータ送電を、不十分な場合に商
用電源から負荷に電力を供給する直送送電をそれ
ぞれ選択する第1シーケンスと、前記第1シーケ
ンスにおいてインバータ送電が選択された後に前
記負荷が前記インバータの最大定格以上か否かを
判断して、最大定格以上の場合にインバータ送電
と直送送電との併送送電を、最大定格より小さい
場合にインバータ送電をそれぞれ選択する第2シ
ーケンスと、前記第1シーケンスにおいて直送送
電が選択された後に停電か否かを判断して、停電
の場合にインバータ送電を、停電でない場合に直
送送電をそれぞれ選択する第3シーケンスとを備
えたことを特徴とする。
As described above, the solar power generation method of this invention is
In a solar power generation method in which power obtained from a solar cell is charged into a storage battery and supplied to a load via an inverter, it is determined whether the remaining capacity of the storage battery is sufficient to supply power to the load. a first sequence in which inverter power transmission is selected to supply power from the inverter to the load when the inverter is sufficient, and direct power transmission is selected to supply power from the commercial power source to the load when the inverter is insufficient; After power transmission is selected, it is determined whether the load is equal to or higher than the maximum rating of the inverter, and if the load is equal to or higher than the maximum rating, simultaneous transmission of inverter power transmission and direct power transmission is performed, and if it is smaller than the maximum rating, inverter power transmission is performed. a second sequence for selecting each, and a third sequence for determining whether or not there is a power outage after direct power transmission is selected in the first sequence, and selecting inverter power transmission in the case of a power outage, and selecting direct power transmission in the case of no power outage. It is characterized by having the following.

従つて、この発明によれば、蓄電池の残存容
量、負荷がインバータの最大定格以上か否か、停
電の有無を判断して、直送送電、インバータ送
電、併送送電のいずれかを選択することにより、
負荷への電力の供給を安定かつ高効率に行なうこ
とができ、太陽エネルギの有効利用が計れ、効率
のよい電源システムを確立できる。
Therefore, according to the present invention, by determining the remaining capacity of the storage battery, whether the load is higher than the maximum rating of the inverter, and whether there is a power outage, selecting one of direct power transmission, inverter power transmission, and parallel power transmission. ,
Power can be stably and highly efficiently supplied to the load, solar energy can be used effectively, and an efficient power supply system can be established.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の太陽光発電システムの構成図、
第2図以下の図面はこの発明の太陽光発電方法の
1実施例を示し、第2図はフローチヤート、第3
図a,b,cはそれぞれインバータ送電、併送送
電、直送送電時のブロツク図である。 1……太陽電池、2……鉛蓄電池、4……イン
バータ、5……負荷、6……商用電源。
Figure 1 is a configuration diagram of a general solar power generation system.
Figure 2 and the following drawings show one embodiment of the solar power generation method of the present invention, with Figure 2 being a flowchart and Figure 3
Figures a, b, and c are block diagrams for inverter power transmission, parallel power transmission, and direct power transmission, respectively. 1...Solar battery, 2...Lead acid battery, 4...Inverter, 5...Load, 6...Commercial power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 太陽電池で得られた電力を蓄電池に充電する
とともに、インバータを介して負荷に供給する太
陽光発電方法において、前記蓄電池の残存容量が
前記負荷に電力を供給するのに十分か否かを判断
して、十分な場合に前記インバータから負荷に電
力を供給するインバータ送電を、不十分な場合に
商用電源から負荷に電力を供給する直送送電をそ
れぞれ選択する第1シーケンスと、前記第1シー
ケンスにおいてインバータ送電が選択された後に
前記負荷が前記インバータの最大定格以上か否か
を判断して、最大定格以上の場合にインバータ送
電と直送送電との併送送電を、最大定格より小さ
い場合にインバータ送電をそれぞれ選択する第2
シーケンスと、前記第1シーケンスにおいて直送
送電が選択された後に停電か否かを判断して、停
電の場合にインバータ送電を、停電でない場合に
直送送電をそれぞれ選択する第3シーケンスとを
備えたことを特徴とする太陽光発電方法。
1. In a solar power generation method in which power obtained from a solar cell is charged into a storage battery and supplied to a load via an inverter, it is determined whether the remaining capacity of the storage battery is sufficient to supply power to the load. and selecting inverter power transmission for supplying power from the inverter to the load when the power supply is sufficient, and direct power transmission for supplying power from the commercial power source to the load when the power supply is insufficient; After inverter power transmission is selected, it is determined whether the load is equal to or higher than the maximum rating of the inverter, and if the load is equal to or higher than the maximum rating, simultaneous power transmission using inverter power transmission and direct power transmission is performed, and if it is smaller than the maximum rating, inverter power transmission is performed. the second to select each
and a third sequence for determining whether or not there is a power outage after direct power transmission is selected in the first sequence, and selecting inverter power transmission in the case of a power outage and selecting direct power transmission in the case of no power outage. A solar power generation method characterized by:
JP55134973A 1980-09-27 1980-09-27 Method of generating with solar light Granted JPS5759441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55134973A JPS5759441A (en) 1980-09-27 1980-09-27 Method of generating with solar light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55134973A JPS5759441A (en) 1980-09-27 1980-09-27 Method of generating with solar light

Publications (2)

Publication Number Publication Date
JPS5759441A JPS5759441A (en) 1982-04-09
JPH0440928B2 true JPH0440928B2 (en) 1992-07-06

Family

ID=15140927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55134973A Granted JPS5759441A (en) 1980-09-27 1980-09-27 Method of generating with solar light

Country Status (1)

Country Link
JP (1) JPS5759441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102037393B1 (en) * 2018-12-05 2019-10-28 김상태 Foldable food container and carrier thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973890A (en) * 1982-10-20 1984-04-26 三洋電機株式会社 Solar generating illuminator
JPWO2012049910A1 (en) * 2010-10-15 2014-02-24 三洋電機株式会社 Output circuit of power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102037393B1 (en) * 2018-12-05 2019-10-28 김상태 Foldable food container and carrier thereof

Also Published As

Publication number Publication date
JPS5759441A (en) 1982-04-09

Similar Documents

Publication Publication Date Title
US6795322B2 (en) Power supply with uninterruptible function
CN100349356C (en) Independent electric power supply
US5160851A (en) Rechargeable back-up battery system including a number of battery cells having float voltage exceeding maximum load voltage
US20120025614A1 (en) Uninterruptible Power Supply Apparatus and Methods Using Reconfigurable Energy Storage Networks
CN104247201A (en) Power storage system and cartridge
CN109066799B (en) Micro-grid black start system and method suitable for light storage
JPH06178461A (en) System-linked power supply system
US10819115B2 (en) Modular power supply system
WO2012144358A1 (en) Power supply device, control method for power supply device, and dc power supply system
CN105379049A (en) Power control device, power control method, and power control system
KR20170026695A (en) Hybrid energy storage system
JPH1169659A (en) Solar power generation and charging system
JP2001045677A (en) Power supplying device using solar cell
JP2005027430A (en) Power conversion system
KR102257906B1 (en) An energy storage system
JPH0440928B2 (en)
JP2003116224A (en) Photovoltaic generation system, power converter thereof, and control method therefor
KR102021995B1 (en) Independant-type microgrid system
Bubovich et al. Initial Evaluation of a Multilevel Inverter with Unfolding Stage for BESS Applications
JPH0946926A (en) Distributed power unit
KR20080001239U (en) System for supply the source of electricity using the direct-current dynamo
JPH0946912A (en) Distributed power unit
KR20220105033A (en) Method and device for efficient storage of solar energy
CN110932333A (en) Power distribution system
KR20210054247A (en) Appratus for charging batteries by using Energy Storage System