JPS63202225A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPS63202225A
JPS63202225A JP62032711A JP3271187A JPS63202225A JP S63202225 A JPS63202225 A JP S63202225A JP 62032711 A JP62032711 A JP 62032711A JP 3271187 A JP3271187 A JP 3271187A JP S63202225 A JPS63202225 A JP S63202225A
Authority
JP
Japan
Prior art keywords
reactive power
harmonic
phase advance
compensates
harmonic components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62032711A
Other languages
Japanese (ja)
Inventor
隆一 嶋田
家田 泰伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute filed Critical Toshiba Corp
Priority to JP62032711A priority Critical patent/JPS63202225A/en
Publication of JPS63202225A publication Critical patent/JPS63202225A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、高調波成分の抑制と無効電力の補償を行なう
無効電力補償装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to an improvement of a reactive power compensator that suppresses harmonic components and compensates for reactive power.

(従来の技術) 従来、交−直(直−交)変換器等の高調波成分金発生す
る負荷と、高調波成分を発生しない負荷とからなる系統
においては、高調波成分の受電系統への侵入抑制と系統
の高力率運転のための無効電力の補償とを行なう無効電
力補償装置が設置される。
(Prior art) Conventionally, in a system consisting of a load that generates harmonic components such as an AC-DC (orthogonal) converter and a load that does not generate harmonic components, it is difficult to transfer the harmonic components to the power receiving system. A reactive power compensation device is installed to suppress intrusion and compensate for reactive power for high power factor operation of the system.

このような無効電力補償装置は、高調波フィルタを系統
に接続することにエリ、高調波成分の受電系統への侵入
を抑制し、進相コンデンサを系統に接続することにより
、無効電力を補償し高力率運転を実現するものである。
This type of reactive power compensator is designed to compensate for reactive power by connecting a harmonic filter to the grid, suppressing harmonic components from entering the power receiving grid, and connecting a phase advance capacitor to the grid. This realizes high power factor operation.

上記無効電力補償装置の従来の構成例について、第6図
を参照して説明する。第6図において、1は変換器等の
高調波発生負荷、2は高調波非発生負荷であり、高調波
発生負荷1は変圧器TItJを介してまた高調波非発生
負荷2は直接同一系統に接続されている。また3は高調
波フィルタ、4は進相コンデンサであり、共に開閉器5
を介して前記系統に接続されている。
A conventional configuration example of the above-mentioned reactive power compensator will be explained with reference to FIG. 6. In Fig. 6, 1 is a harmonic generating load such as a converter, 2 is a harmonic non-generating load, and the harmonic generating load 1 is connected to the same system via the transformer TItJ, and the harmonic non-generating load 2 is directly connected to the same system. It is connected. Further, 3 is a harmonic filter, 4 is a phase advance capacitor, and both are switch 5.
It is connected to the system via.

なお上記高調波フィルタ3の全体の容量は、発生する高
調波電流の最大値に対応した値で設計され、進相コンデ
ンサ4の全体の容量は、発生する無効電力の最大値に対
応し比値で設計されている。またTR2は本系統と送電
系続伸を連系する変圧器でおる。
The overall capacitance of the harmonic filter 3 is designed to correspond to the maximum value of the generated harmonic current, and the overall capacitance of the phase advance capacitor 4 is designed to have a ratio value corresponding to the maximum value of the generated reactive power. It is designed with. In addition, TR2 is a transformer that connects the main system and the transmission system extension.

次に第6図に示す高調波発生負荷1及び高調波非発生負
荷2からなる系統が第7図に示すように時間tとともに
無効電力0が繰り返し変化する場合について考える。先
ず時間tl〜t!で高調波発生負荷1が運転され、無効
電力Qが最大無効電力Qma工となシ緒間t!〜t3で
高調波非発生負荷2が運転され、無効電力Qが最小無効
電力Qminとなりたとする。この場合、時間【工〜t
3で運転される高調波発生負荷1から流出する高調波を
抑制するため、時間【1で高調波フィルタ3が投入され
、時間t1で引外しが行なわれる。
Next, consider the case where the system consisting of the harmonic generating load 1 and the harmonic non-generating load 2 shown in FIG. 6 repeatedly changes the reactive power 0 with time t as shown in FIG. 7. First of all, time tl~t! The harmonic generation load 1 is operated at t!, and the reactive power Q is the maximum reactive power Qma. It is assumed that the harmonic non-generating load 2 is operated at ~t3 and the reactive power Q becomes the minimum reactive power Qmin. In this case, the time
In order to suppress harmonics flowing out from the harmonic generating load 1 operated at time t1, the harmonic filter 3 is turned on at time t1, and tripped at time t1.

また無効電力を有効に補償するために、進相コンデンサ
4も、前記高調波フィルタ3の投入、引外し操作とは別
に投入、引外し操作がなされる。
Further, in order to effectively compensate for reactive power, the phase advancing capacitor 4 is also turned on and tripped separately from the turning on and tripping operations of the harmonic filter 3.

(発明が解決しようとする問題点) 上述したように、第7図に示すような無効電力が時間と
ともに繰返し変化する場合は、高調波成分の抑制と、無
効電力の補償を行なうため、高調波フィルタ3及び進相
コンデンサ4を時間とともに繰返して、投入、引外しを
行なう必要がある。
(Problems to be Solved by the Invention) As mentioned above, when the reactive power changes repeatedly over time as shown in FIG. It is necessary to repeatedly turn on and turn off the filter 3 and phase advance capacitor 4 over time.

また高調波フィルタ3は9通常、複数のパンクで構成さ
れ、パンク全体で流出する高調波成分を抑制するもので
ある。したがりて、高調波フィルタ3は全パンクを投入
、引外しを行ない、また進相コンデンサ4も適時投入、
引外しが行なわれるので、制御が複雑であり、1+系統
と高調波フィルタ3及び進相コンデンサ4との間に介挿
された多数の開閉器5は、その頻繁な開閉に伴って、寿
命の低下が問題となっていた。
Further, the harmonic filter 3 is usually composed of a plurality of punctures, and suppresses the harmonic components flowing out due to the entire puncture. Therefore, the harmonic filter 3 turns on all punctures and performs tripping, and the phase advance capacitor 4 also turns on and off in a timely manner.
Since tripping is performed, control is complicated, and the numerous switches 5 inserted between the 1+ system, the harmonic filter 3, and the phase advancing capacitor 4 have a long lifespan due to their frequent opening and closing. The decline was a problem.

本発明は上記欠点を除去する九めになされたもので、高
調波発生負荷と高調波非発生負荷からなる系統の高調波
成分の抑制及び無効電力の補償を、構成間単にして長寿
命化が図られ且つ制御が容易に行なえる無効電力補償装
置を提供することを目的とする。
The present invention has been made in the ninth attempt to eliminate the above-mentioned drawbacks, and it is possible to suppress harmonic components and compensate for reactive power in a system consisting of harmonic-generating loads and non-harmonic-generating loads, and to extend the life of the system by simplifying the configuration. It is an object of the present invention to provide a reactive power compensator that is capable of achieving high performance and that can be easily controlled.

[発明の構成コ (問題点を解決するための手段) 本発明による無効電力補償装置は、高調波発生負荷と高
調波非発生負荷からなる系統に適用されるものであり、
系統運転時の最小無効電力を補償する進相容量を有し且
つ前記系統に常時接続された高調波フィルタ或いは進相
コンデンサと、系統運転時の最大無効電力から前記最小
無効電力を差し引いた無効電力を補償する進相容量を有
し且つ前記系統に投入容量が可変可能に接続された進相
コンデンサ或いは高調波フィルタとから構成される。
[Configuration of the Invention (Means for Solving Problems) The reactive power compensator according to the present invention is applied to a system consisting of a harmonic generating load and a harmonic non-generating load,
A harmonic filter or a phase advance capacitor that has a phase advance capacity that compensates for the minimum reactive power during system operation and is always connected to the system, and a reactive power that is obtained by subtracting the minimum reactive power from the maximum reactive power during system operation. It is composed of a phase advance capacitor or a harmonic filter which has a phase advance capacitance for compensating for and is connected to the system so that the input capacitance can be changed.

(作用) このように構成したことで、系統と高調波フィルタ及び
進相コンデンサとの頻繁な開閉を行なわずとも、系統の
高調波成分の抑制及び無効電力の補償が行なえ、もって
、構成簡単、制御容易、長寿命化が図られる。
(Function) With this configuration, harmonic components of the system can be suppressed and reactive power can be compensated for without frequent switching between the system and the harmonic filter and phase advance capacitor. Easy control and long life.

(実施例) 以下本発明の実施例を参照して説明する。第1図は本発
明による無効電力補償装置の第1の実施列を示す結線図
である。第1図において高調波発生負荷1と高調波非発
生負荷2とは同一系統に接続されている。また高調波フ
ィルタ6は上記系統に常時接続されている。更に進相コ
ンデンサ7は開閉器5を介して上記系統に接続されてい
る。
(Example) The present invention will be described below with reference to Examples. FIG. 1 is a wiring diagram showing a first implementation row of a reactive power compensator according to the present invention. In FIG. 1, a harmonic generating load 1 and a harmonic non-generating load 2 are connected to the same system. Further, the harmonic filter 6 is always connected to the above system. Further, the phase advancing capacitor 7 is connected to the above-mentioned system via the switch 5.

上記高調波フィルタ6は、系統運転時の最小無効電力Q
minを補償する進相容量Cm1nを有し、高調波発生
負荷1が発生する高調波電流の最大値に対応し、これを
抑制可能に設定されたものである。
The harmonic filter 6 has a minimum reactive power Q during grid operation.
It has a phase advance capacitance Cm1n that compensates for min, and is set to correspond to the maximum value of harmonic current generated by the harmonic generation load 1 and to be able to suppress this.

また進相コンデンサ7は、系統運転時の最大無効電力Q
ma xから最小無効電力Qminを差し引いた無効電
力(Qmax −Qrr:in )を補償する進相容量
cpを持つように設定されている。
In addition, the phase advance capacitor 7 has a maximum reactive power Q during system operation.
It is set to have a phase advance capacity cp that compensates for the reactive power (Qmax - Qrr:in) obtained by subtracting the minimum reactive power Qmin from max.

次に高調波発生負荷1及び高調波非発生負荷2からなる
系統が、第2図に示すように時間とともに無効電力Qが
繰返して変化して運転される場合、本実施例の無効電力
補償装置の動作及び作用について述べる。第2図におい
て、時間tl xt、にて高調波発生負荷1が運転され
ると、この区間では開閉器5′!i−閉路して進相容量
CP1に持つ進相コンデンサ6を系統に投入する。この
場合進相容量Cm1n’z持つ高調波フィルタ7は、系
統に常時投入されているので、無効電力補償装置は全体
の進相容量がCm1n + CPとなり、従って最大無
効電力Qmaxは補償される。
Next, when a system consisting of a harmonic generating load 1 and a harmonic non-generating load 2 is operated with the reactive power Q changing repeatedly over time as shown in FIG. The operation and effect of this will be described. In FIG. 2, when harmonic generation load 1 is operated at time tl xt, switch 5'! The i-circuit is closed and the phase advance capacitor 6 having the phase advance capacitor CP1 is introduced into the system. In this case, since the harmonic filter 7 having the phase advance capacity Cm1n'z is always connected to the system, the entire phase advance capacity of the reactive power compensator becomes Cm1n + CP, and therefore the maximum reactive power Qmax is compensated.

また時間1.で高調波発生負荷1が系統から列外され、
系統の無効電力Qが最小無効電力Qminとなっfc場
合は、系統に常時投入されている高調波フィルタ7が持
っている進相容量Cm1nにて上記最小無効電力Qmi
nは補償される。
Also time 1. Harmonic generating load 1 is removed from the grid at
When the reactive power Q of the system becomes the minimum reactive power Qmin and fc, the minimum reactive power Qmi is determined by the phase advancing capacity Cm1n of the harmonic filter 7 that is always connected to the system.
n is compensated.

以上述べたように本実施例では、高調波発生負荷1が系
統に投入された時点で、進相コンデンサ6のみを投入す
ることにエリ、系統全体の高調波成分の抑制及び無効電
力の補償が行なえる。
As described above, in this embodiment, it is possible to suppress harmonic components and compensate for reactive power in the entire system by turning on only the phase advance capacitor 6 when the harmonic generating load 1 is connected to the system. I can do it.

また、本実施例では、進相コンデンサ7のみが開閉路5
を介して系統に接続された構成であるので、全体での開
閉器5の数は減少している。従って制御点数の少数化と
、制御の簡素化が図られる。
Further, in this embodiment, only the phase advancing capacitor 7 is connected to the switching circuit 5.
Since the switch is connected to the grid via the switch, the total number of switches 5 is reduced. Therefore, the number of control points can be reduced and control can be simplified.

次に第3図を参照して本発明の第2の実施例について説
明する。この第2の実施列では、系統運転時の最小無効
電力Qminを補償する進相容量Cm1nを有した進相
コンデンサ8を系統に常時接続する。
Next, a second embodiment of the present invention will be described with reference to FIG. In this second embodiment, a phase advance capacitor 8 having a phase advance capacity Cm1n that compensates for the minimum reactive power Qmin during system operation is always connected to the system.

″また系統運転時の最大無効電力Qmaxから最小無効
電力Qminを差し引いた無効電力(Qmax −Qm
in )を補償する進相容量cpを有した高調波フィル
タ9t−開閉器5を介して系統に接続している。
``Also, the reactive power (Qmax - Qm
A harmonic filter 9t having a phase advance capacitance cp for compensating for (in) is connected to the grid via a switch 5.

上記のように構成された第2の実施列は、第1の実施例
とほぼ同様の動作及び作用がなされるのでその説明は省
略する。またこの第2の実施例では系統における高調波
発生負荷1が小容量で高調波成分の発生が少ない場合に
適用すると、高調波フィルタ9は、その定格が小さいも
のを採用することができ、装置全体のコスト低減につな
がる。
The second embodiment array configured as described above operates and functions in substantially the same manner as the first embodiment, so a description thereof will be omitted. Furthermore, if this second embodiment is applied when the harmonic generation load 1 in the system has a small capacity and generates few harmonic components, the harmonic filter 9 can be one with a small rating, and the device Leads to overall cost reduction.

次に第4図を参照して第3の実施例について説明する。Next, a third embodiment will be described with reference to FIG.

第4図は第1図における進相コンデンサ6を複数に分割
し、夫々開閉器5を介して系統に接続することにより、
無効電力の補償をより細かく制御可能としている。
FIG. 4 shows that by dividing the phase advance capacitor 6 in FIG. 1 into a plurality of parts and connecting them to the grid via the switch 5,
This allows for more fine control of reactive power compensation.

第5図は第4の実施例を示すもので、これは1つの受電
系統に対し、第1図に示した無効電力補償装置が設けら
れた系統を、複数接続した場合を示している。
FIG. 5 shows a fourth embodiment, in which a plurality of systems provided with the reactive power compensator shown in FIG. 1 are connected to one power receiving system.

なお本発明は上記実施例に限定されるものではなく、本
発明の要旨を変更しない範囲で種々変形して実施できる
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist of the present invention.

[発明の効果] 以上述べた本発明によれば、高調波発生負荷及び高調波
非発生負荷からなる系統に対し、系統運転時の最小無効
電力を補償する進相容量を有した高調波フィルタ或いは
進相コンデンサを系統に常時接続し、系統運転時の最大
無効電力から最小無効電力を差し引いた無効電力を補償
する進相容量を有した進相コンデンサ或いは高調波フィ
ルタを投入容量が可変可能に接続したので、高調波成分
の抑制及び無効電力の補償を構成簡単にして長寿命化が
図られ制御が容易とし得る無効電力補償装置が提供でき
る。
[Effects of the Invention] According to the present invention described above, for a system consisting of a harmonic generating load and a harmonic non-generating load, a harmonic filter or A phase advance capacitor is always connected to the grid, and a phase advance capacitor or a harmonic filter with a phase advance capacity that compensates for the reactive power obtained by subtracting the minimum reactive power from the maximum reactive power during grid operation is connected so that the input capacity can be changed. Therefore, it is possible to provide a reactive power compensator that suppresses harmonic components and compensates for reactive power with a simple structure, has a long life, and is easy to control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による無効電力補償装置の第1の実施例
を説明するための系統結線図、第2図は同第1の実施例
の作用を説明するための無効電カッ母ターンを示す特性
図、第3図乃至第5図は同第2乃至第4の実施例を示す
系統結線図、第6図は従来の無効電力補償装置を説明す
るための系統結線図、@7図は無効電カッぐターンを示
す特性図である。 1・・・高調波発生負荷、2・・・高調波非発生負荷、
3・・・高調波フィルタ、4・・・進相コンデンサ、5
…開閉器、6・・・進相コンデンサ、7・・・高調波フ
ィルタ、8・・・進相コンデンサ、9・・・高調波フィ
ルタ。 出願人代理人 弁理士 鈴 江 武 彦第1図    
  第2図 第41コ 第3図
Fig. 1 is a system connection diagram for explaining a first embodiment of the reactive power compensator according to the present invention, and Fig. 2 shows a reactive power main turn for explaining the operation of the first embodiment. Characteristic diagrams, Figures 3 to 5 are system connection diagrams showing the second to fourth embodiments, Figure 6 is a system connection diagram for explaining the conventional reactive power compensator, and Figure @7 is invalid. FIG. 3 is a characteristic diagram showing an electric turn. 1...Load that generates harmonics, 2...Load that does not generate harmonics,
3...Harmonic filter, 4...Phase advance capacitor, 5
...Switch, 6... Phase advance capacitor, 7... Harmonic filter, 8... Phase advance capacitor, 9... Harmonic filter. Applicant's agent Patent attorney Takehiko Suzue Figure 1
Figure 2 Figure 41 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)高調波成分を発生する負荷と、高調波成分を発生
しない負荷とからなる系統の無効電力の補償と高調波成
分の抑制を行なう無効電力補償装置において、前記系統
運転時の最小無効電力を補償する進相容量を有し且つ前
記系統に常時接続された高調波フィルタと、前記系統運
転時の最大無効電力から前記最小無効電力を差し引いた
無効電力を補償する進相容量を有し且つ前記系統に投入
容量が可変可能にして接続された進相コンデンサとから
構成されたことを特徴とする無効電力補償装置。
(1) In a reactive power compensator that compensates for reactive power and suppresses harmonic components in a system consisting of loads that generate harmonic components and loads that do not generate harmonic components, the minimum reactive power during system operation is as follows: a harmonic filter having a phase advance capacity that compensates for and is always connected to the grid, and a phase advance capacity that compensates for reactive power obtained by subtracting the minimum reactive power from the maximum reactive power during the system operation, and A reactive power compensator comprising: a phase advancing capacitor connected to the system with a variable input capacitance.
(2)高調波成分を発生する負荷と高調波成分を発生し
ない負荷とからなる無効電力の補償と高調波成分の抑制
を行なう無効電力補償装置において、前記系統運転時の
最小無効電力を補償する進相容量を有し且つ前記系統に
常時接続された進相コンデンサと、前記系統運転時の最
大無効電力から前記最小無効電力を差し引いた無効電力
を補償する進相容量を有し且つ前記系統に投入容量が可
変可能にして接続された高調波フィルタとから構成され
たことを特徴とする無効電力補償装置。
(2) In a reactive power compensator that compensates for reactive power and suppresses harmonic components, consisting of a load that generates harmonic components and a load that does not generate harmonic components, the minimum reactive power during grid operation is compensated for. a phase advance capacitor having a phase advance capacity and always connected to the system; and a phase advance capacitor having a phase advance capacitor that compensates for reactive power obtained by subtracting the minimum reactive power from the maximum reactive power during the system operation and connected to the system. 1. A reactive power compensator comprising a harmonic filter connected with a variable input capacity.
JP62032711A 1987-02-16 1987-02-16 Reactive power compensator Pending JPS63202225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032711A JPS63202225A (en) 1987-02-16 1987-02-16 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032711A JPS63202225A (en) 1987-02-16 1987-02-16 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPS63202225A true JPS63202225A (en) 1988-08-22

Family

ID=12366423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032711A Pending JPS63202225A (en) 1987-02-16 1987-02-16 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPS63202225A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516134A (en) * 2009-01-26 2012-07-12 ジュネーブ クリーンテック インコーポレイテッド Distortion reduction device
US9020769B2 (en) 2009-01-26 2015-04-28 Geneva Cleantech Inc. Automatic detection of appliances
JP2021180546A (en) * 2020-05-12 2021-11-18 株式会社日立製作所 Device and method for controlling phase adjustment facilities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516134A (en) * 2009-01-26 2012-07-12 ジュネーブ クリーンテック インコーポレイテッド Distortion reduction device
US9020769B2 (en) 2009-01-26 2015-04-28 Geneva Cleantech Inc. Automatic detection of appliances
JP2021180546A (en) * 2020-05-12 2021-11-18 株式会社日立製作所 Device and method for controlling phase adjustment facilities

Similar Documents

Publication Publication Date Title
CN100483894C (en) Uninterruptible power supply system, voltage regulator and operating methods employing controlled ferroresonant transformer circuits
US9166495B2 (en) Wind power converter
US5563778A (en) Uninterruptible power supply system
EP1078435B1 (en) Line powered, primary side connected apparatus injecting voltage compensation into an electric power line using one transformer
US6104102A (en) Multi-quality electric power supply apparatus
JPH0471331A (en) Active filter device
US6844794B2 (en) Harmonic mitigating filter
JP3226246B2 (en) High voltage self-excited converter for grid interconnection
JPS63202225A (en) Reactive power compensator
Tomljenovic et al. Solid-state DC power supplies for gyrotrons and NBI sources
JP3319636B2 (en) Active filter device
EP0192960B1 (en) Alternating current motor having current filter
Moon et al. DSP control of UPS inverter with over-current limit using droop method
CA1155923A (en) Polyphase ferroresonant voltage stabilizer having input chokes with non-linear impedance characteristic
Leal Serafim Rodrigues et al. Single‐phase universal active power filter based on ac–dc–ac converter with eight controlled switches
Paul Shunt Active and Series Active Filters‐Based Power Quality Conditioner for Matrix Converter
JP3386630B2 (en) Uninterruptible power system
JP3319216B2 (en) Constant voltage harmonic absorption power supply
JPH0584147B2 (en)
US6054781A (en) Voltage bus filtering scheme for a battery power plant
JP3220291B2 (en) Inverter device
JPS5838593Y2 (en) Phase adjuster
JPS611222A (en) Power source switch circuit
JPS63249426A (en) Harmonic filter
JPS6295928A (en) Active filter