JPS5932113A - Superconductive magnet apparatus - Google Patents

Superconductive magnet apparatus

Info

Publication number
JPS5932113A
JPS5932113A JP57141681A JP14168182A JPS5932113A JP S5932113 A JPS5932113 A JP S5932113A JP 57141681 A JP57141681 A JP 57141681A JP 14168182 A JP14168182 A JP 14168182A JP S5932113 A JPS5932113 A JP S5932113A
Authority
JP
Japan
Prior art keywords
vacuum
container
helium
shield
radiation shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57141681A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57141681A priority Critical patent/JPS5932113A/en
Publication of JPS5932113A publication Critical patent/JPS5932113A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To curtail operation cycles by independently providing vacuum exhausting apparatus respectively to the irradiation shield and vacuum container on the occasion of forming a superconductive magnet apparatus by surrounding a helium container accommodating a superconductive magnet with a radiation shield internally provided with multilayer temperature insulating material and further by surrounding the entire part with a vacuum casing. CONSTITUTION:A coil 1 obtained by winding a superconductive material is housed in a helium container 2 filled with liquid helium and it is then surrounded by a radiation shield 3. At this time, the internal wall of shield 3 is provided with multilayer temperature insulating material 3b which has a structure of several tens of layers where polyester net is stacked on a thin layer vacuum- depositing aluminum on miler, while the external circumference is wound by a cooling tube 3a which allows liquid nitrogen or low temperature helium gas to flow, thereby forming an individual container 3c. This container is then surrounded by a vacuum container 4 having the heat insulating function by the vacuum condition, and the vacuum exhaustion apparatuses 7 and 6 are provided respectively to the individual container 3c and vacuum container 4. Thereby, the vacuum exhaustion period can be curtailed.

Description

【発明の詳細な説明】 し発明の技術分野〕 本発明は超電導マグネット装置に関する。[Detailed description of the invention] Technical field of invention] The present invention relates to a superconducting magnet device.

し発明の技術的背景とその問題点〕 超電導マグネット装置は超電導フィラメントおよび銅捷
たはアルミニウムなどの安定化材より成る超電導4体を
巻回してコイルを構成1〜,液体ヘリウム容器内に収納
し、液体ヘリウム中に浸漬して臨界温度以下の極低温に
保持される。コイルは超電導状態となり超電導フィラメ
ントの電気抵抗が零になるため大′#+L流を流すこと
ができ、強磁界を得ることができる。このため超電導マ
グネット装置は核融合、M}ID発電などに広く利用さ
れるようfCなった。
[Technical Background of the Invention and Problems Therein] A superconducting magnet device has a coil structure (1) by winding four superconducting bodies made of a superconducting filament and a stabilizing material such as copper or aluminum, and storing the coil in a liquid helium container. , kept at a cryogenic temperature below the critical temperature by immersing it in liquid helium. Since the coil becomes superconducting and the electrical resistance of the superconducting filament becomes zero, a large '#+L current can flow and a strong magnetic field can be obtained. For this reason, superconducting magnet devices have become widely used in nuclear fusion, M}ID power generation, etc.

超電導マグネットは極低温に保持されなければならない
ため、熱の侵入を極力抑えた構造となっている。伝.導
による熱侵入に対しては、マグネット支持装置等の材質
を熱伝導率の小さい例えばエポキシ樹脂筒を使用し熱侵
入量を軽減している。
Because superconducting magnets must be kept at extremely low temperatures, they are designed to minimize heat penetration. Tradition. In order to prevent heat intrusion due to conduction, the amount of heat intrusion is reduced by using a material such as a magnet support device having a low thermal conductivity, such as an epoxy resin cylinder.

対流に対しては、マグネットを真空容器内に納めlσ5
〜1σ”3’orr台という真空にすることにより対流
((よる熱侵入を防いでいる。ふく射1c対しては、ふ
く射シールドと呼ばれる液体窒素あるいは低温ガスヘリ
ウムを流す冷却管をはわせた銅板等Gζ多層断熱材を取
付けた構造物を真空容器内壁とマグネット間に設け、ふ
く射による熱侵入を抑えている。
For convection, place the magnet in a vacuum container and lσ5
By creating a vacuum on the order of ~1σ"3'orr, heat intrusion due to convection (() is prevented.For radiation 1c, a copper plate fitted with a cooling tube through which liquid nitrogen or low-temperature gas helium, called a radiation shield, is installed. A structure equipped with Gζ multilayer insulation is installed between the inner wall of the vacuum vessel and the magnet to suppress heat intrusion due to radiation.

ところで、この多層断熱材は通常、マイラー等にアルミ
蒸着したものにポリエステル・ネット等を重ね数十層と
したものである。そのため大気中の水分を多量に含み、
また製造段階での各種溶剤(例えばアセトン、メチルア
ルコール)も含ンでいる。これらが真空排気時において
多fitのアウトガスとなり放出し、所定の真空域に達
するまでの時間というのは多層断熱材が無い場合と比較
して1.5倍から2倍以、ヒも要し、超電導マグネット
装置の運転サイクルを長時間どする弊害を生み、到達真
空度もこのアウトガスの放出風に大きく影響され、所定
の真空度達成目的のため必要以上に大きな真空排気装置
を設けなければならない。
Incidentally, this multilayer insulation material is usually made up of dozens of layers of polyester net or the like overlaid on Mylar or the like with aluminum vapor deposited on top. Therefore, it contains a large amount of moisture in the atmosphere,
It also includes various solvents (eg, acetone, methyl alcohol) used during the manufacturing stage. These are released as multi-fit outgas during vacuum evacuation, and the time required to reach the specified vacuum range is 1.5 to 2 times longer than when there is no multilayer insulation material. This has the disadvantage that the operating cycle of the superconducting magnet device is delayed for a long time, and the ultimate vacuum level is also greatly affected by the outgas release wind, and a vacuum exhaust device that is larger than necessary must be provided in order to achieve a predetermined vacuum level.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点を解決するために行なった
もので運転サイクルを短縮できる超電導マグネット装置
を得ることにある。
An object of the present invention is to obtain a superconducting magnet device which has been made to solve the above-mentioned drawbacks and can shorten the operating cycle.

し発明の概要〕 」=記の目的を達成するため本発明の超電導マグネット
装置は、超電導マグネット装置と、超電導マグネットを
真空断熱するための真空容器と、真空容器からのふく射
熱を防ぐための多rvj断熱桐を設けたふく射シールド
と、このふく射シールドの多す断熱材を収納する単独容
器とよりなることを特徴とする。
[Summary of the Invention] To achieve the objects stated in the following, the superconducting magnet device of the present invention includes a superconducting magnet device, a vacuum container for vacuum insulating the superconducting magnet, and a multi-rvj for preventing radiation heat from the vacuum container. It is characterized by consisting of a radiation shield provided with heat insulating paulownia wood, and a single container for storing a large amount of heat insulating material for the radiation shield.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について図面をもとに説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図におい゛(fl)は超電導4体を巻回したコイル
、(2)はコ゛イルfl)および液体ヘリウムを収納す
るヘリウム容器、(3)は液体窒素あるいは低温ガスヘ
リウムで冷却されたふく射シールド、(4)はヘリウム
容器(2)を真空断熱する真空容器、(5)はヘリウム
容器(2)の支持装置である。第2図にふく射シールド
(3)の詳細図を示す。(3a)は液体窒素あるいは低
温ガスヘリウムを流す冷却管、(311)はマイラー等
にアルミ蒸着したもの6tポリエステル・ネット等を重
ね数十層とした多層断熱材、(3c)は多層断熱材(3
b)を収納した銅またはステンレス製の多層断熱材単独
容器であり、冷却管(3a)とはろう付等1こより接触
されている。(6)は真空容器(1)内を排気する真空
排気装置、(力は多層断熱材単独容器(3C)内を排気
する真空排気装置である。
In Figure 1, (fl) is a coil wound with four superconducting bodies, (2) is a helium container containing coil fl) and liquid helium, and (3) is a radiation shield cooled with liquid nitrogen or low-temperature gas helium. , (4) is a vacuum container that vacuum-insulates the helium container (2), and (5) is a support device for the helium container (2). Figure 2 shows a detailed diagram of the radiation shield (3). (3a) is a cooling pipe through which liquid nitrogen or low-temperature gas helium flows, (311) is a multilayer insulation material made of dozens of layers of 6t polyester net made of evaporated aluminum on Mylar, etc., and (3c) is a multilayer insulation material ( 3
b) is a single container made of multilayer heat insulating material made of copper or stainless steel, and is in contact with the cooling pipe (3a) through one connection, such as by brazing. (6) is a vacuum evacuation device that evacuates the inside of the vacuum container (1);

通常の超電導マグネット装置の運転は、真空容器11)
内を真空排気装置(6)により排気するが、この排気は
多層断熱拐(31))が別容器内となっているため、大
賢のアウトガスtこ影響されることなく短時間で所定の
真空域(16!〜10″”Torr台)に達することが
でき、到達真空度も良くなるという結果を生む。これと
並行して多層断熱材単独容器(3C)内も真空排気装置
(7)で排気するが、容積が小さいためアウトガスの放
出量が多量であっても短時間となり、全体の排気時間は
短縮化される。またマグネットの分解、点検中でも多層
断熱材単独容器(3C)内は排気しておくことが可能と
なり、全体の運転サイクルを短かくすることができる。
Normal operation of a superconducting magnet device is carried out in a vacuum chamber 11).
The interior is evacuated using a vacuum evacuation device (6), but since the multi-layer insulation layer (31) is located in a separate container, the specified vacuum is achieved in a short time without being affected by Daiken's outgas. range (16! to 10'' Torr range), resulting in an improved ultimate vacuum degree. At the same time, the inside of the single multilayer insulation material container (3C) is also evacuated using the vacuum evacuation device (7), but because the volume is small, even if a large amount of outgas is released, it takes only a short time, and the overall evacuation time is shortened. be converted into Further, even during disassembly and inspection of the magnet, the interior of the multilayer insulation material single container (3C) can be kept evacuated, making it possible to shorten the entire operation cycle.

第3図は他の実施例であって、冷却管(3a)は多層断
熱材密閉容器(3b)の内面VCろう付等によりはわせ
る。このような構造とすることにより、冷却管の継目等
からリークが生じた場合でも真空容器内の真空度低下と
いう事態を避けることができる。
FIG. 3 shows another embodiment, in which the cooling pipe (3a) is installed by VC brazing or the like on the inner surface of the multilayer heat insulating closed container (3b). With such a structure, even if a leak occurs from a joint of the cooling pipe, it is possible to avoid a situation in which the degree of vacuum in the vacuum container decreases.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、多層断熱材を単独容器内に収納
し、別途真空排気装置を設けたことにより、真空排気時
間の短縮化となり全体の運転サイクルを短かくすること
ができる効果がある。
As described above, the present invention has the effect of shortening the evacuation time and shortening the overall operation cycle by storing the multilayer insulation material in a single container and providing a separate evacuation device. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導マグネット装置の一実施例を示
す縦断面図、第2図は第1図の部分詳細縦断面図、第3
図は本発明の他の実施例を示す部分詳細縦断面である。
FIG. 1 is a vertical cross-sectional view showing one embodiment of the superconducting magnet device of the present invention, FIG. 2 is a partial detailed vertical cross-sectional view of FIG. 1, and FIG.
The figure is a partially detailed longitudinal section showing another embodiment of the invention.

Claims (1)

【特許請求の範囲】 (υ 超電導マグネットと、超電導マグネットを真空断
熱するだめの真空容器と、真空容器がらのふく射熱を防
ぐための多層断熱材を設けたふく射シールドと、仁のふ
く射シールドの多層断熱材を収納する単独容器とよりな
ることを特徴とする超電導マグネット装置。 (2)  多層断熱材を収納した単独容器内を真空排気
する真空排気装置を別途設けたことを特徴とする特許 装置。
[Scope of Claims] (υ A superconducting magnet, a vacuum container for vacuum insulating the superconducting magnet, a radiation shield provided with a multilayer insulation material to prevent radiation heat from the vacuum container, and a multilayer insulation of the radiation shield) (2) A patented device characterized in that a superconducting magnet device is provided with a separate vacuum evacuation device for evacuating the inside of a single container containing a multilayer insulation material.
JP57141681A 1982-08-17 1982-08-17 Superconductive magnet apparatus Pending JPS5932113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57141681A JPS5932113A (en) 1982-08-17 1982-08-17 Superconductive magnet apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57141681A JPS5932113A (en) 1982-08-17 1982-08-17 Superconductive magnet apparatus

Publications (1)

Publication Number Publication Date
JPS5932113A true JPS5932113A (en) 1984-02-21

Family

ID=15297728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57141681A Pending JPS5932113A (en) 1982-08-17 1982-08-17 Superconductive magnet apparatus

Country Status (1)

Country Link
JP (1) JPS5932113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530030A (en) * 2014-09-09 2016-03-16 Siemens Healthcare Ltd Cooling a superconducting magnet device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530030A (en) * 2014-09-09 2016-03-16 Siemens Healthcare Ltd Cooling a superconducting magnet device

Similar Documents

Publication Publication Date Title
JP3867158B2 (en) Cryogenic container and magnetometer using the same
US4291541A (en) Cryostat with external refrigerator for super-conducting NMR spectrometer
US4212169A (en) Cryostat for superconducting NMR spectrometer
JPS5932113A (en) Superconductive magnet apparatus
JP4984323B2 (en) Vacuum insulated container
JP4385394B2 (en) Cryostat
CA1103143A (en) Cryostat with refrigerator for superconduction nmr spectrometer
WO2019229923A1 (en) Superconductive magnet
US20220068529A1 (en) Apparatus and System to Enhance Thermal Gradients in Cryogenic Devices
SU1180640A1 (en) Cryostat
JP2991566B2 (en) Physical property measurement device under magnetic field
JP2584827B2 (en) Semiconductor X-ray detector
JPH0155720B2 (en)
JP4009734B2 (en) Bent method of superconducting accelerator
JPS61226903A (en) Low temperature container for superconductive electromagnet
JPH07142243A (en) Superconductor device
JPH0367326B2 (en)
JPS63299180A (en) Superconducting apparatus
JPS60234385A (en) Cryostat
JPH0382087A (en) Cryostat for superconducting magnet
JPS6254982A (en) Cryostat
JPH02297906A (en) Superconducting magnet device
JP2744672B2 (en) Superconducting magnet device
JPS6174307A (en) Superconductive device
JPH0256905A (en) Superconducting magnet apparatus