JPH0367326B2 - - Google Patents
Info
- Publication number
- JPH0367326B2 JPH0367326B2 JP4832785A JP4832785A JPH0367326B2 JP H0367326 B2 JPH0367326 B2 JP H0367326B2 JP 4832785 A JP4832785 A JP 4832785A JP 4832785 A JP4832785 A JP 4832785A JP H0367326 B2 JPH0367326 B2 JP H0367326B2
- Authority
- JP
- Japan
- Prior art keywords
- diameter side
- glass
- fiber
- cryostat
- reinforced plastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 22
- 239000004744 fabric Substances 0.000 claims description 19
- 239000001307 helium Substances 0.000 claims description 17
- 229910052734 helium Inorganic materials 0.000 claims description 17
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 8
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 8
- 230000008602 contraction Effects 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 2
- 239000010445 mica Substances 0.000 claims description 2
- 229910052618 mica group Inorganic materials 0.000 claims description 2
- 230000008646 thermal stress Effects 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 239000011152 fibreglass Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- SWQJXJOGLNCZEY-RNFDNDRNSA-N helium-8 atom Chemical compound [8He] SWQJXJOGLNCZEY-RNFDNDRNSA-N 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
- F17C3/085—Cryostats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/016—Noble gases (Ar, Kr, Xe)
- F17C2221/017—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0509—"Dewar" vessels
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はクライオスタツトに係り、特に繊維強
化プラスチツク(以下、FRPと記載する)で構
成したクライオスタツトに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cryostat, and particularly to a cryostat constructed from fiber reinforced plastic (hereinafter referred to as FRP).
一般に、超電導マグネツトのコイル等の超電導
機器は、液体ヘリウム中に浸漬冷却されるか、あ
るいは熱伝導の優れた銅、アルミ等を介して熱伝
導で極低温まで冷却される。
Generally, superconducting devices such as superconducting magnet coils are cooled by immersion in liquid helium, or cooled to extremely low temperatures by heat conduction through copper, aluminum, etc., which have excellent heat conductivity.
このような超電導機器は、外部から熱侵入によ
る液体ヘリウムの蒸発を極力少なくするため、内
部に真空断熱層、および液体窒素シールド等の熱
シールドを適宜設けたクライオスタツト中に収納
される。通常、このようなクライオスタツトは、
ステンレス等の金属材料で構成される。しかしな
がら、金属材料は磁場の変動に伴ない、その内部
にうず電流が流れ損失の発生と磁場の変歪を生ず
る。そのため、損失の低減、及び磁場均一度の向
上を図るには、非金属材料でクライオスタツトを
構成する必要がある。このようなクライオスタツ
トとしては、ガラス製のものとFRP製のものと
があるが、ガラス製のものは機械的強度が弱い等
の欠点があり、小型のもの以外ではFRP製のも
のが優れている。 Such superconducting equipment is housed in a cryostat which is provided with a vacuum insulation layer and a heat shield such as a liquid nitrogen shield as appropriate in order to minimize evaporation of liquid helium due to heat intrusion from the outside. Typically, such cryostat
Constructed of metal materials such as stainless steel. However, as the magnetic field fluctuates, eddy currents flow inside the metal material, causing loss and distortion of the magnetic field. Therefore, in order to reduce loss and improve magnetic field uniformity, it is necessary to construct the cryostat from a non-metallic material. There are two types of cryostat: glass and FRP, but glass has disadvantages such as weak mechanical strength, and FRP is superior except for small ones. There is.
第3図にFRPクライオスタツトの概略構成を
示す。該図の如く、FRPクライオスタツトは
FRP製の内槽1、外槽2、及び上蓋5で概略構
成され、内槽1と外槽2とはOリングの使用ある
いは接着等の手段で気密に一体化される。この内
槽1と外槽2によつて構成される空間は、通常外
槽2に取付けられる真空排気口4から排気した
後、封じ切られ真空断熱層3を形成する。真空断
熱層3中には、放射による熱侵入を防止するため
通常図示しない積層断熱材が設置される。内槽1
には例えば超電導マグネツト6等が収納され、液
体ヘリウム8で満たされる。また、上蓋5には図
示しない液体ヘリウム8の注入口、超電導マグネ
ツト6への給電線等が取付けられる。この種の構
成のFRPクライオスタツトの例としては、既に
特開昭57−190374号公報等に記載されている。こ
のような構成のFRPクライオスタツトは、液体
窒素シールド無しで前記したステンレスクライオ
スタツトとほぼ同程度の断熱性能が得られ、且つ
うず電流の発生がない等の利点がある。 Figure 3 shows the schematic configuration of the FRP cryostat. As shown in the figure, the FRP cryostat
It is generally composed of an inner tank 1, an outer tank 2, and an upper lid 5 made of FRP, and the inner tank 1 and the outer tank 2 are airtightly integrated by using an O-ring or adhesive. The space constituted by the inner tank 1 and the outer tank 2 is evacuated from a vacuum exhaust port 4 usually attached to the outer tank 2, and then sealed to form a vacuum heat insulating layer 3. A laminated heat insulating material (not shown) is usually installed in the vacuum heat insulating layer 3 in order to prevent heat intrusion due to radiation. Inner tank 1
For example, a superconducting magnet 6 or the like is housed in, and is filled with liquid helium 8. Further, an injection port for liquid helium 8, a power supply line to the superconducting magnet 6, etc. (not shown) are attached to the upper lid 5. An example of an FRP cryostat with this type of configuration has already been described in Japanese Patent Application Laid-Open No. 190374/1983. The FRP cryostat with such a configuration has advantages such as being able to obtain almost the same insulation performance as the stainless steel cryostat described above without a liquid nitrogen shield, and not generating eddy current.
しかしながら、このようなFRP製の内槽1に
おいては、内槽1内に液体ヘリウム8、あるいは
液体窒素等の寒剤を投入した際の熱応力の発生に
起因して、FRP層内ガラス基材に沿つたクラツ
ク、あるいは剥離が生ずる懸念があつた。FRP
の場合、繊維強化方向である周方向、及び軸方向
の強度は大きいが、径方向には繊維強化材が無く
強度が小さいことも上記クラツクの発生を促進し
ている。 However, in such an inner tank 1 made of FRP, thermal stress is generated when a cryogen such as liquid helium 8 or liquid nitrogen is poured into the inner tank 1, causing damage to the glass base material in the FRP layer. There was a concern that cracks along the line or peeling would occur. FRP
In this case, the strength in the circumferential direction, which is the direction of fiber reinforcement, and the axial direction are high, but the strength is low in the radial direction because there is no fiber reinforcement, which also promotes the occurrence of the above-mentioned cracks.
第4図に内槽内へ液体ヘリウムを投入した際の
温度分布の経時変化を示す。(時間経過とともに
t1,t2,t3,t4,t5,t6の如くに変化。)図におい
て右側が液体ヘリウムに接する内径側であり、W
がFRP層の厚みを示す。内径側は液体ヘリウム
に接するか、あるいは低温ガスヘリウムによつて
急激に液体ヘリウム温度(LHeT=4K)まで冷
却されるが、逆側(外径側)はFRP層を通して
の熱伝導で徐々に液体ヘリウム温度に近づく。そ
のため、FRP層内には第4図に示すような急激
な温度勾配が生じ、外径側に比較し内径側の熱収
縮が大きいことから第5図に示す径方向の引張り
応力が発生し、この応力がFRP層の径方向強度
より大きくなると前述のクラツク、剥離が発生す
る。この熱応力によるクラツク発生によるクラツ
ク発生の問題が顕著に表われる例としては、第6
図に示すようにFRP層10内の一部に気体透過
遮へい層11を設けた場合がある。この気体透過
遮へい層11は、FRP層が金属材料等に比較し
て気体透過が大きい(特にヘリウムの透過が問題
となる)ため、これを極力防止し真空断熱層の真
空劣化(真空断熱層は10-4Torr以下に保つ必要
がある。それ以上になると圧力上昇とともに熱侵
入量が増加する)を無くすることを目的に用いら
れる。一般に気体透過遮へい層11は、短冊状の
アルミ箔、あるいはマイカ片等が用いられるが、
しかし、これらの材料のレジンに対する接着強度
は、FRP層の径方向強度に比較し、さらに小さ
いことから前記の熱引張り応力によつて、より簡
単にクラツク、剥離等が発生する恐れがある。 Figure 4 shows the change in temperature distribution over time when liquid helium was introduced into the inner tank. (As time passes
Changes like t 1 , t 2 , t 3 , t 4 , t 5 , t 6 . ) In the figure, the right side is the inner diameter side that is in contact with liquid helium, and W
indicates the thickness of the FRP layer. The inner diameter side is in contact with liquid helium or is rapidly cooled to liquid helium temperature (LHeT = 4K) by low-temperature gas helium, but the opposite side (outer diameter side) gradually becomes liquid due to heat conduction through the FRP layer. Approaching helium temperature. As a result, a sharp temperature gradient as shown in Figure 4 occurs within the FRP layer, and as the thermal contraction is greater on the inner diameter side than on the outer diameter side, radial tensile stress as shown in Figure 5 is generated. When this stress becomes larger than the radial strength of the FRP layer, the above-mentioned cracks and peeling occur. As an example where the problem of crack generation due to the occurrence of cracks due to thermal stress is conspicuous, the 6th
As shown in the figure, a gas permeation shielding layer 11 may be provided in a part of the FRP layer 10. This gas permeation shielding layer 11 is designed to prevent vacuum deterioration of the vacuum insulation layer (vacuum insulation layer It is necessary to maintain the pressure below 10 -4 Torr.If it exceeds this, the amount of heat intrusion will increase as the pressure increases). Generally, the gas permeation shielding layer 11 is made of strips of aluminum foil, mica pieces, etc.
However, since the adhesive strength of these materials to the resin is smaller than the radial strength of the FRP layer, cracks, peeling, etc. may occur more easily due to the above-mentioned thermal tensile stress.
本発明は上述の点に鑑み成されたもので、その
目的とするところは、冷媒サイクルに対しても安
定でFRP層内にクラツク、剥離等の生じない信
頼性の高いクライオスタツトを提供するにある。
The present invention has been made in view of the above points, and its purpose is to provide a highly reliable cryostat that is stable even in the refrigerant cycle and does not cause cracks, peeling, etc. in the FRP layer. be.
本発明は、ガラスマツト、ガラルロービングク
ロス、ガラスクロス、あるいはカーボンクロス等
基材の種類、繊維の種類により熱収縮率(常温か
ら、ある温度まで冷却した際に生ずる収縮分を元
の長さで除したもの。通常%で示す。)が異なる
ことに着眼し、外径側より内径側にゆくにしたが
い熱収縮率の小さい材料を配置することにより、
所期の目的を達成するように成したものである。
The present invention has a heat shrinkage rate (the amount of shrinkage that occurs when cooled from room temperature to a certain temperature) depending on the type of base material such as glass mat, glass roving cloth, glass cloth, or carbon cloth, and the type of fiber. By paying attention to the fact that the heat shrinkage rate is different from the outer diameter side to the inner diameter side,
It was created to achieve the intended purpose.
以下、図面の実施例に基づいて本発明を詳細に
説明する。尚、符号は従来と同一のものは同符号
を使用する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings. Note that the same reference numerals are used for the same parts as in the past.
第1図に本発明の一実施例を示す。該図は従来
例第6図と同様、熱応力によるクラツクの発生し
やすい気体透過遮へい層11のある場合である。
図において12、及び13はそれぞれ内径側(液
体ヘリウム等に接する側)、及び外径側のFRP層
であり、本実施例では内径側のFRP層は外径側
のFRP層に比較し、より熱収縮率の小さい材料
で構成される。 FIG. 1 shows an embodiment of the present invention. This figure shows a case where there is a gas permeable shielding layer 11 which is likely to cause cracks due to thermal stress, similar to the conventional example shown in FIG.
In the figure, 12 and 13 are the FRP layers on the inner diameter side (the side in contact with liquid helium, etc.) and the outer diameter side, respectively. In this example, the FRP layer on the inner diameter side is thinner than the FRP layer on the outer diameter side. Constructed of material with low heat shrinkage.
一般にGFRP(ガラス繊維強化プラスチツクの
場合、ガラス繊維充填量が増加するにしたがい熱
収縮率が小さくなる。そのため、ガラスマツト、
ガラスクロス、ガラスロービングクロス等の基材
として製作したGFRPの熱収縮率は、ガラスマツ
ト基材GFRP>ザラスクロス基材GFRP>ロービ
ングクロスGFRPのようになる。また、CFRP
(カーボン繊維強化プラスチツク)の繊繊維方向
熱収縮率は、ほぼ零でGFRPのそれよりも小さ
い。 In general, in the case of GFRP (glass fiber reinforced plastic), the heat shrinkage rate decreases as the amount of glass fiber filled increases.
The thermal shrinkage rate of GFRP manufactured as a base material for glass cloth, glass roving cloth, etc. is as follows: glass mat base material GFRP > Zarasu cloth base material GFRP > roving cloth GFRP. In addition, CFRP
The fiber direction heat shrinkage rate of (carbon fiber reinforced plastic) is almost zero, which is smaller than that of GFRP.
ガラス繊維、カーボン繊維以外にポリエステル
繊維なども考えられるが、これらを用いて製作さ
れるFRPは気体透過、特にヘリウムの透過が大
きくクライオスタツトを構成する材料としては不
適である。 In addition to glass fibers and carbon fibers, polyester fibers and the like are also considered, but FRP made using these fibers has a high gas permeability, especially helium permeation, and is therefore unsuitable as a material for constructing a cryostat.
したがつて、本発明を適用した第1図では、外
径側FRP層13をガラスマツト基材で構成した
場合内径側FRP層12はガラスロービング基材
で構成される。また、内径側、及ひ外径側FRP
層12,13ともガラスマツトとガラスロービン
グクロスの組合せで構成し、外径側FRP層13
に比較し、内径側FRP層12のロービングクロ
スの量が多くなるように構成しても良い。さらに
外径側FRP層13をガラス繊維基材で構成し内
径側をカーボン繊維基材で構成しても良い。 Therefore, in FIG. 1 to which the present invention is applied, when the outer FRP layer 13 is made of a glass mat base material, the inner FRP layer 12 is made of a glass roving base material. In addition, FRP on the inner diameter side and outer diameter side
Both layers 12 and 13 are composed of a combination of glass mat and glass roving cloth, and the FRP layer 13 on the outer diameter side
The structure may be such that the amount of roving cloth on the inner diameter side FRP layer 12 is larger than that in the inner diameter side FRP layer 12. Further, the FRP layer 13 on the outer diameter side may be made of a glass fiber base material, and the inner diameter side may be made of a carbon fiber base material.
このような構成においては、液体ヘリウムが投
入され第4図に示す温度分布が生じ、外径側
FRP層13に比較し内径側FRP層12の温度が
低くなつた場合でも、内径側が熱収縮率の小さい
材料で構成されているため熱収率は小さく、同一
材料で構成されている第6図に比較し、熱応力は
大幅に低減される。そのため、接着強度の弱い気
体透過遮へい層11においてもクラツク、剥離が
発生することは無い。 In such a configuration, when liquid helium is injected, the temperature distribution shown in Figure 4 occurs, and the temperature distribution on the outer diameter side
Even if the temperature of the FRP layer 12 on the inner diameter side is lower than that of the FRP layer 13, the heat yield is small because the inner diameter side is made of a material with a small thermal contraction rate, and the FRP layer 12 is made of the same material. Thermal stress is significantly reduced compared to Therefore, cracks and peeling do not occur even in the gas permeable shielding layer 11 having weak adhesive strength.
次に本発明の最つとも望ましい実施例を第2図
に示す。該図のように、本実施例では内槽を構成
するFRP層は熱収縮率の異る複数の層に分割さ
れ、より内径側には、より熱収縮率の小さい材料
が選択される。この例は分割数が5ケの例で、
FRP層14が最内径側である。したがつて、熱
収縮率はFRP層18,17,16,15,14
の順に小さくなる。熱収縮率調整の手段は、前記
したように繊維の種類(カーボン、あるいはガラ
ス)、基材の種類(マツト、クロス、ロービン
グ)、あるいはその組合せを適正に選択すること
によつて容易にできる。 Next, the most desirable embodiment of the present invention is shown in FIG. As shown in the figure, in this embodiment, the FRP layer constituting the inner tank is divided into a plurality of layers having different heat shrinkage rates, and a material with a smaller heat shrinkage rate is selected for the inner diameter side. In this example, the number of divisions is 5,
The FRP layer 14 is the innermost side. Therefore, the heat shrinkage rate is FRP layer 18, 17, 16, 15, 14
decreases in the order of The heat shrinkage rate can be adjusted easily by appropriately selecting the type of fiber (carbon or glass), the type of base material (mat, cloth, roving), or a combination thereof, as described above.
このように構成されたFRP内槽壁は、液体ヘ
リウムが投入され、第4図に示す温度勾配が生じ
ても、温度変化の大きい部分に熱収縮率の小さい
材料が用いられているために、熱収縮量がFRP
層内全体で均等化され第5図に示した熱応力σは
より大幅に低減される。また、全体がほぼ液体ヘ
リウム温度になる第4図、t6以降においては内径
側に比較して外径側の熱収縮が大きくなるため、
第5図の熱応力は圧縮応力となるため、ガラス基
材等の層間にクラツク、剥離の生ずる懸念は無
い。 With the FRP inner tank wall constructed in this way, even when liquid helium is injected and the temperature gradient shown in Fig. 4 occurs, a material with a small thermal shrinkage rate is used in the parts where the temperature change is large. The amount of heat shrinkage is FRP
The thermal stress σ shown in FIG. 5, which is equalized throughout the layer, is further reduced significantly. In addition, after t 6 in Figure 4, when the entire body becomes almost liquid helium temperature, the thermal contraction on the outer diameter side becomes larger than on the inner diameter side, so
Since the thermal stress shown in FIG. 5 is compressive stress, there is no concern that cracks or peeling will occur between the layers of the glass substrate or the like.
このように本実施例によれば、苛酷な冷却に対
しても安定なFRPクライオスタツトが得られる。 As described above, according to this embodiment, an FRP cryostat that is stable even under severe cooling can be obtained.
尚、今までの例は、内径側になるにしたがい熱
収縮率の小さい材料を配するという表現で説明し
てきたが、これはマクロに見た場合の表現で、ミ
クロに見て、内径側に熱収縮率の大きい材料があ
つても本発明の目的は達成される。すなわち、
FRP層をガラスマツトとガラスロービングクロ
スで構成し、内径側にゆくにしたがいロービング
クロスの割合を多くした場合等がこの例である
が、その場合でも熱応力はマクロに見た熱収縮率
と温度分布で決まるため本発明の効果が得られ
る。 In addition, in the examples so far, we have explained that materials with a smaller heat shrinkage rate are arranged as they move toward the inner diameter, but this is an expression from a macro perspective. The object of the present invention can be achieved even if a material has a high thermal shrinkage rate. That is,
An example of this is when the FRP layer is composed of glass pine and glass roving cloth, and the proportion of roving cloth increases toward the inner diameter, but even in that case, the thermal stress is determined by the macroscopic thermal contraction rate and temperature distribution. Therefore, the effect of the present invention can be obtained.
以上説明した本発明のクライオスタツトによれ
ば、内槽の外径側から内径側になるにしたがい熱
収縮率の小さい材料を配置して構成したものであ
るから、液体ヘリウムの投入時における急激な温
度変化に対しても安定で、クラツク、剥離等の発
生が無く、信頼性の高いFRP製のクライオスタ
ツトを得ることができる。
According to the cryostat of the present invention as described above, since the inner tank is constructed by arranging materials with a smaller thermal shrinkage rate from the outer diameter side to the inner diameter side, there is no sudden change in the temperature when liquid helium is added. It is possible to obtain a highly reliable FRP cryostat that is stable against temperature changes and does not cause cracks, peeling, etc.
第1図は本発明の一実施例を示すクライオスタ
ツト内槽壁の断面図、第2図は本発明の他の実施
例を示すクライオスタツト内槽壁の断面図、第3
図は一般的なFRP製クライオスタツトを示す断
面図、第4図は液体ヘリウム投入時における内槽
壁内の温度分布経時変化を示す特性図、第5図は
発生熱応力の方向を示す内槽壁の部分斜視図、第
6図は従来のクライオスタツト内槽壁を示す断面
図である。
1……FRP内槽、2……FRP外槽、3……真
空断熱層、4……排気ポート、5……上蓋、6…
…超電導マグネツト、7……断熱材、8……液体
ヘリウム、10,12,13,14,15,1
6,17,18……FRP層、11……気体透過
遮へい層。
FIG. 1 is a cross-sectional view of a cryostat inner tank wall showing one embodiment of the present invention, FIG. 2 is a cross-sectional view of a cryostat inner tank wall showing another embodiment of the present invention, and FIG.
The figure is a cross-sectional view of a typical FRP cryostat, Figure 4 is a characteristic diagram showing the temperature distribution within the inner tank wall over time when liquid helium is introduced, and Figure 5 is the inner tank showing the direction of generated thermal stress. A partial perspective view of the wall, and FIG. 6 is a sectional view showing the wall of the inner tank of a conventional cryostat. 1...FRP inner tank, 2...FRP outer tank, 3...vacuum insulation layer, 4...exhaust port, 5...top lid, 6...
...Superconducting magnet, 7...Insulating material, 8...Liquid helium, 10, 12, 13, 14, 15, 1
6, 17, 18...FRP layer, 11...Gas permeation shielding layer.
Claims (1)
る繊維強化プラスチツク製の内槽と、この内槽の
周囲に設けられた繊維強化プラスチツク製の外槽
とによつて構成され、前記内槽と外槽との空間を
真空排気してなるクライオスタツトにおいて、前
記内槽を外径側から内径側になるにしたがい熱収
縮率の小さい材料を配して構成したことを特徴と
するクライオスタツト。 2 前記繊維強化プラスチツク製の内槽は、外径
側から内径側に向かいガラスマツト、ガラスクロ
ス、ガラスロービングクロス、カーボンクロスの
順に基材を配したことを特徴とする特許請求の範
囲第1項記載のクライオスタツト。 3 前記繊維強化プラスチツク製の内槽をガラス
マツトとガラスクロス、あるいはガラスマツトと
ガラスロービングクロスで構成し、外径側から内
径側に向かうにしたがいガラスクロス、あるいは
ガラスロービングクロスの割合を増やしたことを
特徴とする特許請求の範囲第1項記載のクライオ
スタツト。 4 前記繊維強化プラスチツク製の内槽壁内に短
冊状の気体透過遮へい層を設け、この気体透過遮
へい層の内径側に、外径側の繊維強化プラスチツ
ク層よりも熱収縮率の小さい繊維強化プラスチツ
ク層を配したことを特徴とする特許請求の範囲第
1項記載のクライオスタツト。 5 前記気体透過遮へい層は、アルミ箔、マイカ
片等て構成されていることを特徴とする特許請求
の範囲第4項記載のクライオスタツト。[Scope of Claims] 1. Consisting of an inner tank made of fiber-reinforced plastic containing liquid helium, liquid nitrogen, etc., and an outer tank made of fiber-reinforced plastic provided around this inner tank, A cryostat formed by evacuating a space between an inner tank and an outer tank, characterized in that the inner tank is made of a material having a smaller thermal contraction rate from the outer diameter side to the inner diameter side. Tatsuto. 2. The inner tank made of fiber-reinforced plastic has base materials arranged in the order of glass mat, glass cloth, glass roving cloth, and carbon cloth from the outer diameter side to the inner diameter side. cryostat. 3. The inner tank made of fiber-reinforced plastic is composed of a glass mat and a glass cloth, or a glass mat and a glass roving cloth, and the proportion of the glass cloth or glass roving cloth increases from the outer diameter side toward the inner diameter side. A cryostat according to claim 1. 4. A strip-shaped gas-permeable shielding layer is provided within the inner tank wall made of fiber-reinforced plastic, and a fiber-reinforced plastic having a smaller heat shrinkage rate than the fiber-reinforced plastic layer on the outer diameter side is provided on the inner diameter side of this gas-permeable shielding layer. A cryostat according to claim 1, characterized in that the cryostat is provided with layers. 5. The cryostat according to claim 4, wherein the gas permeation shielding layer is made of aluminum foil, mica pieces, or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60048327A JPS61208205A (en) | 1985-03-13 | 1985-03-13 | Cryostat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60048327A JPS61208205A (en) | 1985-03-13 | 1985-03-13 | Cryostat |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61208205A JPS61208205A (en) | 1986-09-16 |
JPH0367326B2 true JPH0367326B2 (en) | 1991-10-22 |
Family
ID=12800317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60048327A Granted JPS61208205A (en) | 1985-03-13 | 1985-03-13 | Cryostat |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61208205A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5259487B2 (en) * | 2009-05-15 | 2013-08-07 | 株式会社東芝 | Superconducting coil |
-
1985
- 1985-03-13 JP JP60048327A patent/JPS61208205A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61208205A (en) | 1986-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5179338A (en) | Refrigerated superconducting MR magnet with integrated gradient coils | |
US4462214A (en) | Cryostat | |
CA1273561A (en) | Low cost intermediate radiation shield for a magnet cryostat | |
US6324851B1 (en) | Cryostat for use with a superconducting transformer | |
US5225782A (en) | Eddy current free MRI magnet with integrated gradient coils | |
US3562684A (en) | Superconductive circuit | |
US3781733A (en) | Low heat conductant temperature stabilized structural support | |
US4745313A (en) | Stator having three-phase superconducting windings | |
US4651117A (en) | Superconducting magnet with shielding apparatus | |
KR20160125948A (en) | A cryostat for superconducting devices | |
JPH0367326B2 (en) | ||
JPS6213010A (en) | Superconductive electromagnet | |
JP2021077811A (en) | Superconducting coil device | |
JP2593466B2 (en) | Cryogenic equipment | |
JP7477959B2 (en) | Superconducting coil device and current lead structure for superconducting coil | |
JPS6254982A (en) | Cryostat | |
US3216208A (en) | Means for maintaining long lengths of wire or films at cryogenic temperatures | |
JPS59191308A (en) | Cryostat | |
JPS5961007A (en) | Superconductive coil | |
Shintomi et al. | The construction and test results of a 10T dipole magnet | |
Koyama et al. | Development of 1 K refrigerator using 0.1 W GM cryocooler | |
JPS63274117A (en) | Very low temperature heat-insulating supporting member | |
JPS60217606A (en) | Superconductive coil | |
Wurz | High‐Field Superconducting Magnet | |
Testard et al. | Cryostats for SQUID magnetometers |